【6月22日(水)】 OR学会中部支部研究会のお知らせ

OR学会中部支部研究会を以下のように開催いたします. 皆さまのご参加をお待ちしております.

【2016/05/19更新:講演概要を掲載】

日時: 6月22日(水) 17:00-19:00

場所: 名古屋大学 東山キャンパス 情報科学研究科棟1階 第4講義室
http://www.co.cm.is.nagoya-u.ac.jp/~yagiura/access-j.html

講演者: Gregor Hendel
Zuse Institute Berlin, 研究員
http://www.zib.de/members/hendel
講演題目: How to solve Integer Optimization Problems with SCIP

講演者: Yuji Shinano
Zuse Institute Berlin, 研究員
http://www.zib.de/members/shinano
講演題目: Towards Using over a Million CPU Cores to Solve Previously
Unsolved Mixed Integer Programming Problem Instances

——————————————————-
講演概要:
——————————————————-

Gregor Hendel

How to solve Integer Optimization Problems with SCIP

The  general-purpose  branch-and-cut  solver  SCIP  is one of the
fastest  noncommercial  tools  for  solving  integer optimization
problems.  Its plugin-based system facilitates  custom extensions
for specific  applications.  The goal of this talk  is to provide
users  with  a  basic  understanding  of the SCIP solving process
and to  illustrate some  ways to tackle custom  projects.  In the
first part of this talk,  I will give an overview  of the solving
process of  SCIP and  the role  of the different plugin types.  I
will  introduce  the  most  important  plugin  types of SCIP with
special focus on its available primal heuristics. The second part
deals with the customization of SCIP at the example of the famous
Traveling  Salesman  Problem.  Three  alternative  approaches  to
formulate and solve TSP’s will  be discussed and their particular
advantages will be highlighted:  via the modeling language ZIMPL,
the C/C++ callable library of SCIP, and the new Python interface.

——————————————————-

Yuji Shinano

Towards Using over a Million CPU Cores to Solve Previously
Unsolved Mixed Integer Programming Problem Instances

The  Ubiquity  Generator  (UG)  is  a  framework for the external
parallelization  of  MIP  solvers.  UG  provides a systematic way
to  develop  a  parallel  solver  that  can  run  on  large-scale
distributed memory computing environments. It was used to develop
ParaSCIP,  a  distributed  memory,  massively parallel version of
the open  source academic  solver SCIP.  In this  talk we present
a  success  story  where  we  solve  14  open  MIP instances from
MIPLIB2003 and MIPLIB2010 using ParaSCIP on up to 80,000 cores of
supercomputers.  Finally, we introduce ParaXpress,  for which one
of the fastest commercial MIP solvers, the FICO Xpress-Optimizer,
has been parallelized by UG. Combining the internal shared-memory
parallelization of Xpress and the external parallelization of UG,
we aim at  a new order of magnitude  for supercomputer core-usage
in MIP solving.

——————————————————-