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1 Introduction

We consider the Vehicle Routing Problem (VRP), introduced by Dantzig and Ramser [10],
in which a central depot {0} uses k independent vehicles of identical capacity C, to service
integral demands d; for a single commodity from customers : € N = {1,--. ,n}. Delivery
is to be accomplished at minimum total cost, with c¢;; > 0 denoting the 7 to j transit cost,
0 < 4,j < n. The cost structure is assumed symmetric, i.e., ¢;; = c¢j; and ¢; = 0.
Combinatorially, a solution for this problem consists of a partition of N into k routes
{Ri,...,> Ry}, each satisfying ) ,cp, d; < C, and a corresponding permutation, or tour, o;
of each route specifying the service ordering. This problem is naturally associated with the
complete undirected graph consisting of nodes N U {0}, edges E, and edge-traversal costs
¢ij, {i,j} € E. In this graph, a solution is the union of k cycles whose only intersection is

the depot node. Each cycle corresponds to the route serviced by one of the k vehlcles An
integer programming formulation can be given as follows:
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Te integral Ve € E. (1.6)

For ease of computation, we define b(S) = [(Ziesdi)/C], an obvious lower bound on the
number of trucks needed to service the customers in set S. A (possibly) stronger inequality

may be obtained by computing the solution to a Bin Packing Problem (BPP) with the
customer demands in set S being packed into bins of size C. Constraints (1.1) and (1.2) are
the degree constraints. The capacity constraints (1.3) can be viewed as a generalization of
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the subtour elimination constraints from the Traveling Salesman Problem (TSP); they serve
to enforce connectivity of the solution, and that the total demand of no route exceeds C.

It is clear that the VRP is closely related to two difficult combinatorial problems. When
C = 0o, we have an instance of the Multiple Traveling Salesman Problem (MTSP), which can
be transformed into an equivalent TSP instance by adjoining to the graph k — 1 additional
copies of node 0 and its incident edges (there are no edges among the k depot nodes). On
the other hand, the question of whether there exists a feasible solution for a given instance
of the VRP is an instance of the BPP. The decision version of this problem is conceptually
equivalent to a VRP model in which ¢;; = 0 V%, j (any feasible solution is optimal). A feasible
solution to the full problem is a TSP tour (in the expanded graph) for which total demand
along each of the k segments joining successive depot copies does not exceed C.

Because of the interplay between the two underlying models, instances of the Vehicle
Routing Problem can be extremely difficult to solve in practice. This difficulty stems from
the fact that the cost structure is dictated purely by routing considerations and does not ac-
~ count for the packing structure. Hence, the routing and packing requirements are sometimes
in conflict. This observation suggests the exploration of decomposition-based optimization
techniques involving relaxation of one or the other of the underlying structures. Here we in-
vestigate a novel way to isolate the TSP structure from that of the BPP, permitting exploita-
tion of known techniques for optimizing over the TSP polytope; this leads to a separation
routine for the capacity constraints and other classes of valid inequalities. This approach for.

separation can be applied more generally to combinatorial optlrmzatxon problems that are
the intersection of two underlying models.

Here we outline the details of this approach and present computational results obtained

- using the SYMPHONY framework for parallel branch, cut, and price (see the SYMPHONY
User’s Guide [19] and [13]). ‘

2 Separation of the Capacity Constraints

Many classes of valid inequalities for the VRP polytope have been reported in the literature
(see [14, 15, 1, 7, 9, 16, 5, 4, 6]), but the separation problem remains difficult to solve for
most known classes. Classes that can be effectively separated tend to be ineffective in the
context of branch and cut. We focus primarily on the problem of separating an arbitrary
fractional point from the VRP polytope using the capacity constraints (1.3). The separation
problem for these constraints was shown to be A'P-complete by Harche and Rinaldi [5], even
for b(S) = [(Ties di)/C]; i.e., the LP relaxation of our formulation is N"P-complete.
Because of the apparent intractability of solving the separation problem, a good deal of
effort has been devoted in the literature to developing effective separation heuristics for these
constraints. However, until the paper by Augerat, et al. [5], most known algorithms were not
very effective at locating violated capacity constraints. In [4], it is shown that the fractional
version of these constraints (i.e., with b(S) = (Zies di) /C) is polynomially separable. This
method can be used as a heunstnc for finding violated constraints of the form (1.3).
Returning to the model discussed earlier in which the TSP is viewed as a relaxation of
the VRP on a slightly expanded graph, a TSP tour provides a feasible VRP solution when
it also yields a feasible solution to the BPP. We denote by T the TSP polytope, i.e., the



convex hull of incidence vectors of all TSP tours, and by R the polytope generated by the
incidence vectors of tours corresponding to feasible VRP solutions. Thus, R C 7 and the
extremal elements of R are among those of 7. '

Suppose that at some node in the branch and cut search tree, the LP solver has returned
an optimal solution £ to the current LP relaxation. We define the support graph or fractional
graph corresponding to £ as G = (NU{0}, E) where E = {e: £.0}. Suppose that  is integral.
If £ ¢ T, then G must be disconnected since the degree constraints are included explicitly
in each LP relaxation. In this case, the set of nodes in any connected component of G that
does not include the depot induces a violated capacity constraint, so we CUT; that is, we
add this inequality to the LP and re-optimize. On the other hand, when Z € T, we consider

whether £ € R. If not, then % must again violate a capacity constraint induced by the nodes
.of some depot-to-depot segment of the tour corresponding to- #, so we CUT. Finally, when
# € R, then % provides a feasible solution to the VRP and investigation of the current search
node terminates. Thus we assume henceforth that Z is not integer-valued.

2.1 Heuristics

Because of the difficulty of this separation problem, we first apply several simple heuristics
in an attempt to determine a capacity constraint violated by Z. These heuristics work within
the support graph G; we assume G is connected, and associate with it a vector w € IRE of
edge weights whose components are defined by w. = Z.. We use the notation

w(F) = Zwe, F C E,and , » (2.7)
ecF
8(S) = {{3,j}€E:i€S,j¢8S}, SCNu{o}. (2.8)

The connected components heuristic considers one-by-one the components of the support
graph after removing the depot. Suppose S is the node set of such a component. If £ violates
the capacity restriction determined by S, we CUT. If not, we replace S — S\{v}, withv € S
chosen so that violation becomes more hkely after its removal (specifically, a node v € C;
such that b(C; \ {v}) = b(C;) and w (6(C; \ {v})) — 2b(C; \ {v}) < w (6(C;)) — 2b(C;)). The
procedure iterates in this fashion until no such node can be found. If no violated inequality
is discovered, we move on to consider the next component of the support graph. A variant,
the 2-connected components heuristic, which begins with the 2-edge connected components
(those for which the removal of at least two edges is required to disconnect the component)
of the support graph after the depot’s removal, was also implemented.
 In the shrinking heuristic, if the two end nodes of any edge of the support graph not
adjacent to the depot determine a capacity constraint violated by & (i.e., the set S = {i,7}
induces a violated capacity constraint), we CUT. If not, suppose edge e = {1, j} not adjacent
to the depot satisfies w, > 1. In this case, we shrink, or contract, edge e, identifying its end
nodes and summing components of w for edges which are identified in consequence. In the
resulting contracted graph, the two endpoints that are identified form a supernode associated
with a subset of N. The demand associated with this new supernode is the sum of the
demands of the nodes it contains. It is not difficult to see that this shrinking process does
not interfere with violated capacity constraints — if S induces a violated capacity constraint



then there must exist a set S, with either 1,5 € S or4,j € S, which also induces a violated
capacity constraint. Thus the heuristic proceeds iteratively, alternately shrinking an edge e
for which w, > 1 and checking whether any pair of end nodes determines a violated capacity
constraint. If a violated constraint is produced, we CUT; if not, the procedure iterates until
every edge e is either adjacent to the depot or satisfies w, < 1. Note that in a contracted
graph, it is possible that w, > 1 for some edge e.

The extended shrinking heuristic is based on the mmmmn cut algorithm of Nagamochi
and Ibaraki [17] and is similar in spirit to the shrinking heuristic. In this extension, shrinking
continues with edges of weight less than one in the order prescribed by the algorithm of {17].
As in the shrinking heuristic, each edge is checked before contraction to determine if it
induces a violated capacity constraint. Because the sequence of edges is chosen in such a
way that the weight of each cut examined is “small,” this algorithm may lead to the discovery
of violated capacity constraints not discovered by other heuristics.

' If the above heuristics fail to locate a violated capacity constraint, we apply the greedy
shrinking heuristic [5]. Here we begin with a small set of nodes S, selected either at randomor
by one of several heuristic rules. In each iteration, we try to grow the set .S by adding a node
' j € S such that 3. jieBiics) Te is maximized (and hence ¥ es(s) T. is minimized). Notice

the contrast between this strategy and that taken by the connected components heumstzc
where a large initial set is shrunk using a similar rule.

2.2 The Decomposition Algoritﬁm

If the heuristics described above have failed to produce a violated capacity constraint, then
we resort to a decomposition algorithm, which originally appeared in [18]. Given a fractional
solution # to some LP relaxation, we attempt to determine whether % lies within 7 by
expressing & as a convex.combination of incidence vectors of tours. More precisely, where T°
denotes the matrix whose columns are the extreme points of 7, we are asking whether

max{0"A: TA=%, 1'A=1, A >0}, (2.9)

has a finite optimum. If such a decomposition of Z into & convex combination of tour vectors
is possible, Carathéodory’s Theorem assures only a modest number of columns of T' will be
required. Generating the matrix T is, needless to say, difficult at best, and the reader should
for the moment put aside consideration of exactly how this is to be accomplished.

Note that when % violates a capacity constraint and % is a convex combination of tour
vectors, then some member of the decomposition must also violate that same restriction.
Thus, given such a convex representation for Z, we examine the depot-to-depot segments of
its tours attempting to find a violated capacity restriction. If successful, we use the violated
inequality to CUT. If not, i.e., when there is a convex decomposition of & (hence £ € 7),
yet no evident capacity violation, then separation fails and we must BRANCH.

When no convex decomposition of  exists, then & ¢ 7 and the Farkas Theorem provides
a hyperplane separating # from 7. Specifically, there must exist a vector e and scalar o for
which at > o for each column ¢ of T, yet aZ < . This inequality corresponds to a row of
the current basis inverse when solving the LP defined in (2.9) and can be readily obtained.
The inequality az > « is returned to CUT", and the process iterates.



We suggest two means for dealing. with the intractability of matrix T. One approach
is to restrict the column set of the matrix 7. Note that any tour ¢ present in a convex
decomposition of £ must confown to Z; i.e., t must satisfy t, = 1 whenever % f.=1landt. =0
when %, = 0. Thus we may require that these stipulations hold for all columns of T. When
the fractional support of Z, the set of edges e for which 0 < Z, < 1, is of small cardinality, we
can simply enumerate all such tours using depth-first search and thereby create T explicitly.
The disadvantage of this is that any resulting Farkas inequalities must be “lifted” in order
to be made valid, another computationally intensive task.

A second approach is to use column generation to handle T zmplzcztly Here T is mltlally
comprised of only a partial collection of tours. The algonthm proceeds as before, asking
whether Z is a convex combination of the columns of . When a convex representation is
found among the columns of T', we again check whether any of its tours determines a violated

capacity constraint. If so, we CUT. As before, when there is no convex decomposition of &
* using the known tours, the Farkas Theorem provides (e, ) for which at > « for each column
t of T, but a < . Now we minimize over 7 with cost vector a using TSP optimization
techniques. Suppose t* is the incidence vector of the optimal tour which results. If at* > o,
then the minimization guarantees that axr > « separates £ from 7, so-this inequality is
passed to CUT. If at* < «, then t* is not among the columns of T, so t* is appended to I
and we ask again whether a convex decomposition of Z can be obtained from the columns
of T. The process iterates until either a decomposition is found or it is proven that £ ¢ 7.

2.3 Extensions

We indicate several means to improve the efficiency of the decomposition algorithm, as
reported in [11]. Consider the effect of further restricting the columns of T to only extreme
points of P’. At first, this may seem to defeat our purpose since in this case, we cannot
possibly succeed in finding a decomposition. However, the Farkas cut generated when we
fail to find a decomposition separates £ from P’ and hence can still be used to CUT. This
basic approach has also been used to generate valid inequalities for the TSP in [2].

Next, consider the polytope P" defined as the convex hull of incidence vectors of solutions
whose cost is less than or equal to the current upper bound. It is immediate that P” C P’
and furthermore, it is easily seen that min{cz : £ € P’} = min{cz : z € P"}. We can
therefore further limit enumeration to those columns whose cost is less than the current
upper bound and still generate a valid Farkas inequality. ,

This observation suggests considering what happens when we limit the enumeration to
the point where T becomes empty. In this case, the algorithm has proven that there is no
feasible solution with cost below the current upper bound and which conforms to the current
fractional solution. Hence, we can impose the following no-columns cut:

Y ze— . ZTeS|BAf-L (2.10)°
e:fe=1 e:Ze=0
These cuts are a special case of hypo-tou,r's introduced in [5]. If we limit column generation
by both feasibility and cost, as suggested, we can always generate one of these inequalities.
To see this, suppose T is composed only of extreme points of P”. Then each of these columns
generates a possible new upper bound and can hence be removed from 7', leaving T empty.



3 Computational Results

The separation routines were embedded in the generic, parallel branch and cut framework
SYMPHONY developed by Ralphs [18] and Ladényi [12]. The implementation: of this shell
is reviewed in [13]. Our test set consisted of medium-sized VRP instances taken from the
TSPLIB [20] repository and from that maintained by Augerat [3]. The full test set and
source code used in this paper are available at http://www.branchandcut.org/VRP.

Ten of the problems in this set are derived from that used by Christofides and Eilon in (8],
which is included among the VRP instances at TSPLIB. Three of those (E-n76-k7, E-n76-k8,
and E-n101-k8) were solved for the first time during this work using the parallel version of
SYMPHONY on an IBM SP2 parallel computer with up to 80 processors. Recently, Blasum
and Hochstattler solved E-n76-k7 and E-n76-k8 on a single processor using additional cutting
planes [6]. We have also solved E-n76-k7 sequentially, but required a larger tree. It is worth
noting that the smallest instance we are aware of that has not been solved to optimality is

B-n50-k8. We have solved a version of this model with truck capamty increased to 150, but
have been unable to solve the original instance.
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