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Abstract: We make a survey of fuzzy dynamic programming on the basis of Bellman and Zadeh’s
‘seminal paper “Decision-making in a fuzzy environment”. Our principle is that any dynamic pro-
gramming must generate an optimal solution to a given problem. From this viewpoint, we propose
dynamic programming method on determinstic, stochastic, and fuzzy systems. On the stochastic sys-
tem, it is formulated as a maximization problem of expected value of minimum criterion not over the
conventional Markov policy class but over three new broad policy classes. We present three dynamic
programming approaches — (1) membership-parametric method, (2) history-parametric method,
and (3) decision tree-table method —, which yield a common optxmal policy in a broad (geneml
policy) class. A complete set of optimal solutions for Bellman and Zadeh’s model is illustrated. Two
conditional decision processes are introduced, one of which turns out to be the Bellman and Zadeh’s
decision process on stochastic system. Further, a threshold-membership criterion problem is solved
through fuzzy dynamic programming.
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1 Introduction

Since Bellman and Zadeh have published “Decision-making in a fuzzy environment” [4], there has been a wide-
ranging study on fuzzy decision theory and its applications [1,5,24-28,34]. Bellman and Zadeh have originated
deterministic, stochastic and fuzzy systems on multistage decision processes in the fuzzy environment [4, §4,5].
We focus on the three systems.

It is well known that there exists an optimal policy which is Markov for the additive criterion [7,32]. However,
as for the minimum criterion, there does not always exist an optimal policy in Markov policy class [11-14,16-23].
This fact raises a question. What is fuzzy dynamic programming?

In this paper, we discuss fuzzy dynamic programming on the three systems. Our viewpoint for dynamic pro-
gramming is that sequential optimization assures simultaneous one [2,33]. Dynamic programming has to yield
an optimal solution to the original problem whenever it is applied. Although we discuss dynamic programming
on repective systems one by one, we direct our main attention to stochastic system. We develop the deter-
ministic “final state model” [4,33] to the stochastic “final state model”. The basic idea is imbedding by state
augmentation, which incorporates the membership accumulation process into an additional state dynamics.

In section 2, we give a brief survey of fuzzy dynamic’programming on deterministic system. ‘Section 3 is
devoted to fuzzy dynamic programming on stochastic system. Three new —ezpanded Markov, general and
primitive— policies are defined. Introducing three equivalent methods — (1) membership-parameter method,
(2) history-parameter method, and (3) multi-stage stochastic decision. tree-table method —, we show that the
three methods yield a common optimal policy in general policy (large) class. We also illustrares the optimal
policy on three-state two-decision and two-stage model. Further, it is shown that there does not exist an optimal
policy in Markov policy (small) class. In section 4, fuzzy dynamic programming on fuzzy system is discussed
under the fuzzy (minimax) expectation. Section 5 introduces two (a posteriori and a priori) conditional decision
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processes on stochastic system. We show that the Bellman and Zadeh’s decision process on stochastic system
in [4] turns out to be the a posteriori conditional decision process. Finally, in section 6, we solve a threshold-
membership criterion problem through fuzzy dynamic programming.

We use the notations and terminology in [4,13,15, 30, 31].

2 Deterministic System

A fuzzy decision process on deterministic system is the following multi-stage decision process with minimum
criterion (Bellman and Zadeh [4]) :

Max  po(2o, uo) A p1(21,u1) A+ A pn—1(EN-1,UN-1) A pe(Zn)

Do(mo) s.t. (l) Tnt1 = f(wn: un) n=0,1,...,N—1 (1)
(il)) w, €U

On the deterministic system, an action u, € U at state , € X determines uniquely a next state Tn41 =
F(Tn,un), where f : X x U = X is a state dynamics. pn, : X x U — [0,1] is a membership function of fuzzy set
R,on X xU: _

tn(z,u) = pr, (T, w).
pe @ X — [0,1] is a membership function of fuzzy goal (fuzzy set) G on X. Then the multi-stage decision
process maximizes the membership function

#RoanﬂmﬂRN_)ﬂG(xO) Ug, T1,U1, "+, TN-1, UN-1, ZN)
= po(zo,uo) A g1 (z1,u1) A+ Apn_1(Zn-1,un-1) A pe(ZN)

of intersection Rg N R1N---N Ry-1NG.

We consider a class of policies. A mapping 7, : X — U is called n-th Markov decision function. A sequence
of Markov decision functions n = {mg, 71,...,7n—-1} is called Markov policy. We denote the set of all Markov
policies by II, which is called Markov class.

Then we have the backward recursive formula ( [33]) :

Theorem 2.1 (Bellman and Zadeh [4])

Un () =M€agc[un(9:,u)/\vn+1(f(x,u))] zeX,0<n<N-1
* (2)

uwn(z) =pe(z) z€X

Now we solve the recursive equation. Let 7 (z) be a maximizer in (2). Then we have both mazimum
value functions {v,}} and an optimal policy m* = {x%}{'~"! in Markov class II. The desired mazimum value of
Do(zo) is vo(zo). Its mazimum point u* = {ug,ui,...,uj_,} is given by use of the optimal policy 7*, the state
dynamics f and the initial state z¢ through the conventional dynamic programming :

m5(w0) = ug — (@0, ug) = 21 = m(z]) = uj - fz1,u]) =23 -

m3(x3) =u3 — f(z,u3) =23 > - = f(Ty-gun_g) =21 ®3)

Ty_1(@No1) = uhoy = f(Ehvo un-1) =2,
where the corresponding sequence of states z* = {zo,z},...,z}} is also uniquely determined by the triplet
(w*, f, o). This is a fuzzy dynamic programming for the deterministic system. Here we note that in minimum
criterion the function g, : X x U x R! — R! defined by g,(x,u;h) := pn(z,u) A h is nondecreasing in the
third argument. Thus the minimum criterion enjoys the monotonicity, and it connotes the separability in

itself [2,8-10,33].
Now let us solve the Bellman and Zadeh’s three-state, two-decision, two-stage model [4, pp.B153] :

Max  po(uo) A p1(ua) A pe(z2)
st. Zpy1 = f(Zn,upn), un €U n=0,1

where the data is Table 1 :



z2 | pelze) . Te\ue [ a1 ap
pe(u)\ue | a1 a9 $1 0.3 $1 $1 S
uo(uo) 0.7 1.0 S92 1.0 - 82 S3 S1
w1 (ug) 1.0 0.6 S3 0.8 S3 s1 83
Table 1: {10, p1} ke f(xe, ue)
We solve the recursive equation :
v2(22) pe(z2) z2€X
vi(z1) = Max{u(ui) Ava(f(e1,m))] 21 € X
vo(To) = Mgg [o(uo) A vi(f(zo,u0))] zo € X.

Then the dynamic programming solution, which consists of a pair of sequence of optimal membership functions
{vo,v1,v2} and optimal policy 7* = {n§,n}}, is shown in Table 2:

Zn || vo(Zo) 75(xo) | va(w1) wi(xw1) | va(z2)
S1 0.8 ao 0.6 az 0.3
So 0.6 ai,as 0.8 a) 1.0
S3 0.6 ai, @ 0.6 a2 0.8

Table 2: {vg,v1,v2} 7* = {m§,n7}

Thus the original fuzzy decision problem has the optimal solution as follows:

(1) To=81 Duyg=az > T} =8 > u] =a - ;=353 = v9(s1) =1.0A1.0A0.8=0.8
(i) To=S8y DUy =a1 — T} =83 > u] =ag > x5 =53 = vp(s2) =0.7A06A08=0.6

or uy=ag — ] =8 S U] =az = 5 = s3 = vo(s2) =1.0AN0.6A0.8=0.6
(ilf) @o=s3—>uy=a1 =] =5 —u] =ay > ;=5 = vp(s3) =0.7A06A1.0=0.6

or ug=as = ] =83 > u] =az = 5 =53 = vp(s3) =1.0A0.6 A0.8=0.6

3 Stochastic System

Now let us consider a fuzzy dynamic programming on stochastic system. This enables us to discuss both mono-
tonicity and separability for minimum criterion in stochastic sense. The following results provide a stochastic
dynamic programming with nonadditive criterion.

We begin to introduce a large class of policies, which depend not only on today’s state but also on state-to-
date. Let X™ := XxXx--xX be direct product of n state spaces X. A mapping o, : X"*! — U is called n-th
general decision function, whose sequence o = {09,01,...,0n—-1} constitutes a general policy. The set of all
general policies II, is called general class. When each general decision function o, depends only on the last (=
current) state, the general policy reduces to a Markov policy # = {mo, m1,...,mn—-1}. Thus we have an inclusion
relation : II C II,.

The fuzzy decision process Bellman and Zadeh [4] have proposed is the maximization problem of expected
value of minimum criterion over a Markov decision process { X, }¢’ with a transition law p = {p(-|-,-)} on state
space X and decision space U [14,16-19,22,23] :

Max E7 [poApi A+ Aun—1 A pg)
st (Dn Xnt1 ~2( |2, un)
(i) un €U

So(zo)
0<n<N-1

where E7  is the expectation operator on history space

Hpy := XxUxXxUx- - xUxX (2N + 1)-factors
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induced through an initial state o, the Markov transition law p and a general policy (€ Ig).

- In general, Markov class II is not enough for nonadditive criteria [22]. So we maximize the expected value
" over general class II. Any general policy o(€ II,) determines the expected value in So(zg), which is the multiple
sum :

EglpoA---ApnaApgl = DD Y [wo A Apn—1 Apglpopr - Py -1 (4)
(z1,22,.., ZN)EX XX X-- XX
where .
Hn = ﬂn(xmun), HG = I—"G(fl?N)a Dn = p(xn+llxn7 'Un)
Further the sequence of decisions {ug, %1, ..., un—1} is uniquely determined through general policy ¢ =
{00, ..., on—1} as follows:

up = 0o(Zo), 1 =01(Z0, 1), ..., UN-1 = ON-1(T0,T1,...,TN-1). (5)

Thus our problem Sy(zo) is to find the mazimum value function vo = vo(2o) and an optimal policy o*(€ Il,)
which attains the maximum :

vo(zo) = EZ (o A+ Apn—1 A pg)] = Max EZ [uo A Apn-1 Apg] @0 € X. (6)
oellg
This is called general problem.

3.1 Membership-parameteric method

Now we imbed Sq(z¢) into a new class of additional parametric subproblems [3,29]. First we define the past-
valued (cumulative) random variables {A,} up to n-th stage and the past-value sets {A,} they take :

Ao 21

An 2 po(Xo, Up) A+ A pin—1(Xpn—1,Un—1) 1<n <N, (7)
A

Ao = {1}

A, é {/\nl/\n =,u,0(.’120,’U,0)/\"' /\Hn—l(a:n—lyun—l)7 ‘ (8)

(20, %0s-++rZn1,Un-1) EX XU x---xXxU} 1<n<N.
The minimum criterion is terminal now :
po(Xo, Uo) A+ A pn—1(Xn-1,Un-1) Apuc(Xn) = AnApc(Xn). (9)
We have

Lemma 3.1 (Forward recursive formulae)

Ao=1

Ant1 = Ay A (X, Up) 0 <m < N-1. (10)
Ao = {1}

Any1={A A pn(z,u) | N €Ay, ueU} 0<n<N-L (11)

Further, we expand the original state space X to a direct product space :
Y, £XxA, 0<n<NAN. : (12)
Any Markov policy v = {70,71,--.,Y~—1} on the expanded state spaces {Y,} is a sequence of Markov decision

functions
Yo : Yo —2>U 0<n<N-1



We call v an ezpanded Markov policy. The set of all expanded Markov pohces is denoted by I1. We define a
terminal membership function T by

T(z;0) 2 AApc(@) (550 € Y ~ (13)

and a nonstationary Markov transition law ¢ = {g,} by

(@) | @0, 0) 2 {p(y'x’ u) AN () = (14)

0 " otherwise.
Then {(Xn,A,)} is a Markov decision process on state spaces {Y,} and decision space U with transition
law gq. We consider a terminal criterion on the new decision process :
Max EJO[AN A /J,G(XN)]
s.t. (i)n Xn+1 ~ p(-|Tn, un)
(l)n A1 =An A Nn(Xna Un) 0<n< N
(i)n un€U (15)

To(vo)

where yg = (xo;1) is an initial state. The expectation operator E‘“’ is based upon the probability measure

P;’O, which is uniquely determined through the initial state yg, an expanded Markov policy v and the Markov

transition law ¢ [23].
Now we take a subprocess which starts at state Yn = (Zn; An){€ Yn) on n-th stage and terminates on the
final N-th stage:

Max EJ [An A pe(Xn)]

Tl G O @ n<m N

Let u™(zn; An) be the maximum value of T, (y,) for 0 < n < N—1, where

uN (zn; AN) é)\1\1/\;1(;(:1:1\7) (zN;AN) € YN

Then we have the backward recursive relation :

Theorem 3.1 (Ezpanded Markov class)

uN (2;0) = A A pe(x) zeX, XeAn »
u™(z;A) = Max Z u™ (g A A pn (2, u))p(y|T, w) z€X, A€A,, 0<n<N-1. - (16)
Y yex
Now let 7y (x; A) be the set of all maximizers in (16). Then we have an optimal policy v* = {7§,71,...,Yv_1} in

expanded Markov class T1 [23, Thm 4.2]. The optimal policy 4* leads to a general policy o* = {0,0%,...,0%_1}
through the transformation {13, §3]. (An illustrative transformation will be given in Subsection §§3.3.) Then
the policy o* is optimal in general class II,. Further, the maximum value over expanded Markov class IT is equal
to the maximum value over general class ITg (23, Thm 6.1] :

uo(:co; 1) = 'Uo(fl,‘o). (17)

3.2 History-parameteric method

In this section we maximize the expected value over a larger (primitive) class II,. We show that an optimal
policy is obtained in the largre (general) class.
-Now the expectation problem over II,, is :

Max B [uo A A~ Apn—1 A pg)

Ho(:l:o) (l) Xnt1 NP( lznaun)
(ii)n un €U » 0<n<N-L



"This is called primitive problem. We note that the sequence of decisions ug, u1,..., uy is determined by the
preceding decisions :

ug = vo(Zo), u1 = v1(Zo, %, T1), ..., UN—1 = UN—1(%0, U0, T1,U1,- .-, UN—2, TN-1)- (18)
We consider the subprocess starting at “history” h, = (2o, %o, - - ., Zn—1,Un—1,Za)(€ Hy,) on and after n-th
stage:
Max Ej [po A+ Apun-1A ka)
Hn(hn) N
st. (Dm, (i)m n<m <N,
where v = {Vn, Vn41,-..,¥~N—1} is a primitive policy during the stage-interval [n, N]. The set of all such primitive

policies is denoted by II,(n). Let wn(hy,) be the maximum value over II,(n) for 0 < n < N—1, where

A
wy(hn) = po(Zo,u0) A+ ApuN—1(Tn-1,uN-1) A pg(TN). (19)
Then we have the backward equation :

Theorem 3.2 (Primitive class)

wa(h) = Max > wnga(hyw, y)p(yle, u) heH, 0<n<N-1 (20)
u
yex
wy (k) = po(To,uo) A -+ A pn—1(Tn-1,un—1) A pig(zn) h € Hy. (21)
Let 2, (h) denote the set of all maximizers in (20). Then we have an optimal policy ¢ = {dy, 01,...,0n-1}
in primitive class II; {23, Thm 4.4]. Furthermore, the optimal policy © generates a general policy § =
{60,61,--.,0N-1} through the transformation [13, §4]. (This transformation is also illustrated in next Subsec-

tion §§3.3.) Then the policy & is optimal in general class I1,. Finally, both the optimal solution of Ho(zo) and
the optimal solution of Tq(yo) coincide [23, Cor 5.2] :

wo(xo) = vo(zo) = u’(z0;1), 6 =0". (22)

3.3 Bellman and Zadeh’s Model

Let us reconsider the Bellman and Zadeh’s three-state, two-decision, two-stage model [4, pp.B154] :

Max EZ [po(Uo) A pa(U1) A pe(X2))

st. (Dn Xnt1 ~p(-|Tn, un) (23)
(ii)n un € U n=0,1

where the numerical data is :
po(a1) =0.7  po(az) =1.0
pi(a1) =10 pi(a2) =0.6

pe(s1) =03 pc(s2) =10 pc(ss)=0.8

p(mn-}-llxn;al) P($n+1|-’17n,042)

ZTn\Tnt1 | 81 S2 83 51 82 83
51 0.8 01 01 01 09 00
82 00 01 09 08 01 0.1
53 0.8 0.1 0.1 0.1 00 09




In this subsection, we solve this model by both the membership-parametric method and the history-parametric
method. First the backward recursion (16) yields an optimal solution in expanded Markov class 1 — a pair of
a sequence of optimal value fuctions :

u® = u(zo; No), ! = ul(z; A1), u? = u2(z2; A2)

and an optimal policy :
7" = {15 (Zo; Ao), 71 (z1; A1)}
For instance, when u! = ul(z1; ;) is calculated, u®(s;;1.0) and ~3(s1;1.0) are obtained as follows :

u%(s1;1.0) = [u}(51;0.7)0.8 4+ u'(5;0.7)0.1 + u! (53; 0.7)0.1] V [u? (515 1.0)0.1 + 4! (s2; 1.0)0.9 + u? (835 1.0)0.0]
[057><08+07x01+057xOI]V[057><01+082x09+057x00]
= 0.583 v 0.795
= 0.795 Y5 (813 1.0) = as. ‘ ' - (24)

The similar calculation yields the first optimal value function u® = u%(zg; \o) together with the first optimal
decision function g = 7§ (zo; Ao). Thus we obtain the optimal solution in Table 3 :

u(z2;A2) | u (z13M1) 7 (®15A1) [ 4°(2o; X0) 75 (%03 Mo)
zn\Mn |[06 07 1.0] 0.7 1.0 1.0
51 || 0.3 0.3 03| 057 az 057 az 0.795 az
s2 |06 07 1.0| 07 a7 082 a 0.595 as
S3 06 0.7 038 0.57 ag 0.57 as -0.583 a)

Table 3 : optimal value functions {u°, u!, u?} and optimal policy v* = {73, v}

Now we derive an optimal (general) policy ¢* = {0j,07} from the boptirna.l (expanded Markov) policy
~* = {+§,71} as follows :

o5(Zo) = 75(z0;1.0)
, uo == 15 (20;1.0), A1 := po(uo)
oi(zo, 1) = (x1;A1).

The first decision function ¢3(-) becomes
05(81) = 75(s1;1.0) = az, o5(s2) = 75 (s2;1.0) = ag, o5(83) = v5(s3;1.0) = ay.

The second decision function ¢} (-) is obtained as follows :

o1(s1,81) =71 (s1;1.0) = ag, o1(s1,82) = 7 (s2;1.0) = a4, a1(s1,83) = 71 (s3;1.0) = ay
01(s2,81) =71(51;0.7) = a2,  07(s2,52) =71(52;0.7) = a1,  07(s2,83) =71 (53;0.7) = ap
01(83,81) = 77(81;0.7) = aq, o7 (s3,82) =1 (s2;0.7) = a3, o1 (s3,83) = 7{(83;0.7) = aq.

We 'see that the optimal policy o* happens to be Markov. In general, the reduced o* is not necessamly Markov.
It is general [22], as is shown in§§3.5.

Second, the recursive equation (20) for primitive class IT, gives optimal value functions {wo(ze), w1 (o, uo, z1),
wa(zo, o, Z1, U1, 22)} and an optimal policy o = { Do(zo), #1(x0,uo,21))} . For instance, a couple of wp(s;)
and 7g(s1) is calculated by use of w1 = w1 (o, o, z1) as follows :

wo(s1) = [wi(s1,a1,s1)p(s1]s1,a1) +wi(s1,a1, s2)P(s2]81, 1) + w1(s1, a1, 53)p(s3]81,01)]
V['wl(sly az, Sl)p(sllsl,az) + wi (81, a2, 82)p(s2s1, 02) + w1 (81, az, 83)1)(33|31, az)]
[0.57 x 0.8 + 0.7 x 0.1 + 0.57 x 0.1] V [0.57 x 0.1 + 0.82 x 0.9 + 0.57 x 0.0]
0.583 v 0.795 ’
(_).795 170(81) = Qpg. (25)

Similary we get the first optimal function ‘wo = wy(xo) together with the first optimal decision function 7y =
Do(xo). Thus the optimal solution is shown in Tables 4,5 and 6.
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U 1 az
EA ay a2 | a1 a3 T wl@_o,, ay, 1) ﬁl(@, a1,T1) w1 (Zo, as, ;) 71 (2o, az,T)
31 03 0303 03 $1 0.57 az 0.57 as
32 0.7 06|10 06 So 0.7 a1 0.82 a;
S3 0.7 06108 0.6 S3 0.57 as 0.57 ag
Table 4 : wy(zo, uo, Z1, U1, T2) Table 5 : wi(zo, uo, z1) D1(z0,u0,T1)

where the underline denotes an independence. For instance, wi(zp, a1, 1) = 0.57 for Vz¢ = s1, 89, s3.

T ’wo(:l:o) 170($())
s1 | 0.795 az
82 0.595 az
s3 | 0.583 a1

Table 6 : ’t.Uo(:E[))v Dp(zp)

Now the optimal (primitive) policy # = {{o,01} generates a general policy 6 = {&9,61} through the
transformation

50(:1:0) = 170(17())
G1(zg, 1) = D1(zo,u,21) where wug = Do(zo).
In fact, 6 becomes as follows :
do(s1) = a, Go(s2) = ag, Go(s3) = a1
G1(s1,81) = ag, 61(s1,82) = a1, G1(s1,83) = a2
61(s2,51) = ag, 51(s2, 82) = a1, G1(s2,83) = a2
F1(s3,81) = a, 61(s3,52) = a1, 1(s3,83) = az.

We see that both the general ¢* and 6 coincide. This identification is also verified through the following
two-stage stochastic decision tree-tables (Figures 1, 2 and 3), which is the third method.

3.4 Decision Tree-Table Method

A multistage stochastic decision tree-table consists of a pair of decision-tree and decision-table. It contains in a
sheet a problem-statement through solution-specification via backward-calculation process, which is based upon
a total enumeration method.

According to progression of processes, it allocates the problem-data. It also tabulates the intermediate
recursive computational results. Thus all possible histories to the final stage are evaluated by cumulative
membership together with its probability. It gives an optimal decision on each subhistory. In this sense, the
tree-table method is totally enumerative. From the tree-table we see that how optimal primitive policy is
constructed and that in some situation it happens to be general or Markov. The tree-table method applies to
any stochastic optimization problem—it is objective function free.

In the following three tree-tables, we have the simplified notations as follows :

history = zo po/uo Po T1 p1/ui p1 T2 pe
where po = po(uo), po = p(T1lzo,u0), w1 =pm(u1), p1=p@2lr1,w), pe=pc(z2)
mini = minimum value = po(uo) A p1(u1) A pe(z2) :
path = path probability = p(z1|zo,uo)p(z2|T1,u1)
sub-ezpec. = sub-expected value = Z[,uo(uo) A pr(u1) A pe(z2)p(zi|zo, uo)p(z2|T1, 21)
z2
total-expec. = total ezpected value = Z Z[p,o(uo) A pa{u1) A pe(z2)]p(z1|zo, vo)p(za|T1, u1).
zy x2

The italic means probabilities, and bold denotes a selection of the largér of the two; the upper expected value
and the lower. We see that the decision-tree-table method realizes the computational process for “primitive”
recursive equation. This applies to any criterion. '



wo(s1) = }}g%’: E¢ [ no(Uo) A pa(Ur) A pa(X2)]

Figure 1 : Two-stage stochastic decision tree-table from state 81

history : mini path mini x | sub- total-
To Mo/up Po T1 M1/w D1 To UG mum prob. path | expec. | expec.
0.8 $103] 03 0.6/ | 0.192
10 - 0L 10| 07 0.08 | 0.056 | 0.304
$1_-7 @ s308 | 0.7 0.08 | 0.056
~L 06 01 5103 | 03 0.08 | 0.024
az ~ g-g s210 | 0.6 0.72 | 0432 | 0.456
~ 5308 06 0.0 0
0.0 $103| 03 0.0 0
10 - oL s10| 07 0.01 | 0.007 | 0.070
! 5308 | 0.7 0.09 | 0.063 0.583
2706 0.3 5103 03 0.08 | 0.024
a2 0L 510| 06 0.01 | 0006 | 0.036
s308| 06 0.01 | 0.006
0.8 $103| 03 0.08 | 0.024
10 - 0L 10| 07 | 001 | 0007 | 0038
PR 53 0.8 0.7 0.01 0.007
‘ 837~ _0.6 0.1 51 0.3 0.3 0.01 0.003
/ az™ < 0.0
o 59 s210| 06 0.0 0 0.057
ol s308 | 0.6 0.09 | 0.054
0.8 5103 03 0.08 | 0.024
10 - 0L 10| 10 0.01 | 001 | 0042
s1,-7 @ 5308 | 0.8 0.01 0.008
$1 0.3 0.3 0.01 0.003
1.0 s210| 06 0.09 | 0054 | 0.057
s308 | 0.6 0.0 0
$103| 0.3 0.0 0
$510| 1.0 0.09 0.09 | 0.738
5308 | 0.8 0.81 | 0.648 0.795
s103[ 03 0.72 | 0216
s10| 06 0.09 | 0054 | 0.324
5308 | 0.6 0.09 | 0.054
$103] 03 0.0 0
s21.0| 1.0 0.0 0 0
s308 | 0.8 0.0 0
$103] 03 0.0 0
sp 10| 06 0.0 0 0
s308| 06 0.0 0

The tree-table (Figure 1) shows how the maximum values wq(s1), w!(s1,uo, 1) together with optimal
decisions Po(s1), ?1(s1,u0, 1) are backward-recursively calculated:

wl(sl,al,sl.) =0.456, w'(s1,a1,s2) = 0.070, ..., wh(sy, az,83) =0, . .w‘.’(sl) =0.795
D1(s1,01,81) = az, ~ P1(81,a1,52) = a1, ..., D1(s1,a2,83) =aj or ag,  Do(s1) =ap. -



wo(s2) = %%J:E:, [10(Uo) A p1(Uh) A pa(X2)]

Figure 2 : Two-stage stochastic decision tree-table from state sg

history mini path mini X | sub- total-
To [o/Uo Do T1 M1/ug L Ty pG mum prob. path | expec. | expec.
0.8 5103] 0.3 0.0 0
'y % s21.0| 0.7 0.0 0 0
s .- @ s308 | 0.7 0.0 0
S~ .06 0.1 s1 0.3 0.3 0.0 0
az" % 5210 06 0.0 0 0
0.0 s3 0.8 0.6 0.0 0
0.0 5103 03 0.0 0
10 % 210 07 | 001 | 0007 | 0.070
0.1 ™" 5308 | 07 0.09 | 0.063 0.583
/ 82~ ~ 0.6 0.8 81 0.3 0.3 0.08 0.024
/,’ az" ~ 3:1 s210| 06 0.01 | 0.006 | 0.036
g s308 | 06 0.01 | 0.006
/ 0.9 0.8 s5103[ 03 0.72 | 0.216
- 10 - 0L s10| 07 0.09 | 0.063 | 0.342
) _Tm s308| 07 0.09 | 0.063
/ 53~_06 g1 503] 03 0.09 | 0.027
,’I a7 ~ g:g 5210 06 0.0 0 0.513
: 5308 | 06 0.81 | 0.486
52 0.8 5103 03 0.64 | 0.192
10 - 0L s10| 10 0.08 | 008 | 0.336
5308 | 08 0.08 | 0.064
5003 03 0.08 | 0.024
s21.0 | 0.6 0.72 | 0432 | 0.456
s308 | 06 0.0 0
5103 | 03 0.0 0
5210 | 1.0 0.01 0.01 | 0.082
5308 | 0.8 0.09 | 0.072 0.595
5103 | 03 0.08 | 0.024
5210 | 06 0.01 | 0.006 | 0.036
5308 | 0.6 0.01 | 0.006
5103 03 0.08 | 0.024
s210| 1.0 0.01 0.01 0.042
s308| 0.8 0.01 | 0.008
5,03 03 0.01 | 0.003
s21.0| 06 0.0 0 0.057
s308 | 0.6 0.09 | 0.054

The calculation proceeds in decision table-tree as follows : minimum — path probability — mini x path —
sub-expected value — total-expected value. Thus the tree-table method is nothing but the the two-stage recur- -
sive computation (20).



woss) = Max B2, [ 10(Uo) A pa(U1) A pe(Xs)]

Figure 3 : Two-stage stochastic decision tree-table from state s3

history mini path mini X | sub- total-
o po/ug Do Ty p1/w D1 T2 Ue mum prob. path | expec. expec.
51 0.3 0.3 0.64 0.192
s2 1.0 0.7 0.08 0.056 0.304
s3 0.8 0.7 0.08 0.056
51 0.3 0.3 0.08 0.024
52 1.0 0.6 0.72 0.432 | 0.456
5308 | 0.6 0.0 0 |
s1 0.3 0.3 0.0 0
52 1.0 0.7 0.01 0.007 | 0.070
53 0.8 0.7 0.09 0.063 0.583
51 0.3 0.3 0.08 0.024
s2 1.0 0.6 0.01 | 0.006 | 0.036
s3 0.8 0.6 0.01 0.006
51 0.3 0.3 0.08 0.024
s2 1.0 0.7 0.01 0.007 | 0.038
s3 0.8 0.7 0.01 0.007
51 0.3 0.3 0.01 0.003
s2 1.0 0.6 0.0 0 0.057
s3 0.8 0.6 0.09 0.054
51 0.3 0.3 0.08 0.024 :
s3 1.0 1.0 0.01 0.01 0.042
s3 0.8 0.8 0.01 0.008
\ay T~06 0.1 s1 0.3 0.3 0.01 0.003
1.0r ag™ < 0.9
) o0 S210 0.6 0.09 0.054 | 0.057
. 0.1 s3 0.8 0.6 0.0 0
‘\ 00 -~ = 0.3 0.3 0.0 0
\ 1.0 - 09 S210 1.0 0.0 0 0
/0o _.-T*H 5308 | 08 0.0 0 0.570
$2°~.06 0.8 5103 | 0.3 0.0 0
ass < 0.1
0.1 S21.0 0.6 0.0 0 0
83 0.8 0.6 0.0 0
0.9 0.8 T 0.3 0.3 0.72 0.216
1.0 - 0T s210| 10 0.09 0.09 | 0.378
-Ta 5308 | 08 0.09 | 0.072
$3°~.06 0.1 5103 03 | 009 | 0.027
ag® 0.0
0.9 8210 0.6 0.0 0 0.513
5308 | 0.6 0.81 0.486

To conclude, we have shown that the three methods — (1) membership-parametric method, (2) history-
parametric method and (3) multi-stage stochastic decision tree-table method — yield a common optimal solution.
This new triplet is a very powerful tool for optimizing a broard class of stochastic decision processes where the
criterion is not necessarily additive but associative through utility function (see [4,5,24]).



3.5 Markov policy is not enough
Let us consider the following Iwamoto, Tsurusaki and Fujita’s data [22] :

/J/o(al) =0.9 uo(az) =0.6 ; I 751 (al) = 1.0 ,Ll,l(a,z) =0.8

pc(s1) =05 pe(s2) =02 pe(s3) =08

P(Tn41|Tn,a1) P(Tniy1|Tn,az)

-'L'n\wn+1 S1 S2 83 S1 S2 83
S1 0.4 0.5 0.1 0.1 0.6 0.8
S9 0.2 06 02 0.7 0.2 0.1
S3 03 0.1 06 0.3 0.3 0.4

Pzo;m) = Y [#o(uo) A pa(u1) A pa(a2) Ip(z1|20, wo)p(22)T1, u1)
. (:vl,a:g)eX xX
J 0(81§ )
Table 7 : all expected value vectors Jo(x) = | J%(sg;7) |, where m = {m, m1} is Markov
JO(s3;)
ol ax ax al a az az az az
a1 a3 a2 az ai a1 az a2
7o ay a2 a; az ai as a1 az
a 0.407 0.395 0.452 0.440 0.419 0.407 0.464 0.452
a 0.434 0.410 ) ( 0.488 0.464 ) 0.440 ) 0.416 0.494 ) 0.470
a 0.542 0.470 0.551 0.479 0.551 0.479 0.560 0.488
a1 0.407 0.395 0.452 0.440 0.419 0.407 0.464 0.452
(a1 ) ( 0.434 ) ( 0.410 ) ( 0.488 ( 0.464 ) ( 0.440 ) < 0.416 ) ( 0.494 ) ( 0.470 )
az 0.422 0.390 0.455 0.423 0.419 0.387 0.452 0.420
a 0.407 0.395 0.452 0.440 0.419 0.407 0.464 0.452
a2 ( 0.373 ( 0.365 ) ( 0.395 ) ( 0.387 ) ( 0.366 ) ( 0.358 ) < 0.388 ) ( 0.380 )
a1 0.542 0.470 0.551 0.479 0.551 0.479 0.560 0.488
a 0.407 0.395 0.452 0.440 0.419 0.407 0.464 0.452
(0.2 ) ( 0.373 ) ( 0.365 ) ( 0.395 ) ( 0.387 ) ( 0.366 ) ( 0.358 ) ( 0.388 ) ( 0.380 )
a2 0.422 0.390 0.455 0.423 0.419 0.387 0.452 0.420
a2 0.399 0.375 0.465 0.441 0.398 0.374 0.464 0.440
( a ) ( 0.434 ) ( 0.410 ) < 0.488 ) ( 0.464 ) ( 0.440 ) ( 0.416 ) ( 0.494 ) ( 0.470 )
ay 0.542 0.470 0.551 0.479 0.551 0.479 0.560 0.488
as 0.399 0.375 0.465 0.441 0.398 0.374 0.464 0.440
a1 0.434 0.410 ) 0.488 ( 0.464 ) 0.440 ) 0.416 ( 0.494 ) 0.470 )
az 0.422 0.390 0.455 0.423 0.419 0.387 0.452 0.420
as 0.399 0.375 0.465 0.441 0.398 0.374 0.464 0.440
(az ) ( 0.373 ) ( 0.365 ) ( 0.395 ( 0.387 ) 0.366 ) 0.358 ) ( 0.388 ) ( 0.380 )
a 0.542 0.470 0.551 0.479 0.551 0.479 0.560 0.488
as 0.399 0.375 0.465 0.441 0.398 0.373 0.464 0.440
(a,g ) ( 0.373 ) ( 0.365 ) ( 0.395 ) ( 0.387 ) < 0.366 ) ( 0.358 ) < 0.388 ) < 0.380 )
az 0.422 0.390 0.455 0.423 0.419 0.387 0.452 0.420




Then each preceding method yields an optimal solution. The optimal value vector is

VO(sy) 0.465
Vo= | VOs) | = 0.494
VO(s3) 0.56
The optimal policy is o* = {o§, 07}, where
a5(s1) = ag, og(s2) =a1, o5(s3) =a1 (26)

o1(s1,81) = a1, 07(s2,51) = a2, 07(s3,51) = az
03(s1,82) = a2, 07(s2,82) =az, 07(s3,s2) = ag (27)
o1(s1,83) = a1, 07(s2,83) =a1, 07(s3,83)=a.

Note that
o1(s1,81) # 01(s2,81)- .

Thus the optimal policy ¢* is not Markov but general. As Table 7 shows, any Markov policy can not attain the
optimal value vector V°. Hence Markov policy is not optimal in fuzzy dynamic programming.

4 Fuzzy System

We propose a dynamic programming method on Bellman and Zadeh’s fuzzy system. Let us consider a maxi-
mization problem of fuzzy expected value of minimum criterion :

Max F7 [poApa A=+ Apn-1 A pg]
0

Folwo) st () Koy >pllona) oy v @)
(i) upeU

Here p = {u(y|z, u)} is a fuzzy transition law which controls a fuzzy state on X for a pair of current realized state
z and applied control u. That is, for any given (z,u) € X x U, p(-|z,u) is a membership function of fuzzy set
X(z,u) on X. A membership degree of moving to next state z,41 from state z, under decision u,, on the n-th
stage is ((Zn+1|Tn, un) (0 < p(Tnt1|Tn, upn) < 1). Thus the degree that the fuzzy state variable X, 4+, belongs to
the fuzzy set X (2n,un) is represented by pu(zn41|Tn, un). We write this fuzzy transition as X, 11 ~ p(-|n, un).
Further, instead of the so called expectation Ef---] by multiplication-addition operation through probability
measure, we take a fuzzy expectation F[---] by minimization-maximization operation through fuzzy measure
[4,6,16]. Let fo(zo) denote the maximum of the fuzzy expected value over Markov class II. Then we have a
backward recursive formula — similar to one in stochastic system — as follows :

Theorem 4.1 (Iwamoto and Sniedovich [20])

£u(&) = Max \/ [in(e,0) A (Frsa®) Aol )] 2 €X, 0<n< N1

yeX (29)

fn(@) =pe(z) zeX

5 Conditional Decision Processes

In this section we propose two types of “conditional” decision process for the “unconditional” decision process
discussed in Section 3. Ome is an “a posteriori conditional decision process” and the other is an “a priori
conditional decision process.” The a posteriori process is formulated through taking at each stage backward
conditional expectation of remaining process after performing take-action for the regular decision process. The
a priori is through taking at each stage backward conditional expectation before take-action.
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5.1 A posterior conditional process

First we take, at each stage, backward conditional expectation of remaining process after performing take-action
for the regular stochastic decision process So(zo) (Figure 4). This generates an a posteriori conditional decision
process (cdp) as follows :
Max  po(Zo, uo) A B0 {u1(z1,ur) A+ A EGR2[pn—1(Tn—1,un—1) NEGN )]
st. () Xpgp1~p(|Tn, un) (30)
3 n=01,..,N-1
(il) upeU

where E¥%y1 is a conditional expected value of function p = p(-) through probability distribution p(:|z, u) together
with n-th Markov decision function 7, :

Ep=">) p)pylz,v) u=ma(z). (31)
yeX

Let wo(zo) denote the maximum value in (30) over Markov class II. Then we have the backward recursive
equation :

Theorem 5.1 (Bellman and Zadeh [{], Iwamoto, Tsurusaki and Fujita [21])

wn(z) = Max [un(x,U) A (Z wn+1(y)p(y|w,U))] reX, 0<n<N-1
yeX
(32)
wy(z) = pe(z) zeX.

This is the recursive formula Bellman and Zadeh have proposed on stochastic system [4].
Let us now solve the Bellman and Zadeh’s multistage decision on stochastic system for the three-state,
two-decision, two-stage data [4, pp.B154]. The corresponding recursive equation is solved as follows. First, we

have
wa(s1) = 0.3, wa(sz) =10, w(s3)=038.

While Bellman and Zadeh [4, pp. B154] give
'LU1(81) = 0.6, ’w1($2) = 0.82, w1(33) =0.6

m(s1) = a1, 7i(s2) =a1, mi(s3)=aq,

. wo(sl) = 0.8, 'LUo(SQ) = 0.62, w0(33) = 0.62
m5(s1) = @1, Tp(s2) =a1 or az, 7y(s3) =a1
Iwamoto and Fujita {19] specify the exact value of wo(zo), mg(zo) as follows:

wo(sl) = 0.798, 'LUO(SQ) = 0.622, ’wo(83) = (0.622

7l-6('5.1) = az, 7"'(,.)‘('52) =ai Or as, 7('3(33) =aqai.

In fact, the exact value is also verified through the multi-stage stochastic decision tree-table method [15,
pp.146-149]. The true optimal solution is tabulated in Table 8:

Tn || wo(zo) mg(zo) | wi(z1) mi(z1) | wa(z2)
s1 0.798 a, 0.6 a 0.3
So 0.622 aj,a2 0.82 a 1.0
S3 0.622 a, 0.6 as 0.8

Table 8 : {wg, w1, w2} 7= {ng, 77}
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Tn+1

expectation point -
J/ 81 < -
n
-7 P S1 <
_-" a1 ’ ~
wn<:’
T~o_ag _ -
S~ 81 < _
T~s q1
@ s1 <
Figure 4 : Conditional expectation after take-action
Tn41
81 < :
N
expectation point -7 D .-
-7 S1 < _
\L _--Ta <
xn<:’
T~._ag -
S~a S1 <
RS a1
Q s <7

Figure 5 : Conditional expectation before take-action

5.2 A prior conditional process

_Second, before in turn performing take-action for regular decision process, we take at each stage backward
conditional expectation of remaining process (Figure 5). This generates the following a priori cdp :

Max  E;0[uo(zo,u0) A Eg}p (@1, u1) A A EgR-Hpun—1(TN-1,un-1) Apc] - -]]

st. (1) X ~ p(-|Tn, Un 33
(") nt1 ~ P(| ) n=01.. N—1 (33)
(il) un €U

where the conditional expected value E¥|u,(z,u) A p) is a priori :

Blune,u) A ) = Y lin(mw) A p@lplyle,n), w=ma(e) O0<nSN-1  (30)
) yeX

Let Wo(zo) denote the maximum value in (33) over Markov class II. Then we have the backward recursive
equat;ion :
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Theorem 5.2 (Iwamoto, Tsurusaki and Fujita [21])

Wa(e) = Max [pn(2,u) A Wnia(y)lp(ylz,w)  z€X, 0<n<N-1

- (35)
Wn(z) = pe(zx) ze X.

6 Threshold Probability Criterion

Now we consider the problem of maximizing a threshold probability that total membership is greater than or
equal to a given lower grade o € [0, 1] :

Max P;:ro(/lfo/\ﬂl/\"‘/\[lfjv_l/\ug > a)

Po(zo) st (Dn Xns1 ~ (- |Tn,un)
(i)n un € U 0<n<N-1

where PJ is the (discrete) probability measure on history space Hy induced through an initial state zo, the
Markov transition law p and a Markov policy w(€ II).

We maximize the threshold probability over Markov class II. Any Markov policy m(€ II) determines the
threshold probability in Po(zo), which is a “partial” multiple sum :

PI(poApiA---Apn_1Ape > a) ZZ Zpopl ‘PN-1 (Pn = P(Tn+1|Tn, Un)) (36)
(z1,%2,.-, &N )E(*)
where the domain () is the set of all (z1,%2,...,2n) € X¥ satisfying
po(zo,uo) A pa(z1,u1) A~ Apn—1(TN-1,un—1) Apc(azN) > o (37)
Here the sequence of decisions {ug, %1, ..., un—1} in (36),(37) is uniquely determined through Markov policy
7l’={7ro, ey 7I'N._1} :
up = mo(Zo), u1 = m1(%1), ..., UN-1 =7N-1{TN-1)- (38)

As for controlling threshold probability, Markov class II is not enough for additive criteria but general class
II, is enough [13]. However, in this section, we dare to maximize the threshold probability for minimum criteria
over Markov class.

Thus our problem Pg(zp) is to find the mazimum value function vy = vo(zo) and an optimal policy 7* (& II)
which attains the maximum :

vo(zo) = P& (Bo A+  Apn—1Apg > ) = I}r’lggpfo(ﬂo AN---Apn-1Apc 2 a) zo€ X (39)
Then we have the backward recursive relation :

Theorem 6.1 (Recursive Equation)

1 ] >
oy(z) = ¥ /JG’(Q.?) =« ze X
0 otherwise
Z'U'n.-l-l y|x ’LL) Zf Ju 5 ﬂn(xau) o
o) = (e (40)

otherwise
zeX, 0<n< N-1.
Now let us take any pair (n,z). If it satisfies pn(z,u) > o, then let 7 (z) denote a u* € U which attains

the maximum in (40). Otherwise, let 7;;(z) denote any v € U. Then we have an optimal n-th decision function
m% : X — U. Thus we construct an optimal policy n* = {n§,...,mn_;} in Markov class IT ( [18]).
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