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1. Introduction

Bellman and Zadeh [1] considered a sequence of fuzzy sets in a finite state space by solving the fuzzy
relational equation written in the matrix form and obtained a maximizing decision for fuzzy multistage
decision processes with a defined terminal time.

This paper gives an overview of a dynamic fuzzy system, which has been developed by the authors,
and we discuss additional considerations as a new multi-stage fuzzy decision processes. So the details for
the proof of theorems are referred to the cited papers.

In Section 2 a dynamic fuzzy system is formulated explicitly and the limit theorem for the sequence of
states is shown by a contractive assumption. In Section 3,4 we will develop a new optimization problem
including the discounted fuzzy reward and the time average fuzzy reward. The optimality is discussed
under a partial order, which is called a fuzzy max order. For both performance indexes, we consider the
fuzzy relational equation which is satisfied by the optimal policy. Further the policy improvement and the
optimality equation are considered, which are the fundamental elements in Markov decision processes.
In Section 5 we also discuss several subjects which should be analyzed in the future.

2. Sequences of Fuzzy states and the limit theorem

Firstly we begin with making a formulation for a dynamic fuzzy system. Let N := {0,1,2,3,.--} and
E be a compact metric space. We denote by C(E) the collection of all the closed subsets of E. Let p be
the Hausdorff metric on C(E). Then it is well-known [2] that (C(E), p) is a compact metric space.

Throughout this paper, we define a fuzzy set on E by its membership function §: E + [0,1). For the
theory of fuzzy sets, we refer to Zadeh [21] and Novak [12]. Let F(E) be the set of all the fuzzy sets §
on E which are upper semi-continuous and satisfy sup,. g 5(z) = 1. For any fuzzy state § € F(E) and
a (0 < a € 1), the a-cut is defined as follows:

Sa={c€E|3z)20a}(x>0), and % :=cl{z€ E|z)> 0}

where cl means the closure of a set.
From the dynamic fuzzy system, we can define the sequence of fuzzy states {5}2, by

So=135, Sy = sug{it(:z:) Agz,y)}, yeE, t>0. (2.1)
z€

The transition from § to 541 in (2.1) is called a fuzzy transition in the dynamic system.

Definition 2.1 (see [11]). For §,5§€ F(E),
lim § = § &% sup p(St,0,54) — 0 (t— oc0)
t—s00 a€(0,1]

provided that § q,5, are a-cuts (0 < a < 1) for the fuzzy states 5, § respectively and p is the given
Hausdorff metric. For a € [0,1], D € C(E), we define a map §, : C(E) — C(E) by

{veE|§z,y)>a forsomez € D} fora>0,D#0,
§o(D):=¢ My€E|izx,y)>0 forsomez € D} fora=0,D#0, (2.2)
E for D = 0.
Further, for £ = 0,1,2, -- -, we define maps §: : C(E) — C(E) by

¢ is an identity map and §%=q, (&) (t=1,2,--9). (2.3)



The fuzzy transition is characterized by the followings [6].

Lemma 2.1. For § € F(E), it holds that

S0 = Ga(5a) forallt=0,1,2,--- and a € [0,1],

Assumption 2.1 (Contraction property). There exists a real number § (0 < 8 < 1) satisfying the
following condition :

(3o (A), §,(B)) < B p(A,B) for 'ali A;BeC(E)and alla (0 < a < 1).

Theorem 2.1.

(i) There exists a unique fuzzy state p € F(E) satisflying

(y) = r&ag}({fi(x) A §(z,y)} forally€eE. (2.4)

(i) The sequence {5} defined by (2.1) converges to a unique solution j of (2.4) independently of the
initial fuzzy state §;. Namely,
lim & = 5. (2.5)
— 00

In [17, 19] the monotonicity is imposed on the fuzzy relation §. They discussed the convergence and
the recurrence for {5}. If the linearity structure of § is assumed, the existence of potential associated
with the fuzzy relation could be shown(cf. [14, 15, 16]).

As an example for the previous results, the next simple one is illustrated. Let S = [0, 1] be a space of
states and a fuzzy relation is given by '

f(z,y)=1~ly—(z/2+1/4)|, =z,y€S,

and an initial fuzzy state 5(z) = 1— 2|z — 1/2],z € S. Then we can easily check that the contraction
coefficient B in Assumption 2.1 is 1/2 and that the sequence of fuzzy states defined by (1.2) is 5,(z) =
l-aylz—1/2|, =z €S8, whereao=2and a, = 2a,-1/(2an-1 + 1). Then, the limit fuzzy set § of 3, is

px)=1-1/2[z-1/2|, z€S,

which is also the unique solution of Theorem 2.1. Figure 1 shows the fuzzy relation ¢(z,y) and Figure 2
shows the sequence of fuzzy states §,(z),n > 0, which converges to p(z).
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Fig..1: The fuzzy relation §(z,y). Fig. 2 : The sequence of 5, and the solution .



3. Fuzzy decision processes with a discounted total reward

We give notations and mathematical facts in order to formulate a fuzzy decision processes. Let E, E,
E be convex compact subsets of some Banach space. Denote by F(E) the set of all fuzzy sets §on E which
is upper semi-continuous and have a compact support with the normality condition: sup,eg 5(z) = 1.
The fuzzy relation between the space F; and E, means that §: £y x E; — [0,1] and § € F(E), x Ep). A
fuzzy relation § € F(E; x Ej) is called convex if

§(Az1 + (1 = Nz2, Ay1 + (1 = Ny2) > §(z1, 11) A @22, 92) (3.1)
for £,,z9 € E1,y1,y2 € E,, and A € [0,1]). The class of all convex fuzzy set is denoted by
FA(E):={5€ F(E)|§is convex }.

Hereafter the set of all non-empty convex closed subset of E is denoted by C(E).
Especially when E = [0, M] (a closed interval with a fixed M > 0), we write

fc([OvM]) = {§E fc(R+) | 50 C [O:M]}:

and C([0, M]) becomes the set of all non-empty closed sub-intervals of [0, M].
In the rest of this talk, we consider Markov-type fuzzy decision processes

(S’A’[OvM]’ 6: F,ﬂ)

which satisfy the following (M.1) — (M.iii):

(M.i) Let S and A be a state space and an action space, which are given as convex compact subsets of
some Banach space respectively. The decision process is assumed to be fuzzy itself, so that both
the state of the system and the action taken at each step are denoted by elements of F.(S) and
Fe(A), called the fuzzy state and the fuzzy action respectively.

(M.ii) The law of motion for the system and the fuzzy reward can be characterized by time invariant fuzzy
relations § € Fc((S x A) x S) and 7€ F¢((S x A) x [0, M]), where M is a given positive number.
Explicitly, if the system is in a fuzzy state § € F(S) and the fuzzy action @ € F.(A) is chosen, then
it transfers to a new fuzzy state Q(3, @) and a fuzzy reward R(3, @) has been incurred, where Q, R
are defined by the following:

Q5 a)(y) == . as‘épr () A d(a) A §(z,a,y) (y€S) (3.2)
and
R(5,d)(u):= sup §(z)Ad(e) A{z,a,u) (0<u<M). (3.3)
(z,0)ESXA

(M.ii1) The constant scalar f is a discount rate satisfying 0 < # < 1.

Firstly we define a policy based on the fuzzy state and fuzzy action as follows. Let II := {x | = :
Fe(S) v Fc(A)} be a set of all maps from F(S) to F.(A). Any element 7 € II is called a strategy. A
policy, # = (@1, m2, 73, --), is a sequence of strategies such that =, € II for each t. Especially, the policy
(m,m,m, - ) is a stationary policy and denoted by 7.

For any policy # = (w1, m2,---) and any initial fuzzy state 5§ € F.(S), we define a sequence of fuzzy
states {5}52, as

1= 5, §t+l = Q(gt,ﬂ'g(gt)) for t= 1,2," . (34)
For fuzzy sets m, 1 € F,(R;) and a scalar A,
(m+ a)(z) := sup {m(y) A a(z2)},

r=y+=z

vy [ m(z/A) ifA>0, (3.5)
(Am)(z) := { loy(z) ifa=0, *€ Rt



~ where 1,4(-) is the classical characteristic function for any ordinary subset A of RY.
Using the above operations, we can define the discounted total fuzzy reward as follows:

W(%,8):= Y BTIR(5, m(5)) € Fe([0, M/(1- B))) (3.6)
' t=1

for 5§ € Fc(S) and & = (my,ma,-- ).

Definition 3.2 (Fuzzy max order [5]) For @, m € F.([0, M)),

> m L min g > min m, and max fi, > max i, for all a € [0,1],

where min, max means the left or right end point of the a-cut intervals respectively.
The fuzzy strategy = : Fc(S) — F.(A) is called admissible if the a-cut set 7(3)o of m depends only
on the scalar o and the set §,, that is, it could be written as

7(8)a = 7(a, 5a). (3.7)

Let IT4 be the collection of all admissible fuzzy strategies. Similarly a policy # = (1,72, ) is called
admissible if 7 € II4 (1 = 1,2,---). Our problem is to maximize ¥(#, 5) over all admissible policies #.
We define a map §, : C(S) x C(A) — C(S) (« € [0, 1]) by

i.(D x B) = {ve S| §=z,a,y) > a for some (z,a) € D x B}, a>0,
O T H{ye S|z, ,a,y) >0 for some (z,a) € D x B}, a=0,

and a map 7y : C(S) x C(A4) — C([0, M]) (« € [0,1]) by

{u€ R4 | (z,a,u) > a for some (z,a) € D x B}, a>0,
cl{u € Ry | {z,a,u) > 0 for some (z,a) € D x B}, a=0.

Then define maps QF : C(S) +— C(S) and R}, : C(S) — C([0, M]) (x € T4, a € [0,1]) by

7o(D x B) := {

QL(D) := §o(D x n(a, D)) and RL(D):= 7a(D x m(a, D)) for D € C(S).

For any admissible fuzzy policy # = (my,ma, ), @, (t > 1) is defined inductively as follows : For
D € C(S), QF «(D) := D,Qf o(D) := Q5 (D), and

Qf1,a(D) = Q2™ QD) (t=1,2, ).
Let V := {v : C(S) — C([0, M])}. Define a metric dy on V by
dv(v,w) = sup 6(v(D),w(D)) forv,weV. (3.8)
Dec(s)

Then (V,dy) is a éomplete metric space. For v,w € V| we define an order

vy w 854 v(D) = w(D) for all D E Cc(S), | (3.9)

where > ; means that

i
[a,b] >; [c,d] &L a>candb>d for [a,b],[c,d] € C([0, M]).

Further define amap UZ : V — V (7 € 14, € [0,1]) by

UZv(D):= R (D) + pv(Q5(D)) forveV, DeC(S). (3.10) .

The following results are given in [7]
Theorem 3.1.



(i) Let # € ITx and o € [0, 1]. It holds that U] is monotone, contractive and has a unique map v% € V
such that

vy = Ulvy. (3.11)
(i) For § € F.(S) and an admissible stationary policy 7 = (m,w, =, ---),

P(7%°,8)a = v2(5,) fora€[0,1]. » (3.12)

Theorem 3:2. Let & = (my,72,---) be any policy.

(i) Suppose '
Yal#, D) =i Uva(i, D) D €C(S),m € Mz, € [0,1]. (3.13)
Then we have

Y(7,5) = P(6,5) SE€ Fc(S),6 €ll,.
(ii)) Let w € I14. Suppose
Uita(#, D) > i ¥a(#,D) for all D € C(S) and a € [0,1]. (3.14)
Then we have

(7™, 3) = ¢¥(7,8) for all §€ F(S).

The results like Theorem 3.2 have already appeared in the classic discounted Markov decision model
and used for the policy improvement ([3, 4]). By the same idea, the above theorems would be useful for
the policy improvement under the fuzzy decision model.

Next we give a fuzzy optimality equation which is used in the optimization of the decision processes.
Define a map Uy : V — V (a > 0) by

Uav(D) := sup {7a(D x B)+ Bv(§,(D x B))} forv eV, DeC(S), (3.15)
BeC(A)

where sup is taken over the order >. Then we get the following Bellman equation for each level o.

Theorem 3.3. Let o € [0,1]). U, is monotone, contractive and has a unique map v, € V such that

vg = Uqvl,. . (3.16)

For 5 € F.(S), we can define

v (8)(u):= sup {aAl. s (1)} uel0,M]. (3.17)
a€fo,1)

Corollary 3.1.
(1) v* € Fe([0, M/(1 — B]) and v* > ¥(#, §) for all admissible policies .

(ii) Suppose that there exists * € 4 such that UX v3, = v}, for all @ € [0,1]. Then 7°® is absolutely
optimal, i.e.,

Y(r°*,8) = ¢(%,5) for all admissible policies # and § € F¢(S).



4. Fuzzy decision processes with an average reward

We specify the time average reward as a measure of the system’s performance and discuss its charac-
terization under the contractive assumption (Assumption 2.1). For a policy #® with = € I4, we define
the total T-time fuzzy reward R,;(E) by

T-1

Rr(3 =Y RG,7(3) Tx1, (4.1)

where {5;}72, is given in (3.4). We estimate the increasing amount of fuzzy reward per unit time. For
7 €Il4, K >0 and a € [0, 1], we define

. there exists {27}, such that
Gl = {r € Ry zr € Ii;‘(E)o, and |z7 —rT|< K for all T >0 (4.2)
Then the following fuzzy number could be defined.
q(3)(r) := sup {a Algy (r)} r€[0,M] formela, 5€F(S). (4.3)
Theorem 4.1. ([8]) Under adequate conditions( contraction and continuity), it holds that
Aim R (3)/T = §7(3).
Theorem 4.2. ([9]) Under the same conditions in Theorem 4.1,
(i) There exists bounded functions b, and h,, on C(S) and for D € C(S), the followmgs hold:
| ha(D) + min §" (5o = min RZ(D) + ha(Q% (D)), (4.5)
Fia(D) + max §7 (§)a = max R3(D) + R (QA(D)). (4.6)

(i) Conversely, if there exist bounded functions k" and h,, on C(S) and constants K and K satisfying
the following equations :

AT(D) + K% = min R%(D) + hX(Q™(D)), (4.7)
hn(D) + K, = max RL(D) + h,,(Q (D)) (4.8)
for all D € C(S), then (7" ())a = (KX, K1).

5. Conclusion

Under the the stochastic dynamics system the decision processes is known as Markov deciston processes.
The fundamental theory of Markov decision process are established fruitfully and they are applied so
many fields of practical applications. This theory is a direct expansion from the discrete system of
the deterministic motion law. As is discussed in this paper, the fuzzy decision process(abr. FDP) is
formulated as the extension of the deterministic decision process and this fuzzyfication should be expected
to apply so many fields. Alternatively we have given the formulation and the analysis of FDP via using
the manipulation or operation for fuzzy sets. The important notion in the convergence and the partial
order owes much to the discussion of the class of the closed convex sets which are reduced by the a-cuts
of the convex fuzzy sets. This method is rather simple in the mathematical treatment and hence it is
efficient for the much more complex systems such as a sequential fuzzy game. However we must solve
the optimization problem for which the preference has a partial order. So it faces a similar difficulty as
in the multi-objective problem. To overcome these difficulty, a solution method of Linear Programming
should be included considering the application to clarify the complex structure.
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