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Abstract The maximum budget allocation (MBA) problem is the problem of allocating items to agents so
as to maximize the total payment from all agents, where the payment from an agent is the sum of prices of
the items allocated to that agent, capped by the agent’s budget. In this study, we consider a generalization of
the MBA problem in which each item has a capacity constraint, and present two approximation algorithms
for it. The first is a polynomial bicriteria algorithm that is guaranteed to output an allocation producing
at least 1 − r times the optimal feasible total payment, where r is the maximum ratio of price to budget,
and to violate the capacity constraints on items by at most a factor of 2. The other is a pseudo-polynomial
algorithm with approximation ratio 1/3 · (1− r/4) that always outputs a feasible allocation.
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1. Introduction

The maximum budget allocation (MBA) problem is a problem of finding an optimal alloca-
tion of items to agents. In this problem, we are given a set of items and a set of agents.
Each agent has a budget and bids for items. If agents are allocated items, then in principle
they have to pay their bids for those items. However, each agent’s payment is capped by
their budget. The objective of the problem is to find an allocation that maximizes the total
payment from the agents. This problem models many practical situations, particularly in
advertising, and hence it has been extensively studied in various fields of computer science.

In the present paper, we consider a generalization of the MBA problem in which each
item has a capacity constraint. We assume that each agent has a length and each item
has a capacity. Unlike in the standard MBA problem, in which each item is allocated to
at most one agent, in our generalized problem items can be allocated to more than one
agent subject to the capacity constraint that the sum of agents’ lengths does not exceed the
capacity of the item. We call this problem the maximum budget allocation problem under
knapsack constraints (knapsack MBA problem).

The knapsack MBA problem was introduced by Sumita et al. [15], who investigated
online algorithms for the problem. Their motivation was to optimize video ad allocations.
In their setting, the agents and items correspond to advertisers and viewers available to show
video ads, and agent lengths and item capacities are respectively the lengths of the video
ads and the total amounts of time that the viewers spend watching video ads. Solving the
knapsack MBA problem means finding an optimal allocation of video ads to viewers. The
knapsack MBA problem models many practical situations besides video ads. For example,
even in traditional print advertising using words and still pictures, a reader looks at several
ads, spending a certain amount of time with each, and hence a capacity constraint is still
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meaningful. Therefore, investigating algorithms for this problem is worthwhile.

The aim of this paper is to present approximation algorithms for the offline version of
the knapsack MBA problem. Prior to the present work, two approximation algorithms for
the knapsack MBA problem have been reported:

• An algorithm with approximation ratio max0≤x≤1/2(1 − 2x)(1 − 1/ex) ≈ 0.11. This
algorithm combines the continuous greedy algorithm [3] and the monotone contention
resolution scheme [6] for 1-sparse packing constraints.

• An algorithm with approximation ratio (1 − r)(1 − 1/(1 + r)1/r) proposed by Sumita
et al. [15], where r is the maximum ratio of bid to budget. As r approaches 0, the
approximation ratio approaches 1− 1/e, whereas r = 1 gives a ratio of 0.

The knapsack MBA problem is actually a special case of the monotone submodular maxi-
mization problem subject to 1-sparse packing constraints, which will be discussed in more
detail in Section 2.1. Hence algorithms for the latter problem can be applied to the knap-
sack MBA problem. To our knowledge, the current best approximation ratio for the latter
problem is 0.11 [3, 6]. The algorithm proposed by Sumita et al. [15] is an online algorithm
but can also be applied to the offline problem. In their paper, they discuss the problem
mainly under the small bids assumption, which assumes that r is close to 0. The small bids
assumption is reasonable in the context of Internet advertising, where it is cheap to buy a
single display of an ad, and many previous studies in this field have also adopted this as-
sumption; see Section 2.2. However, there are also many situations in which the small bids
assumption is not reasonable; even in the context of advertising, the expense of putting an
ad on TV or in newspapers is sufficient for r to be large. The algorithm of Sumita et al. is
good when the small bids assumption holds, but its approximation ratio is close to 0 when
r is large. On the other hand, the algorithm for the submodular maximization problem
achieves a constant approximation ratio regardless of r, but that ratio is low.

The contributions of this paper are the following two approximation algorithms:

• A polynomial bicriteria (1 − r, 2)-approximation algorithm. The allocation output is
guaranteed to produce at least 1 − r times the optimal feasible total payment and to
violate the capacity constraints by at most a factor of 2.

• A pseudo-polynomial 1/3 · (1 − r/4)-approximation algorithm. Note that since r ≤ 1,
the approximation ratio is at least 1/4.

In the first algorithm, the approximation ratio is better than that of the algorithm of
Sumita et al. As r approaches 0, the ratio approaches 1 (i.e., revenue approaches the optimal
value). However, the ratio is still close to 0 if r is close to 1. In addition, the algorithm is
allowed to violate the capacity constraints. On the other hand, the second algorithm achieves
at least a 1/4 ratio for any r, which is better than that using the submodular maximization
algorithm irrespectively of r, and is also better than those using the algorithm of Sumita et
al. and the bicriteria algorithm when r is large. However, our second algorithm has the
disadvantage that it is not polynomial.

Both of the proposed algorithms depend on linear programming (LP) relaxations of
the problem. A key point for these algorithms is how the capacity constraints on items
are handled. In the first algorithm, the LP relaxation represents each capacity constraint
as a single inequality. We will show the properties of the extreme point solutions to the
relaxation and present an iterative rounding algorithm. In the second algorithm, we use a
time-indexed LP that represents the capacity constraint on an item as the time limit for
processing all agents to which the item is allocated. We will show that a scaled solution for
this time-indexed LP can be described as a convex combination of characteristic vectors of
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Approximation algorithms for the maximum budge allocaiton 33

feasible solutions. By outputting the best solution in the combination, we can achieve the
required approximation ratio.

The remainder of this paper is organized as follows. Section 2 gives a formal statement
of the problem, and discusses related previous studies. Section 3 presents our bicriteria
(1 − r, 2)-approximation algorithm. Section 4 presents our 1/3 · (1 − r/4)-approximation
algorithm. Section 5 concludes the paper.

2. Preliminaries

2.1. Problem definition

The knapsack MBA problem is formally defined as follows. Let R+ denote the set of non-
negative reals. For any positive integer k, we let [k] and [k]+ denote the sets {1, . . . , k}
and {0, . . . , k}, respectively. Let N = [n] be a set of n agents, where each agent i ∈ N has
budget Bi ∈ R+ and length li ∈ R+. Let M = [m] be a set of m items, where each item
j has capacity Lj ∈ R+. Each agent i submits bid bij ∈ R+ for item j. The task in the
knapsack MBA problem is to decide for each item j the set Sj of agents allocated that item.
For each item j, the allocation is required to satisfy the capacity constraint that the total
length of agents in Sj does not exceed the capacity of item j, i.e.,

∑
i∈Sj

li ≤ Lj for each
j ∈M .

If agent i is allocated item j, then agent i pays bij from their budget. However, if the
total payment exceeds the budget, the agent pays only what remains of their budget. In
other words, when the allocation of item j is represented by Sj ⊆ N , the payment of agent
i is min{

∑
j∈M :i∈Sj

bij, Bi}. The objective of the problem is to maximize the revenue, which

is the total payment from the agents,
∑

i∈N min{
∑

j∈M :i∈Sj
bij, Bi}.

Throughout this paper, we let OPT denote the maximum revenue attained by feasible
allocations. We define r as maxi∈N,j∈M bij/Bi. We can assume without loss of generality
that bij ≤ Bi for any i ∈ N and j ∈M , and hence 0 ≤ r ≤ 1.

2.2. Related problems

The knapsack MBA problem coincides with the MBA problem when li = 1 for all i ∈ N
and Lj = 1 for all j ∈ M . The online version of the MBA problem is known as the
adwords problem [11] or ad-auction problem [2]. Here, we restrict our attention to the
offline problem. Chakrabarty and Goel [4] showed that it is NP-hard to approximate the
MBA problem within a ratio of less than 1 − r/16. Simultaneously, Srinivasan [14] and
Chakrabarty and Goel [4] presented a (1 − r/4)-approximation algorithm for the problem,
which is to say an algorithm that always computes a feasible allocation giving revenue of at
least (1− r/4) · OPT. Since r ≤ 1, this approximation ratio is at least 3/4. This ratio has
since been slightly improved by Kalaitzis [8].

When r = 1 and there exists wi (i ∈M) such that bij ∈ {wi, 0} for all i ∈ N and j ∈M ,
the knapsack MBA problem is equivalent to the problem of assigning each agent to one of a
set of given knapsacks for which the agent bid a fixed positive weight. This problem is known
as the multiple knapsack problem with assignment restrictions. Dawande et al. [7] gave a
1/2-approximation algorithm for this problem. They also gave a bicriteria approximation
algorithm, although their definition of bicriteria approximation guarantees differ from ours.
In addition, if r = 1 and bij = wi for all i ∈ N and j ∈ M , then the knapsack MBA
problem is equivalent to the multiple knapsack problem (without assignment restrictions).
A polynomial-time approximation scheme is known for this problem [5].

The knapsack MBA problem can be regarded as a special case of the monotone submodu-
lar function maximization subject to 1-sparse packing constraints. Let S = {(i, j) ∈ N×M},
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and define a function f : 2S → R+ by f(S ′) =
∑

i∈N min{
∑

j∈M :(i,j)∈S′ bij, Bi} for S ′ ⊆ S.
Then f is monotone and submodular. The knapsack MBA problem is equivalent to maxi-
mizing f(S ′) subject to the knapsack constraint that

∑
i∈N :(i,j)∈S′ li ≤ Lj for each j ∈ M .

Note that each (i, j) ∈ S appears in exactly one of the |M | knapsack constraints. This
setting is called being under 1-sparse packing constraints. For the maximization problem
of a monotone submodular function subject to 1-sparse packing constraints, we can obtain
a (1 − 2x)(1 − 1/ex)-approximation algorithm for any x ∈ [0, 1/2] by using the continuous
greedy algorithm [3] and the monotone (x, 1−2x)-balanced contention resolution scheme [6].
The best approximation ratio achieved by this approach is max0≤x≤1/2(1− 2x)(1− 1/ex) =
2(1/W (e1.5) +W (e1.5) − 2) ≈ 0.11, where W is the product logarithm, and this maximum
is attained for x = 1.5−W (e1.5).

3. Polynomial Bicriteria (1− r, 2)-Approximation Algorithm

We propose a bicriteria approximation algorithm by relaxing the capacity constraint for each
item. That is to say, we permit violations of the capacity constraints but simultaneously
guarantee that the violations are bounded by some factor. We say that an algorithm is
an (α, β)-approximation for α ≤ 1 and β ≥ 1 if an allocation computed by the algorithm
satisfies the following two guarantees for any feasible instance:

• revenue of the allocation is at least αOPT;

• for each item j ∈ M , the total length of agents allocated the item (i.e.,
∑

i∈Sj
lj) is at

most βLj.

If β > 1, then the (α, β)-approximation algorithm does not always compute a feasible
allocation. However, the second guarantee indicates that the capacity constraint is violated
by a factor of at most β for each item.

We propose a (1− r, 2)-approximation algorithm. The guarantee on the revenue for our
algorithm approaches 1 as r approaches 0. Hence, if each bid bij is sufficiently small relative
to budget Bi, then our algorithm achieves nearly optimal revenue (although the capacity
constraints are violated, but by at most a factor of two).

Our algorithm is as follows. Let E = {ij | i ∈ N, j ∈M, li ≤ Lj}. We regard E as a set
of undirected edges on the vertex set N ∪M . The problem is equivalent to finding F ⊆ E
such that

∑
i∈N :ij∈F li ≤ Lj for each j ∈M and

∑
i∈N min{

∑
j∈M :ij∈F bij, Bi} is maximized.

The following LP relaxes the problem (i.e., the optimal objective value of the LP is an upper
bound on OPT).

maximize
∑

ij∈E bijxij

subject to
∑

j∈M :ij∈E bijxij ≤ Bi ∀i ∈ N,∑
i∈N :ij∈E lixij ≤ Lj ∀j ∈M,

0 ≤ xij ≤ 1 ∀ij ∈ E.

(3.1)

In this formulation, variable xij represents what fraction of bij contributes to the revenue.
The first constraint represents that the total payment for an agent i does not exceed their
budget Bi. The second constraint is the capacity constraint on an item.

For the MBA problem, this relaxation is equivalent to the one used for deriving approxi-
mation algorithms in [1, 4]. These previous studies prove the fact that the LP is a relaxation
of the MBA problem. We can prove in the same way that (3.1) relaxes the knapsack MBA
problem, and thus we omit the details.

Our algorithm computes an allocation by rounding an optimal solution x for (3.1). We
say that an agent i ∈ N (resp., an item j ∈ M) is tight with respect to a solution x if the
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corresponding constraint in the relaxation holds with equality, i.e.,
∑

j∈M :ij∈E bijxij = Bi

(resp.,
∑

i∈N :ij∈E lixij = Lj).
Before proceeding, we first state a property of the LP relaxation. The proof of the

following lemma is similar to that used in [4].
Lemma 3.1. There exists an optimal solution x∗ to (3.1) such that E∗ := {ij ∈ E | 0 <
x∗
ij < 1} forms a forest on the vertex set N ∪M . In each connected component of the forest,

there exists at most one non-tight vertex. Such an optimal solution x∗ can be computed in
polynomial time.

Proof. Let x be an extreme point optimal solution for (3.1), and let Ex = {ij ∈ E | 0 <
xij < 1}. Suppose that the vertices in N ′ ⊆ N and in M ′ ⊆M form a connected component
of the graph (N ∪M,Ex). We need to show that this connected component is a tree that
has at most one non-tight vertex.

Let n′ = |N ′| and m′ = |M ′|, and let E ′ be the edges in Ex induced by N ′ ∪M ′. Besides
the constraints 0 ≤ xij ≤ 1 (ij ∈ E), (3.1) contains n′ + m′ constraints corresponding to
the agents in N ′ and the items in M ′. From the basic properties of linear algebra, |E ′| is
at most the number of tight constraints among these n′ + m′ constraints; a similar claim
can be found in [4], and more general argument is proven in [10, Lemma 2.1.4]. Hence we
have |E ′| ≤ n′ +m′, implying that there is at most one cycle in the connected component.
Simultaneously, |E ′| ≥ n′ +m′ − 1 holds because (N ′ ∪M ′, E ′) is connected, implying that
at most one vertex in N ′∪M ′ is not tight. If there is a cycle, then all of the n′+m′ vertices
are tight.

If the connected component does not have a cycle, then we are done. Suppose that there
exists a cycle on vertices i1, . . . , ik ∈ N ′ and j1, . . . , jk ∈ M ′ and that the cycle consists of
edges j1i1, i1j2, . . . , jkik, ikj1 ∈ E ′. Then we decrease xjtit and increase xitjt+1 by a certain
amount for each t ∈ {1, . . . , k}, where we let jk+1 denote j1 for notational convenience. The
increase and decrease of the variables are decided as follows. Let ε be a positive number.
xj1i1 is decreased by εj1i1 := ε. More generally, let εjtit denote the decrease of xjtit for some
t ∈ [k]. Then xitjt+1 is increased by εitjt+1 := bjtitεjtit/bitjt+1 . If the increase of xitjt+1 is
εitjt+1 , then xjt+1it+1 is decreased by εjt+1it+1 := litεitjt+1/lit+1 . Without loss of generality, we
assume that likεikj1 ≤ li1εj1i1 (otherwise, we change the direction of the cycle). After this
operation, all of the constraints are still satisfied. Moreover, they are tight except the one
corresponding to j1 (when likεikj1 < li1εj1i1 , the constraint corresponding to j1 is not tight
after the operation). Let x′ denote the solution after the operation. We set ε to the largest
value such that the constraint 0 ≤ x′

ij ≤ 1 still holds for each ij ∈ E ′. x′ is another feasible
solution giving the same objective value as the original solution x. In other words, x′ is an
optimal solution to (3.1). By the setting of ε, at least one edge e in {itjt, jtit+1 | t ∈ [k]}
satisfies x′

e = 0 or x′
e = 1. Let E ′′ = {ij ∈ E ′ | 0 < x′

ij < 1}. Then, (N ′ ∪M ′, E ′′) has no
cycles, and so is a forest (it is not a tree when more than one edge e on the cycle satisfies
x′
e = 0 or x′

e = 1). In the construction of x′ from x, the tightness of all vertices except jk is
maintained. Hence, N ′ ∪M ′ contains at most one non-tight vertex.

Note that the above modification of x to x′ can be performed in polynomial time. We
obtain a required optimal solution x∗ to (3.1) by applying this modification to each cycle
in graph (N ∪ M,Ex), which is possible in polynomial time. We also note that there is
a polynomial-time algorithm for computing an extreme point optimal solution to an LP.
Therefore x∗ can be solved in polynomial time.

Our algorithm is based on the iterative rounding method of the LP relaxation, which
computes an approximate solution by iterating a certain rounding procedure. In each itera-
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tion, our algorithm computes an optimal solution x∗ to (3.1) given in Lemma 3.1. As stated
in the lemma, each connected component of G := (N ∪M,E∗) has at most one non-tight
vertex. By a simple case analysis, we can observe that these connected components have
the property stated in the following lemma.

Lemma 3.2. Let C be a connected component of G. If C consists of more than one vertex,
then it includes an agent i ∈ N that satisfies one of the following conditions:

Case 1: agent i is a tight leaf;

Case 2: agent i is tight and all neighbors of agent i except one are leaves;

Case 3: C is a star with agent i as its center.

Proof. Consider a longest path of C. If this path contains only one agent, then C is a star
and this agent is the center of the star, which means that we are in Case 3. If the path
contains more than one agent, then two of the agents are leaves or neighbors of leaves. More
over, at least one of these two agents is tight. Thus we are in Case 1 or 2.

Our algorithm rounds variables that appear in the constraint corresponding to such an
agent i when E∗ is non-empty. The rounding procedure is included in Algorithm 1.

Algorithm 1: Bicriteria (1− r, 2)-approximation algorithm

Input : N , M , Bi ∈ R+ (i ∈ N), bij ∈ R+ (i ∈ N , j ∈M), li ∈ R+ (i ∈ N),
Lj ∈ R+ (j ∈M)

Output: Sj ⊆ N (j ∈M)
1 E ← {ij : i ∈ N, j ∈M, li ≤ Lj}, Sj ← ∅ for ∀j ∈M ;
2 while E ̸= ∅ do
3 compute an optimal solution x∗ to (3.1) as described in Lemma 3.1;
4 for ∀ij ∈ E do
5 if x∗

ij = 0 then E ← E \ {ij};
6 if x∗

ij = 1 then E ← E \ {ij}, Sj ← Sj ∪ {i}, Bi ← Bi − bij, Lj ← Lj − li;

7 E∗ ← {ij ∈ E | 0 < x∗
ij < 1};

8 if E∗ ̸= ∅ and ∃i ∈ N of Case 1 then
9 j ← the neighbor of i in (N ∪M,E∗), E ← E \ {ij}

10 else if E∗ ̸= ∅ and ∃i ∈ N of Case 2 then
11 Sj ← Sj ∪ {i} for each leaf neighbor j of i;
12 E ← E \ {ij′ ∈ E | j′ ∈M}
13 else if E∗ ̸= ∅ and ∃i ∈ N of Case 3 then
14 Sj ← Sj ∪ {i} for ∀ij ∈ E∗;
15 E ← ∅

16 output {Sj : j ∈M}

Theorem 3.1. Algorithm 1 is a (1− r, 2)-approximation algorithm that runs in polynomial
time for the knapsack MBA problem.

Proof. In each iteration, the algorithm removes at least one edge from E. Hence it runs in
polynomial time. When the algorithm adds i to Sj, x

∗
ij = 1 or item j is a leaf. In the former

case, the algorithm simultaneously decreases the capacity of item j by li. Hence the total
length of agents allocated item j in the former case is at most the original capacity of item
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j. The latter case occurs at most once for each item j, and when it does, the total length
is increased by li ≤ Lj. Hence, for each j ∈ M , the total length of agents allocated item j
is at most twice the original capacity of item j at the termination of the algorithm.

Turning to the approximability of the revenue, let LP denote the optimal objective value
of (3.1) at the beginning of the algorithm, and ALG denote the objective value attained
by the output solution. Let x(k) be the optimal solution to (3.1) computed in the k-th
iteration, and let E(k) denote the edge set E at the beginning of the k-th iteration. We
denote the restriction of x(k) onto E(k+1) by x̄(k). Moreover, we let v(k) and v̄(k) be the
objective values of x(k) and x̄(k), respectively, and let ∆k = v(k) − v̄(k) (≥ 0). x̄(k) is
feasible for (3.1) solved in the (k + 1)-th iteration, and hence v(k+1) ≥ v̄(k). Therefore,
LP ≤

∑K
k=1(v

(k) − v(k+1)) ≤
∑K

k=1(v
(k) − v̄(k)) =

∑K
k=1 ∆k, where K is the total number of

iterations and v(K+1) is defined as 0.
Each edge ij ∈ E(k) \ E(k+1) is removed from E in the k-th iteration because x(k)(ij) ∈

{0, 1} or agent i satisfies Case 1, 2, or 3. If x(k)(ij) ∈ {0, 1} or agent i satisfies Case 3, then
the revenue of the solution maintained in the algorithm is increased by at least ∆k. If agent
i satisfies Case 1 or 2, then only one edge, say ij′, incident to agent i in E(k) is removed from
E without allocating agent i item j′. If we allocate agent i item j′, then the revenue of the
solution is increased by at least ∆k in the k-th iteration. Let F denote the set of all such
edges ij′ that appear over the course of the algorithm. Then, ALG+

∑
ij′∈F bij′ ≥

∑K
k=1∆k

holds.
Let N ′ = {i ∈ N | ij′ ∈ F}. We will show that

∑
i∈N ′ Bi ≤

∑K
k=1∆k holds, where Bi

denotes the budget of agent i at the beginning of the algorithm. When the k-th iteration
of the algorithm decreases the budget of agent i ∈ N ′ in Line 6 because of the existence of
j ∈ M with x∗

ij = 1, this decrease is included in ∆k. When the edge ij′ ∈ F is removed in
the k′-th iteration, the agent i is tight and all edges incident to agent i in E are removed
from E. In this case, the budget of agent i remaining at the beginning of the k′-th iteration
is included in ∆k′ . These facts imply

∑
i∈N ′ Bi ≤

∑K
k=1 ∆k.

Notice that no agent i ∈ N ′ has more than one incident edge in F . This and
∑

i∈N ′ Bi ≤∑K
k=1∆k together imply

∑
ij′∈F

bij′ ≤
∑
i∈N ′

(
Bi max

j∈M

bij
Bi

)
≤ r ·

K∑
k=1

∆k.

Therefore, we have

ALG ≥
K∑
k=1

∆k −
∑
ij′∈F

bij′ ≥ (1− r) ·
K∑
k=1

∆k ≥ (1− r) · LP.

Since the maximum revenue attained by any feasible allocation is at most LP, this proves
the (1− r)-approximation of the revenue.

Algorithm 1 can be modified to a (1 − r)/2-approximation algorithm as follows. Let
Sj be the set of agents allocated item j and let ij be the last agent allocated item j in
Algorithm 1. If the capacity constraint of item j is violated by Sj, then Sj \ {ij} satisfies
the capacity constraint of item j. Define two allocations S ′

j := Sj \ {ij} and S ′′
j := {ij}

of item j, where we let S ′
j = S ′′

j = ∅ if Sj = ∅. Then both S ′
j and S ′′

j are feasible for the
capacity constraint of item j. One of the allocations {S ′

j : j ∈ J} and {S ′′
j : j ∈ J} achieves

revenue of at least (1 − r)/2. Hence, the algorithm that outputs the better of these two
allocations is a (1− r)/2-approximation algorithm.
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Corollary 3.1. There exists a polynomial (1− r)/2-approximation algorithm for the knap-
sack MBA problem. In particular, the revenue of the allocation output by this algorithm is
at least (1− r)/2 times the optimal objective value of (3.1).

Note that the approximation ratio (1− r)/2 is inferior to the approximation ratio (1−
r)(1− 1/(1 + r)1/r) given by Sumita et al. [15]. However, the corollary is worth mentioning
because they use different LP relaxations.

Let us remark briefly on the relationship between our algorithms and the (1 − r/4)-
approximation algorithm given by Chakrabarty and Goel [4] for the MBA problem. A claim
similar to Lemma 3.1 appears in the analysis in [4] but is slightly stronger: Chakrabarty and
Goel showed that the edge set {ij ∈ E | 0 < x∗

ij ≤ 1} forms a forest, whereas Lemma 3.1
insists that the edge set {ij ∈ E | 0 < x∗

ij < 1} does so. It is not difficult to see that their
claim cannot be extended to the knapsack MBA problem. Because of this difference, we
had to weaken the approximation guarantee.

4. Pseudo-Polynomial 1/3 · (1− r/4)-Approximation Algorithm

In this section, we propose a pseudo-polynomial approximation algorithm. Our algorithm
relies on an idea used in the (1− r/4)-approximation algorithm for the MBA problem given
by Kalaitzis et al. [9]. Their algorithm is motivated by Shmoys and Tardos’ algorithm
for the generalized assignment problem [13]. First, we introduce a key claim used in their
algorithm.

4.1. Key property in the MBA problem

Let i ∈ N . Suppose that x : N × M → [0, 1] satisfies
∑

j∈M bijxij ≤ Bi. From x, we
generate a random subset Ti of M as follows. We assume without loss of generality that
bi1 ≥ bi2 ≥ · · · ≥ bim. Let K = ⌈

∑
j∈M xij⌉ and define K buckets β1, . . . , βK . We allocate

each item j to buckets fractionally so that

• the total fraction of j allocated to buckets is xij,

• each of buckets β1, . . . , βK−1 is allocated exactly one unit of items (and hence the bucket
βK is allocated at most one unit of items),

• and an item of smaller index is allocated to buckets of smaller index preferentially.

For each j ∈ M and k ∈ [K], we let y
(i)
kj denote the fraction of item j allocated to the k-th

bucket. In other words, y(i) is the output of Algorithm 2.

Algorithm 2: Procedure to compute y(i)

1 j ← 1, k ← 1, x′
j′ ← xij′ (j

′ ∈M), ck′ ← 1 (k′ = 1, . . . , K), and y
(i)
k′j′ ← 0 (k′ ∈ [K],

j′ ∈M);
2 while j ≤ m do

3 update y
(i)
kj ← min{x′

j, ck}, x′
j ← x′

j − y
(i)
kj , and ck ← ck − y

(i)
kj ;

4 if ck = 0 then update k := k + 1;
5 else j := j + 1; // x′

j = 0

6 output y(i) and terminate

By construction, y(i) satisfies the following conditions:

•
∑

j∈M y
(i)
kj = 1 holds for any k ∈ [K − 1], and

∑
j∈M y

(i)
Kj ≤ 1;

•
∑K

k=1 y
(i)
kj = xij holds for any j ∈M .
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Let α ≥ 1 be some constant. We consider the complete bipartite graph H with the
bipartition {[K],M} of the vertex set. Let F be a random matching in H such that

Pr[kj ∈ F ] = y
(i)
kj /α for each k ∈ [K] and j ∈ M . We define Ti as the set of items

corresponding to the vertices matched by F . By construction, each item j is included in Ti

with probability xij/α.

Kalaitzis et al. [9] proved the following fact (the original claim by Kalaitzis et al. considers
only the case of α = 1, but its proof can be modified for any α ≥ 1). For completeness, we
provide its proof.

Lemma 4.1 (Kalaitzis et al. [9]). Let F be a random matching in the bipartite graph H

such that Pr[kj ∈ F ] = y
(i)
kj /α for each k ∈ [K] and j ∈ M , and Ti be the set of items

corresponding to the vertices matched by F . Then,

E

[
min

{∑
j∈Ti

bij, Bi

}]
≥ 1

α

(
1− r

4

)∑
j∈M

bijxij.

Proof. As noted above,
∑

j∈M y
(i)
kj = 1 holds for all buckets k ∈ [K − 1], but we have only∑

j∈M y
(i)
Kj ≤ 1 for theK-th bucket. In this proof, we assume

∑
j∈M y

(i)
Kj = 1 holds; otherwise,

we make the equality hold by adding a dummy item j with bij = 0 and xij = 1−
∑

j∈M y
(i)
Kj.

Since F is a matching, it matches each bucket with at most one item. We say that bucket
βk pays bij if F matches βk with item j, whereas the payment of βk is 0 when the bucket is
matched with no item. Since each bucket βk and each item j are matched with probability
y
(i)
kj /α, the total payment of buckets is E[

∑
j∈Ti

bij] =
∑K

k=1

∑
j∈M bijy

(i)
kj /α =

∑
j∈M bijxij/α

in expectation. Since we assumed
∑

j∈M bijxij ≤ Bi, this is at most Bi/α. We suppose that
it is exactly Bi/α

′ for α′ ≥ α, i.e., α′ = E[
∑

j∈Ti
bij]/Bi.

For each k ∈ [K], let ak be the average payment of bucket βk, i.e., ak =
∑

j∈M bijy
(i)
kj /α.

Notice that
∑

k∈[K] ak =
∑

j∈M bijxij/α = Bi/α
′ by the above discussion. For a bucket βk

matched with item j ∈M , we define its truncated payment b′kj as min{bij, α′ak}. Then, we
have

E

[
min

{∑
j∈Ti

bij, Bi

}]
≥ E

[∑
kj∈F

b′kj

]
.

We will prove that the right-hand side of this inequality is at least
(
1− r

4

)∑K
k=1 ak (=∑

j∈M bijxij/α).

For each k ∈ [K], let hk (resp., vk) denote the average payment of βk conditioned on
that (i) the payment is at least (resp., smaller than) α′ak and (ii) βk is matched with some

item. Notice that the probability for (ii) is exactly
∑

j∈M y
(i)
kj /α = 1/α for each buckets βk.

The probability for (i) conditioned on (ii) is zk =
∑

j∈M :bij≥α′ak
y
(i)
kj . Then, we can write

hk and vk as hk =
∑

j∈M :bij≥α′ak
bijy

(i)
kj /zk and vk =

∑
j∈M :bij<α′ak

bijy
(i)
kj /(1 − zk). We have

vk ≥ hk+1 for any k ∈ [K − 1] because bij ≥ bij′ for any j ≤ j′ and items of smaller index
are allocated to buckets of smaller index preferentially when y is defined.

Since the payment for each item j counted in hk is truncated to α′ak in b′kj, we have
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k=1 ak−E

[∑
kj∈F b′kj

]
=
∑K

k=1(hk−α′ak)zk/α. Note that ak =
(hk−vk)zk+vk

α
holds. Hence,

(hk − α′ak)zk
α

=

(
hk −

α′

α
vk

)
zk
α
− (hk − vk)

α′z2k
α2

≤
(hk − vk)(zk − α′

α
z2k)

α

≤ hk − vk
4α′ ,

where the first inequality follows from α′/α ≥ 1 and the second one follows from the fact
that zk− α′

α
z2k attains maximum value α/(4α′) when zk = α/(2α′). If k < K, then vk ≥ hk+1,

and hence (hk − vk)/(4α
′) ≤ (hk − hk+1)/(4α

′). Summing,

K∑
k=1

ak − E

[∑
kj∈F

b′kj

]
≤ 1

4α′

(
K−1∑
k=1

(hk − hk+1) + hK − vK

)
≤ h1

4α′ .

This implies E
[∑

kj∈F b′kj

]
≥
∑K

k=1 ak −
h1

4α′ =
(
1− h1

4Bi

)∑K
k=1 ak. The required inequality

follows because h1/Bi ≤ r.

4.2. Algorithm for the knapsack MBA

We use the following LP relaxation of the problem in our proposed algorithm.

maximize
∑

i∈N
∑

j∈M
∑

t∈[Lj−li]+
bijxijt

subject to
∑

j∈M
∑

t∈[Lj ]+
bijxijt ≤ Bi ∀i ∈ N,∑

t∈[Lj ]+
xijt ≤ 1 ∀i ∈ N, j ∈M,∑

i∈N
∑t

t′=max{t−li+1,0} xijt′ ≤ 1 ∀j ∈M, t ∈ [Lj]
+,

0 ≤ xijt ≤ 1 ∀ij ∈ E, t ∈ [Lj]
+.

(4.1)

This relaxation formulates the capacity constraints for items by introducing a time notation.
We consider the process that allocates each item j to start at time 0 and to have a time
limit of Lj. If agent i is allocated item j, then the process allocating item j is occupied
by agent i for li units of time. The capacity constraint for item j is satisfied if the process
finishes for all agents allocated item j before the item’s time limit. xijt = 1 corresponds
to the decision that agent i is allocated item j and the processing for this agent starts at
time t. The third constraint of (4.1) requires that, at any time t ∈ [Lj]

+, the process is
allocating item j for only one agent. Based on this interpretation,

∑
t∈[Lj ]+

xijt represents
whether agent i is allocated item j. The first constraint represents the budget constraint
for each agent i, and the second constraint requires that each agent be allocated each item
at most once. Although xijt is defined even for t > Lj − li for notational convenience, we
can assume that it takes value 0 in an optimal solution because a positive value would not
contribute to the objective function.

In our algorithm, we first compute an optimal solution x for (4.1). Then, we define a
bipartite graph H ′ from x as follows. Let U be the set of pairs of j ∈M and t ∈ [Lj]

+. We
regard x as the edge weights on the complete bipartite graph over the bipartition (N,U)
of the vertex set. From x, we construct buckets βi,1, . . . , βi,ki for each i ∈ N as above
(i.e., ki = ⌈

∑
(j,t)∈U x′

ijt⌉). Let Pi denote the set of buckets constructed from i ∈ N , and

P =
∪

i∈N Pi. The bipartite graph H ′ is defined as the complete bipartite graph over the
vertex sets P and U .
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We denote an edge joining p ∈ P and (j, t) ∈ U by pjt. For p ∈ P , let lp denote the
length of the agent from which bucket p is constructed. We say that an edge pjt intersects
another edge p′jt′ if t ≤ t′ < t+ lp or t′ ≤ t < t′ + lp′ .

Our algorithm chooses a matching of H ′, and constructs an allocation of items to agents
from the matching. Here, we associate a matching with an allocation by making an edge pjt
in the matching mean that item j is occupied by the agent of bucket p from time t exclusive
to time t + lp. Not all matchings of H ′ give allocations satisfying the capacity constraint,
and thus we impose the following conditions on the matching:

(i) if (j, t) ∈ U is matched with p ∈ Pi, then (j, t′) is not matched with any buckets in Pi

for all t′ ∈ [Lj]
+ \ {t};

(ii) if edge pjt is included in the matching, then no other edge p′jt′ intersecting pjt is included.

Condition (i) means that the matching includes at most one edge that implies allocating
item j to agent i. Condition (ii) indicates that, if pjt is included in the matching, then no
other agents occupy item j from time t to time t + lp, where another agent is allowed to
start its process at time t+ lp. We call a matching in H ′ feasible if it satisfies conditions (i)
and (ii).

The characteristic vector of a matching F is χ ∈ {0, 1}P×U such that χ(p, j, t) = 1 if and
only if edge pjt is included in F . We sometimes identify a matching and its characteristic
vector.

Let y(i) be the fractional allocations of pairs (j, t) ∈ U to the buckets in Pi introduced

in Section 4.1, and let y : P × U → [0, 1] be the vector such that ypjt = y
(i)
pjt for all i ∈ I,

p ∈ Pi, and (j, t) ∈ U . Vector y satisfies the following conditions:

(iii) for any p ∈ P ,
∑

(j,t)∈U ypjt ≤ 1 holds (by the construction of the buckets);

(iv) for any i ∈ N and j ∈ M ,
∑

p∈Pi

∑
t∈[Lj ]+

ypjt ≤ 1 holds (by the second constraint of

(4.1));

(v) for any j ∈ M and t ∈ [T ]+,
∑

p∈P
∑t

t′=max{t−lp+1,0} ypjt′ ≤ 1 (by the third constraint of

(4.1)).

We will prove the following lemma.

Lemma 4.2. Vector y/3 can be expressed as a convex combination of feasible matchings,
and this convex combination can be computed in pseudo-polynomial time.

Proof. When y is the zero-vector, then the lemma is trivial. We hence assume that y has
at least one non-zero element, and construct a convex combination of feasible matchings
inductively. Choose an arbitrary item j ∈ M , and define p ∈ P and t ∈ [Lj]

+ so as to
minimize t + lp subject to ypjt > 0. We modify y by setting ypjt to 0. In the following, the
obtained vector is called y′ while the original vector is called y. We suppose that y′/3 is
represented as a convex combination

∑
F∈F wFχF of feasible matchings, where F is a set

of feasible matchings, χF is the characteristic vector of F ∈ F , and wF is a weight of F
(i.e., wF > 0 for all F ∈ F and

∑
F∈F wF = 1). In the rest of this proof, we show how to

construct a convex combination representing y/3 from (F , w).
Since y′pjt = 0, no matching in F includes edge pjt. We call a matching F ∈ F eligible

if pjt can be added to F without violating the feasibility. If the total weight of eligible
matchings in F is at least ypjt/3, then we obtain a convex combination for y/3 by adding
pjt to these matchings; if the total weight of eligible matchings is larger than ypjt/3, then we
modify the matchings so that the total weight of matchings including pjt is exactly ypjt/3.
Notice that we can do this modification so that the number of matchings in the convex
combination is increased by at most one.
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Now we prove that the total weight of eligible matchings in F is at least ypjt/3. Let i be
the agent such that p ∈ Pi. A matching F is not eligible if one of the following conditions
holds:

(vi) F includes an edge incident to p;

(vii) F includes an edge p′jt′ such that p′ ∈ Pi and t′ ∈ [Lj]
+;

(viii) F includes an edge p′jt′ that intersects pjt.

The total weight of matchings satisfying condition (vi) is at most
∑

(j′,t′)∈U y′pj′t′/3 =∑
(j′,t′)∈U ypj′t′/3 − ypjt/3 ≤ 1/3 − ypjt/3, where the inequality follows from condition (iii).

Similarly, the total weight of matchings satisfying condition (vii) is at most 1/3 since we
have

∑
p′∈Pi

∑
t′∈[Lj ]+

yp′jt′ ≤ 1 by condition (iv).

Let us bound the total weight of matchings satisfying condition (viii). Recall that we
defined p and t so that t + lp is minimized subject to ypjt > 0. Thus, if a matching
F ∈ F includes p′jt′ (implying yp′jt′ > 0) and if p′jt′ intersects pjt, then t′ < t + lp ≤
t′ + lp′ holds, which is equivalent to t + lp − lp′ ≤ t′ < t + lp. Condition (v) indicates that∑

p′∈P
∑t+lp−1

t′=t+lp−lp′
yp′jt′ ≤ 1 holds (t in condition (v) is set to t+ lp−1 here). Thus the total

weight of matchings satisfying condition (viii) is at most 1/3.
Summing up, matchings which is not eligible have weight at most 1−ypjt/3 in total. Thus,

the total weight of eligible matchings is at least ypjt/3. As noted above, this implies that a
convex combination of feasible matchings representing y/3 can be constructed from (F , w),
and the number of feasible matchings in this combination is at most |F| + 1. The running
time for this construction is polynomial in |F| and the size of H ′ (i.e., O(|P ||U |)), assuming
that (F , w) is given. Recall that (F , w) is a convex combination representing y′/3, and the
number of non-zero elements of y′ is smaller than that of y. Thus, to construct a convex
combination for y/3, it suffices to repeat the above construction O(|P ||U |) times. This
gives a pseudo-polynomial time algorithm for computing a convex combination representing
y/3.

In our algorithm, we construct a convex combination of feasible matchings claimed in
Lemma 4.2, and output the allocation corresponding to the best matching in the convex
combination. This is summarized as Algorithm 3.

Algorithm 3: 1/3 · (1− r/4)-Approximation Algorithm

1 compute an optimal solution x to (4.1);

2 for each i ∈ N , compute y(i) from x by Algorithm 2 and let y denote its
concatenation;

3 represent y/3 as a convex combination of feasible matchings by Lemma 4.2;
4 output the allocation corresponding to the best feasible matching in the convex

combination.

Theorem 4.1. Algorithm 3 achieves 1/3 · (1− r/4)-approximation.

Proof. Let F be a random feasible matching sampled from the convex combination repre-
senting y/3. For each p ∈ P and (j, t) ∈ U , edge pjt is included in F with probability
ypjt/3. Hence, by Lemma 4.1, the objective value achieved by F is at least 1/3 · (1− r/4) ·∑

i∈N
∑

j∈M
∑

t∈[Lj−li]+
bijxijt in expectation. The output of the algorithm achieves an ob-

jective value not worse than that of F , and
∑

i∈N
∑

j∈M
∑

t∈[Lj−li]+
bijxijt is an upper bound

on the optimal objective value. Therefore, the theorem is proven.
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5. Conclusion

In this paper, we consider the knapsack MBA problem, which is obtained by introducing
a capacity constraint on each item into the MBA problem. We propose two LP-rounding
algorithms. Both of the LP relaxations used in the algorithms formulate the budget con-
straints of agents as single inequalities. For the MBA problem, such LP relaxation has an
integrality gap of at most 3/4 for any r, and algorithms breaking this limit are obtained
from the configuration LP [8, 9]. A similar configuration LP can be also defined for the
knapsack MBA problem, and indeed the online algorithm of Sumita et al. [15] uses it. One
natural direction of future studies is to investigate the integrality gap of this LP.
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