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Abstract The information diffusion game, which is a type of non-cooperative game, models the diffusion
process of information in networks for several competitive firms that want to spread their information.
Recently, the game on weighted graphs was introduced and pure Nash equilibria for the game were discussed.
This paper gives a full characterization of the existence of pure Nash equilibria for the game on weighted
cycles and paths according to the number of vertices, the number of players and weight classes.
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1. Introduction

Modeling and analyzing information flows and spread of rumors on social networks have
been attracting many researchers in social sciences and information sciences (e.g. [3]).
One such model is the information diffusion game by Alon et al. [1]. This game, a non-
cooperative game on graphs, models the diffusion process of competitive information, i.e.,
products or brands in e-marketing, where each firm makes a decision to obtain as many
customers as possible. Each firm, called a player in this game model, selects influencers, to
which the player can give its information initially. Since the goal of this model is to select
locations where a player sends his/her competitive information, the information diffusion
game is regarded as a variation of the competitive facility location games on graphs, which
are derived from Hotelling’s model known as the ice-cream vendor problem [6].

Whereas some studies have investigated variations of the information diffusion game
based on real-world applications [8, 9, 14], some researches have characterized this simple
game theoretically and mainly investigated the existence of pure Nash equilibria. A pure
Nash equilibrium (PNE) is an optimal strategy for each player with respect to his/her
opponents’ strategies. The existence of PNEs on the information diffusion game has been
characterized for some classes of underlying graphs. Alon et al. [1] and Takehara et al. [13]
discussed for graphs of small diameters. Small and Mason [11] dealt with the information
diffusion game on trees. They proved that there is always a PNE for two players on trees,
but not for more than two players. Roshanbin [10] showed the existence of PNEs for two
players on paths, cycles, trees, unicycles and grids. Etesami and Basar [5] investigated on
hypercubes and grids. Some of these results were extended to multi-players by Bulteau et
al. [2]. PNEs exist for any number of players playing on paths and cycles except for three
players on paths of length six or more. For the information diffusion game on grids, there
exists a PNE for two players but not for three players. For the information diffusion game
on hypercubes, there exist PNEs for any number of players except for three. Sukenari et
al. [12] characterized PNEs on toroidal grids for two players. Following this line of research,
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it is important to clarify classes where a PNE always exists. Investigating the existence of
PNEs for a special class of graphs would contribute to analyzing the information diffusion
game, even though the graphs are fundamental e.g. paths and cycles.

Recently, Ito et al. [7] discussed the information diffusion game on weighted graphs,
where the utility of each player is calculated by the sum of weights of infected vertices
instead of the number of infected vertices in the unweighted version. The weight of a vertex
represents the favorability level of a customer. If the weight of a vertex is negative, it
signifies an unfavorable customer. Ito et al. established the complexity for the problem
of asking whether there exists a PNE on certain graph classes. Yamaguchi and Ono [15]
discussed the information diffusion game on weighted cycles with two players, where the
weight is restricted to nonnegative values. We extend their results to multi-players and
allow negative weight. We discuss the full characterization of the existence of PNEs on
weighted cycles and paths. The purpose of our study is to clarify which subclass of the
games always has a strategy profile that is PNE. The subclasses of the games are classified
by weight of vertices and the number of vertices. We say a game admits a PNE if it has a
strategy profile that is PNE. In this paper we give

� a proof that PNEs always exist for two players on arbitrary-weight cycles of 3, 4, and 5
vertices,

� a positive-weight such that PNE does not exist for k(≥ 3) players on cycles of n(≥ k+1)
vertices,

� a proof that PNEs always exist for k(≥ 3) players on cycles of k and k − 1 vertices,

� a proof that PNEs always exist for two players on nonnegative-weight paths,

� a weight allowed negative value such that PNE does not exists for two players on paths
of n(≥ 5) vertices, and a positive-weight such that PNE does not exist for k(≥ 3) players
on paths of n(≥ k + 1) vertices, and

� a proof that PNEs always exist for k(≥ 3) players on paths of k vertices.

The rest of the paper is organized as follows. In Section 2, we give the formal definition
of the information diffusion game. In Section 3, we characterize the existence of PNEs on
cycles and paths according to the relation of the numbers of vertices and players and to the
relation to the restriction of weights that are allowed for various values, negative or not.

2. Information Diffusion Game

Let G = (V,E) be an undirected connected graph with vertex set V = {v1, . . . , vn} and
edge set E, where n is the number of vertices on G. Suppose that there are k players and
assume that k ≤ n. In the information diffusion game, each player chooses one vertex to
send his/her message so as to spread it to as many vertices as possible. During the process
of the game, each vertex is in one of three states: uninformed, informed, or deadlocked
(these states are originally explained by using “color” for players [1]). Initially, every vertex
is uninformed. At the first round of the process, each player sends his/her message to the
chosen vertex. A vertex that receives one kind of messages sourced by a player enters the
informed state, while a vertex that receives different kinds of messages sourced by more than
one players enters the deadlocked state. At each round of the process, every vertex that
becomes informed at the previous round sends the received message to all of its adjacent
uninformed vertices. Then, an uninformed vertex that receives only one kind of messages
enters the informed state, while an uninformed vertex that receives more than one kinds
of messages enters the deadlocked state. This process is iterated until there is no vertex
that newly becomes informed. The choice of each player at the beginning of the game is
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represented by the strategy profile s = (s(1), s(2), . . . , s(k)), where s(p) is the index of vertex
chosen by player p. Without loss of generality, we assume that s(1) ≤ s(2) ≤ · · · ≤ s(k).
For strategy profile s, the utility of player p, denoted by Up(s), is given by the number of
informed vertices that receive the message of player p at the end of the diffusion process.
Let Vp(s) be the set of informed vertices that receive the message of player p when we start
with strategy profile s. Then, the utility of player p is equal to |Vp(s)|, i.e., Up(s) = |Vp(s)|.
Throughout this paper, we use the expression “player p locates on s(p) and obtains vertices
in Vp(s).” When each vertex v is given a numerical weight w(v), the weighted version of
the information diffusion game defines the utility of player p as Up(s) =

∑
v∈Vp(s)

w(v). The
original game without giving the vertex weight is regarded as a special case of the weighted
version where all vertex weights are 1.

Given a strategy profile s = (s(1), . . . , s(k)), we denote a strategy profile where player p
relocates to vi from vs(p) as s−p,i , i.e.,

s−p,i(j) =

{
s(j) j ̸= p
i j = p.

A strategy profile s is called a pure Nash equilibrium (PNE) if Uj(s) ≥ Uj(s−j,i) for any
player j and any vi ∈ V . A PNE implies that no player can increase his/her utility by
changing his/her strategy while the other players keep their strategies. The PNE is one of
the foundational solution concepts in non-cooperative games.

3. The Existence of Pure Nash Equilibria

To specify a subclass of games where a PNE always exists, the game is investigated by classes
of the underlying graphs, size of graphs, number of players and so on. In this section, we
consider three weight classes; uniform, nonnegative, and arbitrary, each of which is given

by {(
n︷ ︸︸ ︷

a, . . . , a) | a > 0}, Rn
≥0 and Rn. Note that the game under the uniform weight class

is equivalent to that on an unweighted graph. In the following subsections, we characterize
the existence of PNEs by weight classes on cycles and paths.

3.1. On cycles

We assume that the edge set is given by E = {(vi, vi+1) | i = 1, . . . , n− 1} ∪ {(vn, v1)}. For
convenience, notation vn+t stands for vt for any integer t, e.g., vn+1 = v1 and v−1 = vn−1.
We know that the information diffusion games on unweighted cycles always admit PNEs for
any number of players (e.g. [2, 10]). Yamaguchi and Ono [15] studied the existence and non-
existence of PNEs for the information diffusion game on cycles with nonnegative weights
for two players (k = 2). They proved that the games on cycles with 3, 4 and 5 vertices
admit PNEs under nonnegative weight and that there are positive weights for which the
game does not admit PNEs on cycles with more than 5 vertices. For n = 3, 4, and 5, we
can extend their result to the arbitrary weight class, which can be shown by a similar proof
of [15] by considering which vertices have negative weights.

� When n = 3, without loss of generality, we assume that v1 ∈ argmaxv∈V w(v) and
w(v2) ≥ w(v3). If w(v2) < 0, then s = (v1, v1) is a pure Nash equilibrium. Otherwise,
s = (v1, v2) is a pure Nash equilibrium.

� When n = 4, we also assume that, without loss of generality, v1 ∈ argmaxv∈V w(v) and
w(v2) ≥ w(v4) (if w(v2) < w(v4), we turn over the cycle, i.e., we regard the cycle v1-v2-v3-
v4 as v1-v4-v3-v2). We first consider the case of w(v2) < 0. If w(v3) ≥ 0, then s = (v1, v3)
is a pure Nash equilibrium. Otherwise, s = (v1, v1) is. We next consider the case of
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w(v2) ≥ 0. If w(v2) + w(v3) < 0, then s = (v1, v1) is a pure Nash equilibrium, because
w(v3) < 0. Otherwise, s = (v1, v2) is a pure Nash equilibrium if w(v1) + w(v4) ≥ 0. For
the remaining case, that is, w(v2) + w(v3) ≥ 0 and w(v1) + w(v4) < 0, s = (v2, v2) is a
pure Nash equilibrium.

� When n = 5, we define Zi = w(vi) + w(vi+1). Note that the relationships of relative
values of Zi are divided into two cases; Z1, Z2 and Z3 are at least as large as Z4 and
Z5; and Z1, Z2 and Z4 are at least as large as Z3 and Z5. For the former case, without
loss of generality, we can assume Z1 ≥ Z3. If Z3 ≥ 0, then s = (v2, v3) is a pure Nash
equilibrium, because U1(s) = Z1 and U2(s) = Z3. Otherwise, s = (v2, v2) is a pure Nash
equilibrium, because Z3, Z4 and Z5 are negative. For the latter case, if Z4 < 0, then
s = (v2, v2) is a pure Nash equilibrium, because Z3, Z4 and Z5 are negative. Thus, we
assume that Z4 ≥ 0. If the values of Zi except for Z4 are negative, s = (v4, v4) is a pure
Nash equilibrium. If Z1 ≥ Z2 and Z1 ≥ 0, then s = (v2, v4) is a pure Nash equilibrium.
Otherwise, that is, Z2 > Z1 and Z2 ≥ 0, then s = (v2, v5) is.

Combining the result of [15] with the above discussion, we obtain the following.
Theorem 3.1. Suppose that k = 2. If n = 3, 4 and 5, then the information diffusion game
on the cycle admits PNEs for arbitrary vertex weights. If n ≥ 6, we have positive weights
for which the information diffusion game on the cycle does not admit any PNE.

In the following, we prove that there exist positive weights for which the game with three
or more players (k ≥ 3) does not admit any PNE. First, we introduce properties for the
game with positive weights.
Lemma 3.1. Assume that n ≥ k and a weight of each vertex is positive. Strategy profile s
is not a PNE if there exist players p1 and p2 with s(p1) = s(p2).

Proof. When players p1 and p2 choose the same vertex, their utilities are zeros. Each of
them can increase his/her utility by relocating to any unoccupied vertex.

For convenience, players 0 and k + 1 stand for players k and 1, respectively.
Lemma 3.2. Assume that a given weight is positive. On cycles, strategy profile s is not a
PNE if there exists player p such that both s(p)− s(p− 1) and s(p+ 1)− s(p) are even.

Proof. The set of vertices obtained by player p is

Vp(s) = {vi | i = ⌈s(p) + s(p− 1) + 1

2
⌉, . . . , ⌊s(p+ 1) + s(p)− 1

2
⌋},

which is equal to {vi | i = s(p)+s(p−1)+2
2

, . . . , s(p+1)+s(p)−2
2

} since s(p) − s(p − 1) and s(p +
1)− s(p) are even. For the strategy profile s′ = s−p,s(p)+1, that is, when player p moves to

vs(p)+1 from vs(p), Vp(s
′) = {vi | i = ⌈ s(p)+s(p−1)+2

2
⌉, . . . , ⌊ s(p+1)+s(p)

2
⌋} ⊃ Vp(s), which implies

that the utility is increased because the weight of the additional vertex is positive.

We call vertex vi internal in a strategy profile if vertices vi−1, vi, and vi+1 are chosen by
players. Note that the utility of a player who chooses an internal vertex vi is equal to w(vi).

For a positive value α, let w2α be a weight, where the values of five consecutive vertices
are 2α, 1, 2α + 1, 1 and 2α and the values of the remaining vertices are 2, namely,

w2α(vi) =


2α (i = 1, 5)
1 (i = 2, 4)

2α + 1 (i = 3)
2 (otherwise)

(See Figure 1).
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Figure 1: Specified vertex weights for cycle graphs

Lemma 3.3. For k (≥ 4) players and k + 2 ≤ n ≤ α(k − 3) + 4, the information diffusion
game on the n-cycle does not admit any PNE for weight w2α.

Proof. Let W = {v1, v2, v3, v4, v5} and S be the set of vertices chosen by players. When
|W ∩ S| ≥ 4, a player who locates on v2 or v4 has a utility equivalent to its weight 1. The
player can increase his/her utility by relocating to any unoccupied vertex of weight 2.

When |W ∩S| = 3, we consider four cases classified by whether or not each of v4 and v5
is included in S. (i) If v4 ∈ S but v5 ̸∈ S, we have s(3) = 4 and s(4) > 5. In this case, player
4 obtains vertices with weight 2 only, i.e., V4(s) ⊆ V \W . By relocating to v5, player 4 can
increase his/her utility. (ii) If v4, v5 /∈ S, then v1, v2, v3 ∈ S which implies that v2 is internal.
Thus, the player located on v2 can increase his/her utility by relocating to an unoccupied
vertex. (iii) If v4, v5 ∈ S, but neither (i) nor (ii) applies by considering the symmetry of
weight between v1 and v5 (i.e., neither v2 ∈ S, v1 ̸∈ S nor v1, v2 ̸∈ S), then v1 ∈ S and
v2, v3 ̸∈ S. In this case, the player on v1 can increase his/her utility by relocating to v3. (iv)
the remaining case is v1, v3, v5 ∈ S but v2, v4 ̸∈ S. Lemma 3.2 implies that this case is not
a PNE.

When |W ∩ S| = 2, player 3 and player k, each of which respectively locates on the
vertices in V \W with the smallest and largest indices, cannot obtain unoccupied vertices
in W simultaneously. In this case, k − 3 players obtain a share of the utility from V \W .
When |W ∩ S| ≤ 1, the number of players satisfying Vp(s) ⊆ V \W is not less than k − 3.
These players obtain a share of the utility from V \W . The average of their utilities is no
more than ∑

v∈V \W w(v)

k − 3
=

2(n− 5)

k − 3
< 2α,

which implies that there exists a player whose utility is less than 2α. Then the player can
increase his/her utility by relocating to an unoccupied vertex v̂ with w(v̂) ≥ 2α, where such
vertex v̂ always exists when |W ∩ S| ≤ 2.

Even when the weight is bounded by a small number such as 3, we have a weight such
that no PNE is admitted on cycles with k ≥ 3. We define weight w3-3-3 for a cycle so that
weights of three consecutive vertices are 3 and weights of remaining vertices are 2, namely,

w3-3-3(vi) =

{
3 (i = 1, 2, 3)
2 (otherwise).

Lemma 3.4. For k (≥ 3) players and n ≥ 3k − 3, the information diffusion game on the
cycle does not admit any PNE for the weight w3-3-3.

Proof. Let W = {v1, v2, v3} and S be the set of vertices chosen by players. If |W ∩ S| = 3,
then there are three consecutive unoccupied vertices in V \ W because there are at least
2k − 3 unoccupied vertices while k − 3 occupied vertices in V \ W . Thus, a player who
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locates on v2 can increase his/her utility by relocating to an appropriate vertex in such
three consecutive unoccupied vertices.

When |W ∩ S| = 0, player 1 (resp. player k) can increase his/her utility by relocating
to an appropriate vertex in W if |V1(s) ∩W | ≤ 1 (resp. |Vk(s) ∩W | ≤ 1).

Finally, we consider the case of 1 ≤ |W ∩ S| ≤ 2. When v3 ̸∈ S, suppose that player
p locates on the vertex with the smallest index in V \ W among occupied vertices. That
is, s(p − 1) < 3 and s(p) > 3 hold. In this case, player p can increase his/her utility by
relocating to vs(p−1)+1. By the symmetry of weight between v1 and v3, the remaining case
is v1, v3 ∈ S and v2 ̸∈ S, that is, s(1) = 1 and s(2) = 3. If s(3) > 4, then player 2 can
increase his/her utility by relocating to v2. If s(3) = 4 and s(k) = n, then there are three
consecutive unoccupied vertices in V \W in which player 1 or 3 can increase his/her utility
by relocating to the one vertex.

The results of Lemmas 3.3 and 3.4 are summarized as follows.

Theorem 3.2. For k ≥ 3 and n ≥ k+2, we have positive weights for which the information
diffusion game on the cycle with k players does not admit any PNE.

Proof. The case not covered by Lemmas 3.3 and 3.4 is k = 3 and n = k + 2. For this case,
weight (2, 1, 3, 1, 2) provides an example where no PNE exists.

We next discuss the existence of PNEs of the information diffusion game on arbitrary
weighted cycles with a small number of vertices.

Theorem 3.3. Suppose that k ≥ 3. If n = k or n = k + 1, then the information diffusion
games on cycles admit a PNE for arbitrary vertex weights.

Proof. We denote the number of players who locate on vertex vi in a strategy profile s by
P (vi), i.e., P (vi) = |{p | s(p) = i}|.

We first consider the case of n = k. If a given weight is nonnegative, then a strategy
profile s0 given by s0(i) = i for i = 1, . . . , k is a PNE. If a given weight is negative, then
a strategy profile such that every player locates on v1 is a PNE. Otherwise, by applying
the following two processes, called steps, to the strategy profile s0, we create a strategy
profile so that no player obtains negative weight vertices. A maximal interval of consecutive
negative vertices vh, vh+1, . . . , vh+l means the interval of vertices such that w(vi) < 0 for all
i = h, . . . , h+ l, but w(vh−1) ≥ 0 and w(vh+l+1) ≥ 0.

Step 1 For a maximal interval of consecutive negative vertices, vh, vh+1, . . . , vh+l, if l ≥ 1,
then players who locate on this interval relocate to the next vertex outside the interval,
i.e.,

s(j) =

{
h− 1 j = h, . . . , h+ ⌊ l

2
⌋

h+ l + 1 j = h+ ⌊ l
2
⌋+ 1, . . . , h+ l.

Step 2 For a vertex vh with negative weight and P (vh) = 1, if P (vh−1) > 1 (resp. P (vh+1) >
1), then the player located on vh relocates to vertex vh+1 (resp. vh−1). Otherwise, the
player located on vh relocates to vertex v with P (v) > 1 or with P (v) ≥ 1 and w(v) < 0
if exists.

Step 2 is applied after Step 1 is applied for every maximal interval of consecutive negative
vertices with length of 2 or more (l ≥ 1). Except for the case in which there exists only one
negative weight vertex, the strategy profile obtained from these steps satisfies the following
conditions.
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P1 Every unoccupied vertex has negative weight. Conversely, every vertex v with negative
weight satisfies P (v) ̸= 1.

P2 The utility of each player is equal to the weight of the vertex located on or zero.

Condition P2 is derived from the structure of cycles. Thus, no player can increase his/her
utility by relocating. The remaining case is in which vertex vh has negative weight but
weights of the others are nonnegative. If n ≥ 4, then a player located on vh relocates to
a vertex except for vh−1 and vh+1. The obtained strategy profile is a PNE. If n = 3, then
the player relocates on vh+1. Then the utility of player on vh−1 is w(vh−1) + w(vh). If the
utility is nonnegative, this profile strategy is a PNE. Otherwise we obtain a PNE strategy
by relocating the player on vh−1 to vh+1.

When n = k + 1, we assume that, without loss of generality, w(vn) = minv∈V w(v). If
minv∈V \{vn}w(v) ≥ 0, then the strategy profile s0(i) = i for i = 1, . . . , k is a PNE. Thus, we
consider the case of minv∈V \{vn}w(v) < 0. Similarly to the case of n = k, Steps 1 and 2 are
applied iteratively. The obtained strategy profile with these steps is a PNE, except in the
case in which there exists only one vertex vh such that w(vh) < 0 in v1, . . . , vn−1. For this
exception, if vh is not adjacent to vn, we obtain a PNE in the same manner as in the case
of n = k with only one negative weight vertex. Therefore, we assume that h = n− 1. Since
Step 1 makes P (vn−2) ≥ 2, the utility of a player on v1 becomes w(v1) + w(vn) + w(vn−1).
If this utility is nonnegative, then this strategy profile is a PNE. Otherwise, the player on
v1 relocates to v2, then the obtained strategy profile is a PNE.

3.2. On paths

Assume that vertices are indexed sequentially along a path, i.e., E = {(vi, vi+1) | i =
1, . . . , n − 1}. We know that the information diffusion game on the unweighted paths
possesses PNEs when the number of players is not three [2, 4].

Different from the case on cycles, a PNE always exists on nonnegative weighted paths
with two players.

Theorem 3.4. The information diffusion games on weighted paths with two players possess
PNEs if the weights are nonnegative.

Proof. Let Yh =
∑n

i=h+1 w(vi) −
∑h−1

i=1 w(vi). Because Y1 ≥ 0, Yn ≤ 0 and Yh ≥ Yh+1 for

any h = 1, . . . , n− 1, ĥ := max{h | Yh ≥ 0} is well defined. We consider the strategy profile
s(1) = ĥ and s(2) = ĥ + 1. It is obvious that the utility does not increase by relocating
player 1 to vi for i = 1, . . . , ĥ − 1 and by relocating player 2 to vi for i = ĥ + 2, . . . , n. By
relocating player 2 to vi for i = 1, . . . , ĥ − 1, his/her utility becomes less than or equal to∑ĥ−1

i=1 w(vi) which is no more than the previous utility
∑ĥ+1

i=1 w(vi), since Yĥ ≥ 0. Similarly,

the utility of player 1,
∑ĥ

i=1w(vi), decreases by the player relocating to vi for i = ĥ+2, . . . , n
since Yĥ+1 < 0.

With respect to arbitrary weights, we can prove that a PNE exists for two players on
paths with n = 3 and 4 in a similar manner on cycles by checking every case. By the way,
we have a weight in which no PNE is admitted for two players when n ≥ 5. Let ŵA be given
by

ŵA(vi) =


1 (i = 1)

n− 2 (i = 2)
⌈n
2
⌉ (i = n)

−1 (otherwise)
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8 T. Li & M. Shigeno

(see Figure 2). Let ol(vi) be a vertex where player 2 obtains the maximum utility when
player 1 locates on vi. We can observe that ol(v1) = v2, ol(v2) = vn, ol(v3) = ol(v4) = v2,
ol(vl) = v1 for l = 5, . . . , n, which implies that there exists no PNE.

������������ ��������
v1 v2 v3 · · · vn−1 vn

1 n− 2 −1 ⌈n
2 ⌉ŵA(vi)

� �

Figure 2: Weight ŵA on n-path

Theorem 3.5. For two players (k = 2) and n ≥ 5, the information diffusion game on the
n-path does not admit any PNE for the weight ŵA.

We next consider the case of k ≥ 3. From a similar observation for unweighted cases [4],
we can see that a strategy profile is not a PNE for a nonnegative weight if condition

s(1) + 1 = s(2) and s(k − 1) + 1 = s(k) (3.1)

is not satisfied. Let ŵ2α be a weight for paths, where the values of both ends of the path
and their neighbors are 2α and 1, respectively, and the values of the remaining vertices are
2, namely,

ŵ2α(vi) =


2α (i = 1, n)
1 (i = 2, n− 1)
2 (otherwise)

(see Figure 3).

m m m m m m m2α 1 2 2 · · · 2 1 2α

ŵ2α

m m m m m m m2 · · · 2 3 3 3 2 · · · 2

ŵ3-3-3

Figure 3: Specified vertex weights for paths

Lemma 3.5. For k (≥ 3) players and k + 1 ≤ n ≤ (k − 2)α + 3, where α is a positive
integer more than 2, the information diffusion game on the n-path does not admit any PNE
for the weight ŵ2α.

Proof. If s(1) ≥ 2 for strategy profile s, then players except for player 1 split the utility of
weights between v3 and vn, i.e.,

k∑
j=2

Uj(s) ≤
n∑

i=3

w(vi) = 2(n− 4) + 2α + 1 ≤ 2α(k − 1)− 1.

Hence, there exists player j whose utility is less than 2α. Since player j increases his/her
utility by relocating to v1, s is not a PNE.

If s(1) = 1 and s(k) = n for a PNE s, we have s(2) = 2 and s(k− 1) = n− 1 from (3.1).
Thus this case occurs only when k ≥ 4. If s(3) = 3, then the utility of player 2 is one and
can be increased by this player relocating to an unoccupied vertex. If s(3) = l > 3, then
the utility of player 2 is 1 + 2⌊ l−3

2
⌋, which is less than the utility when this player relocates

to l − 1, 2 + 2⌊ l−3
2
⌋. Either of both cases contradicts that s is a PNE.
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Even when the weight is bounded by a small number such as 3, we have a weight such
that no PNE is admitted on paths with k ≥ 3. We define weight ŵ3-3-3 as

ŵ3-3-3(vi) =

{
3 (i = ⌈n

2
⌉ − 1, ⌈n

2
⌉, ⌈n

2
⌉+ 1)

2 (otherwise)

(see Figure 3). The following property is also shown in a similar manner as the proof of
Lemma 3.4, where we have to note that a player whose utility is less than four can increase
his/her utility if v1 and v2 are unoccupied.

Lemma 3.6. For k (≥ 3) players and n ≥ 3k − 3, the information diffusion game on the
path does not admit any PNE for weight ŵ3-3-3.

The above two lemmas imply the following.

Theorem 3.6. For k ≥ 3 and n ≥ k+1, we have positive weights for which the information
diffusion game on the path with k players does not admit any PNE.

Finally, we consider the remaining case of n = k. In a similar manner as the proof of
Theorem 3.3, we can prove the following.

Theorem 3.7. Suppose that k ≥ 2. If n = k, then the information diffusion game on the
path admits a PNE for arbitrary vertex weights.

Proof. When applying Step 1 in the proof of Theorem 3.3, we modify the manner of relo-
cation as s(j) = l + 1 for j = 1, . . . , l if a maximal interval of consecutive negative vertices
is located at the end of the path, e.g., v1, v2, . . . , vl.

4. Discussion

To specify the demarcation where information diffusion games always have PNEs for weighted
graphs, we investigated cycles and paths with weight classes, i.e., uniform, nonnegative and
arbitrary. We gave full characterization for the existence of PNEs, the summary of which is
given in Table 1, where “A” means that PNEs always exist for arbitrary weight, “P” means
that PNEs always exists for nonnegative weight, but we have weight, including negative
value, for which PNEs are not admitted, “U” means that PNEs always exists for uniform
weight, but we have a nonnegative weight for which PNEs are not admitted. Moreover, “–”
means that no PNE exists even for uniform weight.

Table 1: Full characterization for existence of PNEs on paths and cycles

cycle
# of n

players = k = k + 1 = k + 2 = k + 3 ≥ k + 4
k = 2 A A A U
k ≥ 3 A A U U U

path
# of n

players = k = k + 1 = k + 2 ≥ k + 3
k = 2 A A A P
k = 3 A U U –
k ≥ 4 A U U U

Our results indicate which cases always admit PNEs and which do not. It is also in-
teresting how PNEs are found [7] and how many instances have PNEs even though several
instances do not admit any PNE in a subclass of the game. We finally display the compu-
tational results that evaluate the ratio of the existence of PNEs for all patterns of vertex
weight which is given by w(v) ∈ {2, 3}. Two weight patterns are regarded to as equivalent
if they coincide with each other by applying reflection and rotation of its weight. Our com-
putational evaluation checked whether each weight pattern has a PNE or not. The ratio of
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instances having a PNE for the set of instances consisting of all possible weight patterns was
evaluated. Figure 4 illustrates the existence ratios of PNEs for every k of no more than 9
and k ≤ n ≤ 19, where the horizontal axis represents the number of vertices n. Since PNEs
always exist when k = 2 for paths, we exclude this case in the plot. Generally speaking, the
existence ratio of PNEs on paths tends to be less than on cycles. In paths, the larger the
number of players k is, the higher the existence ratio tends to be. However, such a tendency
does not appear in cycles. While our computational results were restricted for instances
where its weights were 2 and 3, investigating properties of weight patterns for which PNEs
exist is interesting future work.
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Figure 4: Existence ratios of PNEs corresponding to number of vertices, represented on the
horizon axis, and number of players
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