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Abstract Diverse accelerated first-order methods have recently received considerable attention for solving
large-scale convex optimization problems. This short paper shows that an exiting accelerated proximal
gradient method for solving quasi-static incremental elastoplastic problems with the von Mises yield criterion
can be naturally extended to the Tresca yield criterion.
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1. Introduction

It has been long recognized that plasticity is closely linked to optimization. Particularly, in
this decade, second-order cone programming (SOCP) and semidefinite programming (SDP)
have been extensively applied to diverse problems in plasticity [3, 4, 11, 12, 15, 26].

Roughly speaking, solids and structures subjected to the static external load undergo
only elastic deformation when the magnitude of the load is sufficiently small. When the mag-
nitude of the stress (i.e., the internal force per unit area) exceeds a certain criterion, plastic
deformation also takes place at the points where excess of the stress criterion occurs. Elastic
deformation is reversible, while plastic deformation is irreversible. Therefore, elastoplastic
behavior depends in general on the deformation history. A stress constraint describing the
elastic limit is referred to as the yield criterion. Each metallic material has a specific yield
criterion. For the Tresca and Mohr–Coulomb yield criteria, Bisbos [3] presented SDP for-
mulations for elastoplastic shakedown analysis problems. Also, SDP approaches have been
proposed for plastic limit analysis [4, 12, 15] as well as quasi-static elastoplastic analysis
[11]. In this short paper, we address quasi-static elastoplastic analysis with the Tresca yield
criterion. This analysis consists of solving a sequence of the incremental problems , which
are obtained by applying the backward Euler time dicretization to the equation of motion
under the assumption that the inertia term is negligible (i.e., the variation of the structural
deformation is sufficiently slow).

Recently, accelerated proximal gradient methods have been proposed for the incremental
problems of elastoplastic truss structures [8] and elastoplastic continua with the von Mises
yield criterion [24]. It is worth noting that the truss problem can be recast as a (convex)
quadratic programming (QP) problem [8, 13], while the von Mises problem can be recast as
an SOCP problem [7, 26]. The numerical experiments suggest that the accelerated proxi-
mal gradient methods outperform standard optimization solvers implementing primal-dual
interior-point methods for QP and SOCP [8, 24]. Unlike approaches using interior-point
methods, these accelerated proximal gradient methods solve an unconstrained nonsmooth
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convex optimization problem, in which only the incremental plastic strains and the incre-
mental nodal displacements are treated as explicit optimization variables. The accelerated
proximal gradient method is one of accelerated gradient methods (a.k.a. optimal first-order
methods) that are popularly used for solving large-scale convex optimization problems aris-
ing in data science [2, 19, 20]. Applications of accelerated first-order methods to contact
mechanics can be found in Mazhar et al. [16] and Kanno [9]; numerical experiments in [17]
demonstrate that the method proposed by Mazhar et al. [16] is faster than conventional
second-order methods in computational contact mechanics.

In this short paper, we show that the accelerated gradient method for incremental elasto-
plastic analysis with the von Mises yield criterion [24] can naturally be extended to the
Tresca yield criterion. It is worth noting that the Tresca yield criterion means that plas-
tic deformation begins when the maximum shear stress attains at a critical value. This
assumption is consistent with the microscopic physical law of plastic yielding of crystal
metals. Namely, in a metal crystal, it is widely recognized that plastic deformation occurs
when the shear stress along a slip system (which is a pair of a particular plane and its
associated direction, specified by the type of crystal lattice) attains at a threshold called
the critical resolved shear stress [1]. Since most of conventional metal materials have poly-
crystalline structures, their mechanical properties are considered isotropic, which naturally
leads to the Tresca yield criterion where the plasticity threshold is linked to the maximum
shear stress among on any planes and in any directions. In physical experiments, it is usu-
ally observed that the yielding of metals occurs between the von Mises and Tresca criteria,
and, particularly, for ductile metals the Tresca criterion matches the experimental results
better [6]. However, in numerical simulation, the von Mises criterion is used much more
often, because computation with the Tresca criterion is more difficult due to nonsmoothness
of its yield surface [6]. Therefore, development of efficient and easily-implementable numer-
ical methods with the Tresca yield criterion is in demand, which motivates us to study an
accelerated proximal gradient method. In this paper, we also perform preliminary numer-
ical experiments to examine efficiency of the proposed method, compared with a standard
primal-dual interior-point method for SDP.

In our notation, ⊤ denotes the transpose of a vector or a matrix. For x = (x1, . . . , xn)
⊤,

we use ∥x∥2 and ∥x∥1, respectively, to denote its Euclidean norm and ℓ1-norm, i.e., ∥x∥2 =√
x⊤x and ∥x∥1 = |x1| + · · · + |xn|. We use diag(x) to denote a diagonal matrix, the

vector of diagonal entries of which is x. Let Sn denote the set of n × n real symmetric
matrices. We also write α ∈ S3 if α is a second-order symmetric tensor with the dimension
three, because in this paper we always consider the Cartesian coordinate system. Following
the conventional notation in continuum mechanics, we use X : Y to denote the scalar
product (i.e., the inner product) of X ∈ Sn and Y ∈ Sn. Similarly, we use p · q to denote
the scalar product of p ∈ Rn and q ∈ Rn. For X ∈ Sn, we use ∥X∥F and ∥X∥∗ to
denote its Frobenius norm and the nuclear norm, respectively, i.e., ∥X∥F =

√
X : X and

∥X∥∗ = ∥λ(X)∥1, where λ(X) ∈ Rn is a vector of the eigenvalues of X in nonincreasing
order, i.e., λ1(X) ≥ · · · ≥ λn(X). For X ∈ S3, we use tr(X) and dev(X) to denote its trace
and deviator (i.e., dev(X) = X − (tr(X)/3)I), respectively. For closed convex functions
f : Rn → R ∪ {+∞} and F : Sn → R ∪ {+∞}, define the proximal mappings of f and F ,
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80 Wataru Shimizu & Yoshihiro Kanno

respectively, by

proxf (x) = argmin
z∈Rn

{
f(z) +

1

2
∥z − x∥22

}
,

proxF (X) = argmin
Z∈Sn

{
F (Z) +

1

2
∥Z −X∥2F

}
.

Also, we use ∂f(x) to denote the subdifferential of f at x ∈ Rn.

2. Overview of Accelerated Proximal Gradient Methods for Elastoplastic In-
cremental Problems

2.1. Existing method for the von Mises yield criterion

Shimizu and Kanno [24] proposed an accelerated proximal gradient method for the von Mises
yield criterion with the strain hardening. We here summarize its essentials by restricting
ourselves, for simplicity, to the perfect plasticity.*

Consider an elastoplastic body discretized according to the conventional procedure of
the finite element method with the Gauss quadrature. Throughout the paper, we assume
small deformation. Let d and r denote the number of degrees of freedom of the nodal
displacements and the number of the Gauss evaluation points, respectively. We use u̇ ∈ Rd

and q ∈ Rd to denote the incremental nodal displacement and the nodal external force,
respectively.� At Gauss evaluation point l (l = 1, . . . , r), the compatibility relation is written
as ε̇el + ε̇pl = Blu̇, where ε̇el ∈ S3 and ε̇pl ∈ S3 are, respectively, the elastic and plastic
parts of the incremental strain, and Bl is a linear operator. The incremental problem can
be formulated as the following optimization problem [24]:�

Minimize
r∑

l=1

(1
2
Clε̇el : ε̇el + σ0l : ε̇el +

√
2
3
R0l∥ε̇pl∥F

)
− q · u̇ (1a)

subject to ε̇el + dev(ε̇pl) = Blu̇, l = 1, . . . , r. (1b)

Here, ε̇el, ε̇pl (l = 1, . . . , r), and u̇ are variables to be optimized, while Cl, σ0l, and R0l

correspond to the (fourth-order) elasticity tensor, the stress tensor of the present state, and
the radius of the yield surface. It is worth noting that (1a) is the sum of the increments of
the elastic strain energy function, the (plastic) dissipation function, and the external work.
We can eliminate ε̇el from (1a) by using (1b), which yields the unconstrained form:

Minimize f(ε̇p, u̇) :=
r∑

l=1

1

2
Cl(Blu̇− dev(ε̇pl)) : (Blu̇− dev(ε̇pl))

+
r∑

l=1

σ0l : (Blu̇− dev(ε̇pl)) +
r∑

l=1

√
2
3
R0l∥ε̇pl∥F − q · u̇.

*The strain hardening is a model of time-evolution of parameters (e.g., R0l in the notation below) involved
in the yield criterion. The perfect plasticity means the assumption that the strain hardening does not take
place (i.e., R0l is assumed to be a constant).
�It should be clear that u̇, as well as the related values appearing below, is not the rate value but the
incremental value, though we use this notation instead of, e.g., ∆u, for notational simplicity.
�Although the effect of strain hardening was addressed in [24], we here consider the perfect plasticity
for simplifying the presentation and clarifying the connection with the formulations with the Tresca yield
function presented in section 2.2 and section 2.3. It is worth noting that (1) corresponds to (17) in [24]
when we put Hl = 0 and β0l = o.
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Define g : (S3)r × Rd → R and hm
l : S3 → R (l = 1, . . . , r) by

g(ε̇p, u̇) = f(ε̇p, u̇)−
r∑

l=1

hm
l (ε̇pl),

hm
l (ε̇pl) =

√
2
3
R0l∥ε̇pl∥F.

The proximal gradient method [24] updates the incumbent solution, denoted ε̇
(k)
p1 , . . . , ε̇

(k)
pr

and u̇(k), as

ε̇
(k+1)
pl := proxαhm

l
(ε̇

(k)
pl − α∇ε̇plg(ε̇

(k)
p , u̇(k))), l = 1, . . . , r, (2)

u̇(k+1) := u̇(k) − α∇u̇g(ε̇
(k)
p , u̇(k)), (3)

where α > 0 is the step length. It is worth noting that the computation in (2) can be done
via a simple analytical formula. Also, the computation in (3) is certainly simple because g is
a convex quadratic function. By applying the Nesterov acceleration [2, 18] and its adaptive
restart [20], we obtain Algorithm 1 in Shimizu and Kanno [24, section 4.2].

2.2. Perfect plasticity with the Tresca yield criterion

For the perfectly plastic case, the dissipation function for the Tresca yield criterion is given
by 1

2
R0l∥ε̇pl∥∗ with the incompressibility condition of the incremental plastic strain [22, 23];

see also [14]. With referring to problem (1), we see that the corresponding incremental
problem is formulated as follows:§

Minimize
r∑

l=1

(1
2
Clε̇el : ε̇el + σ0l : ε̇el +

1

2
R0l∥ε̇pl∥∗

)
− q · u̇ (4a)

subject to ε̇el + dev(ε̇pl) = Blu̇, l = 1, . . . , r, (4b)

tr(ε̇pl) = 0, l = 1, . . . , r. (4c)

Substitution of (4b) into (4a) yields the following equivalent form:

Minimize
r∑

l=1

1

2
Cl(Blu̇− dev(ε̇pl)) : (Blu̇− dev(ε̇pl))

+
r∑

l=1

σ0l : (Blu̇− dev(ε̇pl)) +
r∑

l=1

1

2
R0l∥ε̇pl∥∗ − q · u̇ (5a)

subject to tr(ε̇pl) = 0, l = 1, . . . , r. (5b)

Here, ε̇p1, . . . , ε̇pr ∈ S3 and u̇ ∈ Rd are optimization variables.

Define ht
l : S3 → R ∪ {+∞} (l = 1, . . . , r) by

ht
l(ε̇pl) =


1

2
R0l∥ε̇pl∥∗ if tr(ε̇pl) = 0,

+∞ otherwise
(6)

§With the von Mises yield criterion, we can easily confirm that condition (4c) is satisfied by any optimal
solution of problem (1); see [26].
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82 Wataru Shimizu & Yoshihiro Kanno

to see that problem (5) is embedded into the form

minimize g(ε̇p, u̇) +
r∑

l=1

ht
l(ε̇pl). (7)

The proximal gradient method in section 2.1 can be extended to problem (7) as

ε̇
(k+1)
pl := proxαht

l
(ε̇

(k)
pl − α∇ε̇plg(ε̇

(k)
p , u̇(k))), l = 1, . . . , r,

u̇(k+1) := u̇(k) − α∇u̇g(ε̇
(k)
p , u̇(k)).

The only difference is that, for a given X ∈ S3, we are now required to compute

proxαht
l
(X) = argmin

Z∈S3

{1

2
R0l∥Z∥∗ +

1

2
∥Z −X∥2F

∣∣∣ tr(Z) = 0
}

(8)

efficiently; the other computations can be performed in the same manner as Algorithm 1 in
Shimizu and Kanno [24]. In section 3.1, we give an analytical formula for computing (8).

2.3. Strain hardening with the Tresca yield criterion

We are now in position to consider the Tresca yield criterion with the strain hardening. We
assume combination of the linear isotropic hardening and the linear kinematic hardening
with the Prager model. By adding the corresponding dissipation function, calculated from
the maximum dissipation law,¶ to the objective function of problem (4), we obtain the
following optimization problem for the incremental problem:

Minimize
r∑

l=1

(1
2
Clε̇el : ε̇el + σ0l : ε̇el +

1

2
R0l∥ε̇pl∥∗

)
+

r∑
l=1

(
β0l : ε̇pl +

1

2
Hkl∥ε̇pl∥2F +

1

8
Hil∥ε̇pl∥2∗

)
− q · u̇ (9a)

subject to ε̇el + dev(ε̇pl) = Blu̇, l = 1, . . . , r, (9b)

tr(ε̇pl) = 0, l = 1, . . . , r. (9c)

Here, β0 ∈ S3 corresponds to the back stress, and Hil > 0 and Hkl > 0 are constant isotropic
and hardening moduli, respectively, at the lth evaluation point of the Gauss quadrature.

Define ĝ : (S3)r × Rd → R and ĥt
l : S3 → R ∪ {+∞} (l = 1, . . . , r) by

ĝ(ε̇p, u̇) = g(ε̇p, u̇) +
r∑

l=1

(
β0l : ε̇pl +

1

2
Hkl∥ε̇pl∥2F

)
, (10)

ĥt
l(ε̇pl) =


1

2
R0l∥ε̇pl∥∗ +

1

8
Hil∥ε̇pl∥2∗ if tr(ε̇pl) = 0,

+∞ otherwise
(11)

to see that problem (9) is embedded into the form

minimize ĝ(ε̇p, u̇) +
r∑

l=1

ĥt
l(ε̇pl). (12)

¶This calculation is standard in the plasticity theory; see, e.g., [5].
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The proximal gradient method can be applied to this problem in a manner similar to sec-
tion 2.2. Since ĝ is a convex quadratic function, we can compute its gradient in a straight-
forward manner. Therefore, what we need is to compute

proxαĥt
l
(X) = argmin

Z∈S3

{1

2
R0l∥Z∥∗ +

1

8
Hil∥ε̇pl∥2∗ +

1

2
∥Z −X∥2F

∣∣∣ tr(Z) = 0
}

(13)

for a given X ∈ S3. We give an explicit formula for this in section 3.2.

3. Computing Proximal Mapping

3.1. Proximal mapping for perfect plasticity

In this section, we present an explicit form of (8).
We say that F : Sn → R∪{+∞} is a spectral function if it satisfies F (X) = F (UXU⊤)

for any X ∈ Sn and any orthogonal matrix U ∈ Rn×n. For each spectral function F , there
exists a symmetric function f : Rn → R ∪ {+∞} satisfying F (X) = f(λ(X)) (∀X ∈ Sn).
Then we have

proxF (X) = UX diag(proxf (λ(X)))U⊤
X ,

where UX is an orthogonal matrix satisfying X = UX diag(λ(X))U⊤
X [21, section 6.7.2]. It is

easy to show that ht
l defined in (6) is a spectral function. Also, defining hte

l : R3 → R∪{+∞}
by

hte
l (x) =


1

2
R0l∥x∥1 if x1 + x2 + x3 = 0,

+∞ otherwise,

we see that ht
l(X) = hte

l (λ(X)) (∀X ∈ S3) holds. Accordingly, we can compute (8) straight-
forwardly if we can explicitly evaluate

proxhte
l
(x) = argmin

z∈R3

{
cl∥z∥1 +

1

2
∥z − x∥22

∣∣∣ z1 + z2 + z3 = 0
}
, (14)

where we put cl = R0l/2 (> 0) for notational simplicity, and we assume without loss of
generality that

x1 ≥ x2 ≥ x3. (15)

It is worth noting that, for X ∈ S3, we can obtain λ(X) and UX analytically [10]; this
analytical approach is actually adopted in the numerical experiments presented in section 4.

Let P = {z ∈ R3 | z1 + z2 + z3 = 0}. The projection of point x ∈ R3 onto P is defined
by

ΠP (x) = argmin
z∈R3

{∥z − x∥2 | z ∈ P}.

Since v1 and v2 defined by

v1 =

−1/
√
2

1/
√
2

0

 , v2 =

 1/
√
6

1/
√
6

−2/
√
6


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84 Wataru Shimizu & Yoshihiro Kanno

form an orthonormal basis of P , we see that z ∈ P if and only if there exist ζ1, ζ2 ∈ R
satisfying z = ζ1v1 + ζ2v2. Therefore, ΠP (x) can be explicitly given as

ΠP (x) = ξ1v1 + ξ2v2

with

(ξ1, ξ2) =
(−x1 + x2√

2
,
x1 + x2 − 2x3√

6

)
,

where (15) is equivalent to

−
√
3ξ2 ≤ ξ1 ≤ 0. (16)

Since we have ∥z − x∥22 = ∥z − ΠP (x)∥22 + ∥x − ΠP (x)∥22 (i.e., the Pythagorean theorem)
for z ∈ P , (14) can be reduced to

proxhte
l
(x) = argmin

z∈R3

{
cl∥z∥1 +

1

2
∥z − ΠP (x)∥22

∣∣∣ z ∈ P
}
.

Furthermore, by again using the fact that z ∈ P is equivalent to the existence of ζ1, ζ2 ∈ R
satisfying z = ζ1v1 + ζ2v2, we can evaluate (14) by computing the optimal solution of the
following optimization problem for given ξ1 and ξ2 satisfying (16):

Minimize
ζ=(ζ1,ζ2)∈R2

θ(ζ) := cl∥ζ1v1 + ζ2v2∥1 +
1

2
∥ζ − ξ∥22. (17)

Since problem (17) has only two optimization variables, we can solve it analytically as
follows:
Theorem 1. For ξ1 and ξ2 satisfying (16) and cl > 0, the optimal solution of problem (17),
denoted (ζ∗1 , ζ

∗
2 ), is

(ζ∗1 , ζ
∗
2 ) =



(0, 0) if
√
3ξ2 ≤ ξ1 + 2

√
2cl,

(ξ1 +
√
2cl, ξ2 −

√
2/3cl) if

√
3ξ2 ≤ −3ξ1 − 2

√
2cl,

(ξ1, ξ2 − 2
√

2/3cl) if
√
3ξ2 ≥ −3ξ1 + 2

√
2cl,

1

4
(ξ1 −

√
3ξ2 + 2

√
2cl,−

√
3ξ1 + 3ξ2 − 2

√
6cl) otherwise.

A proof of Theorem 1 appears in appendix A.

3.2. Proximal mapping with strain hardening

This section provides an explicit form of (13).
We can easily verify that ĥt

l defined in (11) is a spectral function. Indeed, if we define

ĥte
l : R3 → R ∪ {+∞} by

ĥte
l (x) =


1

2
R0l∥x∥1 +

1

8
Hil∥x∥21 if x ∈ P ,

+∞ otherwise,

then we have ĥt
l(X) = ĥte

l (λ(X)) (∀X ∈ S3). Accordingly, to obtain (13) explicitly, it is
sufficient to evaluate

proxĥte
l
(x) = argmin

z∈R3

{
cl1∥z∥1 + cl2∥z∥21 +

1

2
∥z − x∥22

∣∣∣ z ∈ P
}

= argmin
z∈R3

{
cl1∥z∥1 + cl2∥z∥21 +

1

2
∥z − ΠP (x)∥22

∣∣∣ z ∈ P
}
, (18)
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where we put cl1 = R0l/2 (> 0) and cl2 = Hil/8 (> 0) for notational simplicity. In the
same manner as section 3.1, we can write ΠP (x) = ξ1v1 + ξ2v2 (−

√
3ξ2 ≤ ξ1 ≤ 0) and

z = ζ1v1 + ζ2v2. Accordingly, the optimization problem in (18) is reduced to

minimize
ζ∈R2

cl1∥ζ1v1 + ζ2v2∥1 + cl2∥ζ1v1 + ζ2v2∥21 +
1

2
∥ζ − ξ∥22. (19)

In a manner analogous to Theorem 1, we can obtain the optimal solution of problem
(19) as follows:

(ζ∗1 , ζ
∗
2 ) =



(0, 0)

if
√
3ξ2 ≤ ξ1 + 2

√
2cl1,((3 + 4cl2)ξ1 + 4

√
3cl2ξ2 + 3

√
2cl1

3 + 16cl2
,
4
√
3cl2ξ1 + 3(1 + 4cl2)ξ2 −

√
6cl1

3 + 16cl2

)
if
√
3(1 + 8cl2)ξ2 ≤ −(3 + 8cl2)ξ1 − 2

√
2cl1,(

ξ1,
3ξ2 − 2

√
6cl1

3 + 16cl2

)
if
√
3ξ2 ≥ (−3 + 16cl2)ξ1 + 2

√
2cl1,(ξ1 −√

3ξ2 + 2
√
2cl1

4(1 + 4cl2)
,
−
√
3ξ1 + 3ξ2 − 2

√
6cl1

4(1 + 4cl2)

)
otherwise.

4. Preliminary Numerical Experiments

In this section, we perform preliminary numerical experiments to examine the effiency of
the method presented in this paper. The main part of the method solving problem (12) was
implemented in MATLAB ver. 7.11. Computation of the proximal mapping in section 3 was
implemented in C++. Computation was carried out on a 2.4GHz Intel Core i7 processor
with 16GB RAM.

We solved the elastoplastic problem in Shimizu and Kanno [24, section 5.2] with, this
time, the Tresca yield criterion. The finite element mesh, the boundary condition, and the
problem size are detailed in [24]. The initial point for the proposed method is 0. The step
length, α, is determined in the same manner as in [24]. We terminated the algorithm when
the Euclidean norm of the update of the solution vector becomes less than the threshold, ϵ,
where we consider two cases, ϵ = 10−8 and 10−10. Figure 1 shows a typical iteration history
of the proposed method. It also reports the results of the accelerated gradient method
without restart and the (unaccelerated) proximal gradient method. We can observe that
the acceleration with restart drastically speeds up the convergence.

For comparison of efficiency, we also solved problem (12) with an SDP approach. Namely,
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86 Wataru Shimizu & Yoshihiro Kanno

by using the formulations in [11, 15], problem (9) can be recast as follows:

Minimize
r∑

l=1

(1
2
Clε̇el : ε̇el + σ0l : ε̇el +R0lγl

)
+

r∑
l=1

(
β0l : ε̇pl +

1

2
Hkl∥ε̇pl∥2F +

1

2
Hilγ

2
l

)
− q · u̇ (20a)

subject to ε̇el + ε̇pl = Blu̇, l = 1, . . . , r, (20b)

ε̇pl = ė+
l − ė−

l , l = 1, . . . , r, (20c)

tr ė+
l = γl, l = 1, . . . , r, (20d)

tr ė−
l = γl, l = 1, . . . , r, (20e)

ė+
l ⪰ o, l = 1, . . . , r, (20f)

ė−
l ⪰ o, l = 1, . . . , r. (20g)

Here, ė+
l ∈ S3, ė−

l ∈ S3, and γl ∈ R (l = 1, . . . , r) are additional optimization variables,
and the constraints in (20f) amd (20g) mean that ė+

l and ė−
l are positive semidefinite.

Furthermore, the quadratic term
∑r

l=1
1
2
Hilγ

2
l in (20a) can be converted to minimization of

an additional variable w ∈ R under the second-order cone constraint

w ≥
r∑

l=1

1

2
Hilγ

2
l ⇔ w +

1

2
≥

∥∥∥∥∥∥∥∥∥∥


w − 1

2√
Hi1γ1
...√

Hirγr


∥∥∥∥∥∥∥∥∥∥
2

.

Similarly,
∑r

l=1
1
2
Clε̇el : ε̇el and

∑r
l=1

1
2
Hkl∥ε̇pl∥2F in (20a) are handled by means of second-

order cone constraints. Accordingly, we obtain an SDP problem. We solved this SDP
problem by using SDPT3 ver. 4 [25], a primal-dual interior-point method, with the default
setting.

0 2000 4000 6000 8000 10000
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Figure 1: Convergence history of the objective value. “Solid line” The proposed method;
“dashed line” the accelerated proximal gradient method without restart; and “dotted line”
the proximal gradient method
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Figure 2: Computational time. “◦” The proposed method; and “×” a primal-dual interior-
point method. (a) ϵ = 10−8; and (b) ϵ = 10−10 in the proposed method
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Figure 3: Relative difference of the objective values obtained by the proposed method and a
primal-dual interior-point method. (a) ϵ = 10−8; and (b) ϵ = 10−10 in the proposed method.
“◦” The objective value obtained by the proposed method is smaller; and “×” the one by a
primal-dual interior-point method is smaller

Figure 2 compares the computational time of the two methods. In every case, the
proposed method is faster than SDPT3. Figure 3 compares the accuracy of the obtained
solutions. The relative error is defined by (f̌ − f ∗)/f ∗, where f̌ and f ∗ are the objective
values of the solutions obtained by the proposed method and SDPT3, respectively. A smaller
objective value means higher accuracy. We can confirm that, with ϵ = 10−8, the solution
obtained by the proposed method agrees very well with the one obtained by SDPT3. Also,
the proposed method with ϵ = 10−10 finds a solution with higher accuracy than SDPT3 in
every case. Figure 4 reports the number of iterations required by the proposed method. We
can observe that the number of iterations increases gradually as the problem size increases.
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Figure 4: The number of iteration of the proposed method. (a) ϵ = 10−8; and (b) ϵ = 10−10

5. Conclusions

In this paper, we have extended an accelerated proximal gradient method for solving quasi-
static incremental elastoplastic problems with the von Mises yield criterion to the ones with
Tresca yield criterion. The proposed method solves an unconstrained nonsmooth convex op-
timization problem, which has a form similar to the low-rank matrix approximation problem
using the nuclear norm of a matrix. The preliminary numerical experiments suggest that the
proposed method outperforms a standard primal-dual interior-point method for semidefinite
programming.

A. Proof of Theorem 1

Theorem 1 can be proved as follows.

A necessary condition for optimality is that there exists µ ≤ 0 satisfying

µ(ζ − ξ) ∈ ∂∥ζ1v1 + ζ2v2∥1.

The set of ζ satisfying this necessary condition corresponds to the two line segments indi-
cated by dotted lines in Figure 5. The optimal solution can be found by exploring these two
line segments as follows.

We first investigate the case in Figure 5a, i.e., −ξ1 ≤
√
3ξ2 ≤ −3ξ1. The dotted line

segments in Figure 5a are written explicitly as

l1 =
{
(ζ1, ζ2)

∣∣∣ √3ζ1 + ζ2 = 0, ζ1 ∈
[
−1

2
ξ1 −

√
3

2
ξ2, 0

]}
,

l2 =
{
(ζ1, ζ2)

∣∣∣ ζ1 +√
3ζ2 = ξ1 +

√
3ξ2, ζ1 ∈

[
ξ1,−

1

2
ξ1 −

√
3

2
ξ2

]}
.

If ζ ∈ l1, then the objective function is reduced to

θ(ζ1, ζ2(ζ1)) = 2ζ21 − (ξ1 −
√
3ξ2 + 2

√
2cl)ζ1 +

1

2
∥ξ∥22. (21)
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A direct calculation yields

argmin{θ(ζ) | ζ ∈ l1} =



(0, 0)

if
1

4
(ξ1 −

√
3ξ2 + 2

√
2cl) ≥ 0,

l1 ∩ l2

if
1

4
(ξ1 −

√
3ξ2 + 2

√
2cl) ≤ −1

2
ξ1 −

√
3

2
ξ2,

1

4
(ξ1 −

√
3ξ2 + 2

√
2cl,−

√
3ξ1 + 3ξ2 − 2

√
6cl)

otherwise,

namely,

argmin{θ(ζ) | ζ ∈ l1}

=


(0, 0) if 2

√
2cl ≥ −ξ1 +

√
3ξ2,

l1 ∩ l2 if 2
√
2cl ≤ −3ξ1 −

√
3ξ2,

1

4
(ξ1 −

√
3ξ2 + 2

√
2cl,−

√
3ξ1 + 3ξ2 − 2

√
6cl) otherwise.

(22)

On the other hand, if ζ ∈ l2, then the objective function is reduced to

θ(ζ1, ζ2(ζ1)) =
2

3
ζ21 −

4

3
(ξ1 +

√
2cl)ζ1 +

√
2

3
(
√
2ξ21 + clξ1 +

√
3clξ2)

A direct calculation yields

argmin{θ(ζ) | ζ ∈ l2} =


l1 ∩ l2 if ξ1 +

√
2cl ≥ −1

2
ξ1 −

√
3

2
ξ2,

(ξ1 +
√
2cl, ξ2 −

√
2/3cl) if ξ1 +

√
2cl ≤ −1

2
ξ1 −

√
3

2
ξ2,

ζ1

ζ2

(ξ1, ξ2)

ξ1 ≥ −
√
3ξ2

l1l2

ξ2 ≤ −
√
3ξ1

(a)

ζ1

ζ2

(ξ1, ξ2)

ξ1 ≤ 0

l1

l2

ξ2 ≥ −
√
3ξ1

(b)

Figure 5: Schematic of problem (17). “Solid thick lines” Contours of cl∥ζ1v1+ ζ2v2∥1 (each
contour forms a regular hexagon); and “dashed thick lines” contours of 1

2
∥ζ − ξ∥22. The

optimal solution exists on the union of two line segments, l1 ∪ l2, indicated by dotted lines.
(a) −ξ1 ≤

√
3ξ2 ≤ −3ξ1; and (b) 0 ≤ −

√
3ξ1 ≤ ξ2
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namely,

argmin{θ(ζ) | ζ ∈ l2} =

{
l1 ∩ l2 if 2

√
2cl ≥ −3ξ1 −

√
3ξ2,

(ξ1 +
√
2cl, ξ2 −

√
2/3cl) if 2

√
2cl ≤ −3ξ1 −

√
3ξ2.

(23)

From (22) and (23), we obtain

(ζ∗1 , ζ
∗
2 ) =


(0, 0) if 2

√
2cl ≥ −ξ1 +

√
3ξ2,

(ξ1 +
√
2cl, ξ2 −

√
2/3cl) if 2

√
2cl ≤ −3ξ1 −

√
3ξ2,

1

4
(ξ1 −

√
3ξ2 + 2

√
2cl,−

√
3ξ1 + 3ξ2 − 2

√
6cl) otherwise.

(24)

We next investigate the case in Figure 5b, i.e., 0 ≤ −
√
3ξ1 ≤ ξ2. The dotted line

segments in Figure 5b are written as

l1 =
{
(ζ1, ζ2)

∣∣ √3ζ1 + ζ2 = 0, ζ1 ∈ [ξ1, 0]
}
,

l2 =
{
(ζ1, ζ2)

∣∣ ζ1 = ξ1, ζ2 ∈
[
−
√
3ξ1, ξ2

]}
.

If ζ ∈ l1, then the objective function is reduced to (21), which yields

argmin{θ(ζ) | ζ ∈ l1}

=


(0, 0) if

1

4
(ξ1 −

√
3ξ2 + 2

√
2cl) ≥ 0,

l1 ∩ l2 if
1

4
(ξ1 −

√
3ξ2 + 2

√
2cl) ≤ ξ1,

1

4
(ξ1 −

√
3ξ2 + 2

√
2cl,−

√
3ξ1 + 3ξ2 − 2

√
6cl) otherwise,

namely,

argmin{θ(ζ) | ζ ∈ l1}

=


(0, 0) if 2

√
2cl ≥ −ξ1 +

√
3ξ2,

l1 ∩ l2 if 2
√
2cl ≤ 3ξ1 +

√
3ξ2,

1

4
(ξ1 −

√
3ξ2 + 2

√
2cl,−

√
3ξ1 + 3ξ2 − 2

√
6cl) otherwise.

(25)

Alternatively, if ζ ∈ l2, then the objective function is reduced to

θ(ζ1(ζ2), ζ2) =
1

2
ζ22 − (ξ2 − 2

√
2/3cl)ζ2 +

1

2
ξ22 .

A direct calculation yields

argmin{θ(ζ) | ζ ∈ l2} =

{
l1 ∩ l2 if ξ2 − 2

√
2/3cl ≤ −

√
3ξ1,

(ξ1, ξ2 − 2
√

2/3cl) if ξ2 − 2
√
2/3cl ≥ −

√
3ξ1,

namely,

argmin{θ(ζ) | ζ ∈ l2} =

{
l1 ∩ l2 if 2

√
2cl ≥ 3ξ1 +

√
3ξ2,

(ξ1, ξ2 − 2
√

2/3cl) if 2
√
2cl ≤ 3ξ1 +

√
3ξ2.

(26)
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From (25) and (26), we obtain

(ζ∗1 , ζ
∗
2 ) =


(0, 0) if 2

√
2cl ≥ −ξ1 +

√
3ξ2,

(ξ1, ξ2 − 2
√

2/3cl) if 2
√
2cl ≤ 3ξ1 +

√
3ξ2,

1

4
(ξ1 −

√
3ξ2 + 2

√
2cl,−

√
3ξ1 + 3ξ2 − 2

√
6cl) otherwise.

(27)

Thus, the optimal solution is obtained as (24) and (27).
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