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Abstract The present note is a strengthening of a recent paper by K. Takazawa and Y. Yokoi (A
generalized-polymatroid approach to disjoint common independent sets in two matroids, Discrete Math-
ematics (2019)). For given two matroids on E, under the same assumption in their paper to guarantee the
existence of a partition of E into k common independent sets of the two matroids, we show that there exists
a nearly uniform partition P of E into k common independent sets, where the difference of the cardinalities
of any two sets in P is at most one.
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1. Introduction

K. Takazawa and Y. Yokoi [8] have very recently shown a new approach to the problem
of partitioning the common ground set of two matroids into common independent sets by
means of generalized polymatroids. They successfully give a unifying view on some results
of J. Davies and C. McDiarmid [1] and D. Kotlar and R. Ziv [5] and extend them by the
generalized-polymatroid approach.

A partition P of a finite nonempty set E is said to be nearly uniform if the cardinality
difference of every pair of sets in P is at most one. Researchers’ attention has been drawn
to the existence of a nearly uniform partition of the ground set of a combinatorial system
into disjoint objects of the system such as branchings ([7, Sec. 53.6]) and matchings ([1, 4]).
In the present note we show that the generalized-polymatroid approach in [8] reveals the
existence of a nearly uniform partition P of E into common independent sets of two matroids
under the same assumption in [8].

In Section 2 we describe the result of Takazawa and Yokoi [8] in a general form, which
is basically a dynamic programming formulation. Then, in Section 3, under the same
assumption in the paper [8] to guarantee the existence of a partition of E into k common
independent sets of the two matroids, we show that there exists a nearly uniform partition
P of E into k common independent sets. Section 4 gives some concluding remarks.

2. The Generalized-Polymatroid Approach of Takazawa and Yokoi

We follow the definitions and notation given in [8] (and in our Appendix). A brief survey
about fundamental facts about matroids, polymatroids, generalized polymatroids, and sub-
modular/supermodular functions is given in the appendix for readers’ convenience. Also see
[2, 3, 6, 7, 9].

Let E be a nonempty finite set. For each i = 1, 2 let Mi = (E, Ii) be a matroid on
E with Ii ⊆ 2E being a family of independent sets. For a given positive integer k ≥ 2 let
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Mk
i = (E, Iki ) be the union matroid of k copies of Mi for each i = 1, 2, and we assume that

E ∈ Ik1 ∩ Ik2 .
Now, consider the problem of partitioning the ground set E of the two matroids Mi

(i = 1, 2) into k common independent sets as follows:

(P): Find a partition P = {X1, · · · , Xk} of E into k disjoint subsets Xj ⊆ E (j = 1, · · · , k)
such that Xj ∈ I1 ∩ I2 for all j = 1, · · · , k.

Here we allow an empty component Xj = ∅ ∈ I1 ∩ I2, just by technical reason for the
arguments in the sequel. (It should be noted that if we can partition E into k possibly empty
common independent sets, then we can partition E into k nonempty common independent
sets when k ≤ |E|.)

Let ρ be the rank function of M = (E, I), Ik the union matroid Mk of k copies of M =
(E, I), ρk the rank function of the union matroid Mk = (E, Ik), ρ# the dual supermodular
function of ρ, P(ρ) the submodular polyhedron associated with submodular ρ, and P(ρ#)
the supermodular polyhedron associated with supermodular ρ# (see Appendix). Also for
any family F of subsets of E denote by Conv(F) the convex hull of characteristic vectors
χX ∈ RE for all X ∈ F .
Theorem 2.1 ([8]). Let M = (E, I) be a matroid with E ∈ Ik. Define

F = {X | X ∈ I, E \X can be partitioned into k − 1 sets in I}. (2.1)

Then we have
Conv(F) = P(ρ) ∩ P((ρk−1)#) ⊆ [0, 1]E. (2.2)

Remark 1. Note that E \X can be partitioned into k − 1 sets in I if and only if X is a
co-spanning set of the union matroid Mk−1 = (E, Ik−1) (see Appendix). In Theorem 2.1
the right-hand side of (2.2) is the intersection of the submodular polyhedron P(ρ) and the
supermodular polyhedron P((ρk−1)#), which is nonempty by the assumption that E ∈ Ik
(implying ( 1

k
, · · · , 1

k
) ∈ P(ρ) ∩ P((ρk−1)#)) and is integral.

Hence a set X ∈ F can be found efficiently and we can further apply this process for
k ← k − 1, E ← E \ X and M ← ME (the restriction of M on the updated E). We can
repeat this process to obtain a partition {X1, · · · , Xk} of E into k independent sets Xj ∈ I
(j = 1, · · · , k). Although we have more direct and efficient algorithms to find a partition
{X1, · · · , Xk} of E into independent sets Xj ∈ I (j = 1, · · · , k), Theorem 2.1 gives a basis
for the generalized-polymatroid approach to Problem (P) of Takazawa and Yokoi [8].

Now we have the following theorem, based on Theorem 2.1.
Theorem 2.2 ([8]). Consider two matroids Mi (i = 1, 2) such that E ∈ Ik1 ∩ Ik2 . Let
ℓ ∈ {0, 1, · · · , k − 1} and let {X1, · · · , Xℓ} be a set of disjoint ℓ common independent sets
of Mi (i = 1, 2).∗ Putting F = E \

∪ℓ
j=1Xj, define for each i = 1, 2

F ℓ
i (F ) = {X ⊆ F | X ∈ Ii, F \X can be partitioned into k − ℓ− 1 sets in Ii}. (2.3)

Then we have

Conv(F ℓ
1(F ) ∩ F ℓ

2(F )) ⊆ P(ρF1 ) ∩ P(((ρF1 )
k−ℓ−1)#) ∩ P(ρF2 ) ∩ P(((ρF2 )

k−ℓ−1)#), (2.4)

where ρFi is the rank function of the restriction of Mi on F .
If the intersection of the four polyhedra on the right-hand side of (2.4) contains an integral

point, i.e., a characteristic vector χX∗ of some X∗ ⊆ F , then we have X∗ ∈ F ℓ
1(F )∩F ℓ

2(F ).

∗When ℓ = 0, regard {X1, · · · , Xℓ} as an empty family and
∪ℓ

j=1 Xj = ∅.
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In particular, if the intersection of the four polyhedra on the right-hand side of (2.4) is
integral, then the inclusion relation (2.4) holds with equality and there exists a set X ∈
F ℓ

1(F ) ∩ F ℓ
2(F ).

Remark 2. Note that P(ρF1 )∩P(((ρF1 )k−ℓ−1)#) and P(ρF2 )∩P(((ρF2 )k−ℓ−1)#) are integral for
any matroids Mi (i = 1, 2), due to Theorem 2.1, but their intersection does not necessarily
contain an integral point. Since by the assumption that E ∈ Ik1 ∩ Ik2 the vector ( 1

k
, · · · , 1

k
)

belongs to the intersection of the four polyhedra in (2.4) for ℓ = 0, if the intersection of
the four polyhedra is integral (or more generally contains an integral point), there exists
a set X1 ∈ F0

1 (F ) ∩ F0
2 (F ). Then for F = E \ X1 we can apply the same arguments to

find X2 ∈ F1
1 (F ) ∩ F1

2 (F ), and repeatedly carry out this process to find a desired partition
{X1, · · · , Xk} into common independent sets. Also see the proof of Theorem 3.1.

Remark 3. Takazawa and Yokoi [8] considered the case when the intersection of the first two
polyhedra in (2.4) is a generalized polymatroid and so is that of the last two. They showed
that such matroids are given by laminar matroids (special gammoids) and the matroids
without (k + 1)-spanned elements considered by Kotlar and Ziv [5]. Since the nonempty
intersection of two integral generalized polymatroids is integral, they thus showed that every
pair of matroids from among laminar matroids and the matroids without (k + 1)-spanned
elements considered by Kotlar and Ziv [5] satisfies the assumptions of Theorem 2.2, for
which our problem (P) is efficiently solvable.

3. Nearly Uniform Partitions

Let us further examine the generalized-polymatroid approach of Takazawa and Yokoi given
by Theorems 2.1 and 2.2 for the problem of partitioning two matroids into common inde-
pendent sets.

Theorem 3.1. Let Mi = (E, Ii) (i = 1, 2) be matroids and k be a positive integer such that
E ∈ Ik1 ∩ Ik2 . If every P(ρFi ) ∩ P(((ρFi )

k−ℓ−1)#) for i = 1, 2 appearing in (2.4) in Theorem
2.2 is an integral generalized polymatroid, then there exists a nearly uniform partition of E
into k common independent sets of Mi = (E, Ii) (i = 1, 2).

Proof. Put λ = |E|/k and define λ+ = ⌈λ⌉ and λ− = ⌊λ⌋. It follows from Theorem 2.2 and
the assumptions of the present theorem that if we find Xj for j = 1, · · · , ℓ by the procedure
described in Remark 1, then for each i = 1, 2 the polyhedron given by

P(ρFi ) ∩ P(((ρFi )
k−ℓ−1)#) ∩ {x ∈ RF | λ− ≤ x(F ) ≤ λ+} (3.1)

is an integral generalized polymatroid (due to Fact 3 in Appendix and the fact that the
intersection of two integral generalized polyhedra is intregral) and contains the uniform
vector ( 1

k−ℓ
, · · · , 1

k−ℓ
) in RF and hence there exists a set X ∈ F ℓ

1(F ) ∩ F ℓ
2(F ) with λ− ≤

|X| ≤ λ+.† Hence there exists a partition {X1, · · · , Xk} of E into common independent sets
of Mi (i = 1, 2) such that λ− ≤ |Xj| ≤ λ+ for all j = 1, · · · , k.

Remark 4. Since laminar matroids and the matroids considered in [5] satisfy the assump-
tions required in Theorem 3.1 as shown by Takazawa and Yokoi [8], for every pair of such
matroids Mi = (E, Ii) (i = 1, 2) with E ∈ Ik1 ∩ Ik2 there exists a nearly uniform partition
of E into k common independent sets.

†Note that we have initially λ− ≤ |E|/k ≤ λ+ and hence λ− ≤ |X1| ≤ λ+, and then we have λ− ≤
(|E| − |X1|)/(k− 1) ≤ λ+. So we can show by induction that for F in (2.4) we have λ− ≤ |F |/(k− ℓ) ≤ λ+

for ℓ = 0, 1, · · · , k − 1.
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Remark 5. Theorem 3.1 can be given in a more general form as described in Theorem 2.2.
That is, it suffices to impose that the intersection of the four polyhedra in (2.4) and {x ∈
RF | λ− ≤ x(F ) ≤ λ+} with λ− = ⌊|E|/k⌋ and λ+ = ⌈|E|/k⌉ contains an integral point.

For general matroids Mi = (E, Ii) (i = 1, 2) we also have the following. Define for each
i = 1, 2

µ∗
i = min{µ ∈ Z>0 | E ∈ Iµi }, (3.2)

which is the covering index for matroid Mi = (E, Ii) (i = 1, 2). A subpartition of E is a set
of disjoint subsets of E.

Theorem 3.2. Let Mi = (E, Ii) (i = 1, 2) be arbitrary matroids and k be a positive integer
such that E ∈ Ik1 ∩ Ik2 . Suppose that µ∗

1 ≤ µ∗
2 < k. Then there exists a nearly uniform

subpartition {X1, · · · , Xk−µ∗
2−1} of E such that

• Xℓ ∈ I1 ∩ I2 for ℓ = 1, · · · , k − µ∗
2 − 1,

• E \ (X1 ∪ · · · ∪Xk−µ∗
2−1) ∈ I

µ∗
2+1

1 ∩ Iµ
∗
2+1

2 .

Proof. For ℓ = 1, · · · , k − µ∗
2 − 1, under the assumption of the present theorem, for each

i = 1, 2 we have ∅ ∈ F ℓ
i (F ) in (2.3), so that F ℓ

i (F ) is actually Ii. Hence the argument
in the proof of Theorem 2.2 can be adapted for obtaining a nearly uniform subpartition
{X1, · · · , Xk−µ∗

2−1} of E satisfying the conditions of the present theorem.

Similarly we can show the following, a corollary of Theorem 2.1, which may be folklore.

Corollary 3.1. For an arbitrary matroid M = (E, I) with E ∈ Ik there exists a nearly
uniform partition of E into k independent sets of M.

It should be noted that Corollary 3.1 holds for any general matroid M = (E, I) with
E ∈ Ik, but for two matroids Mi = (E, Ii) (i = 1, 2) with E ∈ Ik1 ∩ Ik2 we need addi-
tional conditions to guarantee the existence of a nearly uniform partition of E into common
independent sets, in general, such as those given in Theorem 3.1.

4. Concluding Remarks

We have shown that under the same assumption in [8] that makes the generalized-polymatroid
approach of Takazawa and Yokoi work, there also exists a nearly uniform partition into com-
mon independent sets.

It is interesting to identify the class of pairs of matroids for which every intersection of
the four polyhedra in (2.4) is integral and computationally tractable, which is left open.
Besides the way of using generalized polymatroids in [8] there may be the case when the
intersection of the first and the fourth polyhedra in (2.4) is a generalized polymatroid and
so is the intersection of the second and the third.
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A. Fundamental Facts about Matroids and Submodular Functions

We briefly give some definitions and fundamental facts about matroids, polymatroids, gen-
eralized polymatroids, and submodular/supermodular functions from a polyhedral point of
views, which are used in the present paper. For general information relevant to the subject
of this paper see [2, 3, 6, 7, 9] (the notations used here mostly follow [3]).

Let E be a nonempty finite set and M = (E, I) be a matroid on E with a family of
independent sets (we omit the axioms for independent sets). A maximal independent set is
called a base. A set X ⊆ E is called a spanning set of M if there exists a base B of M such
that B ⊆ X. A set function ρ : 2E → Z≥0 defined by

ρ(X) = max{|Y | | Y ⊆ X, Y ∈ I} (A.1)

is called the rank function of M. The rank function ρ satisfies the submodularity inequalities

ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ) (∀X,Y ⊆ E). (A.2)

Matroid M is uniquely determined by each of the family of independent sets, the family of
bases, the family of spanning sets, and the rank function, associated with M. The family
of complements E \ B of all bases B of M is the family of bases of a matroid on E, which
is called the dual matroid of M is denoted by M∗. For the rank function ρ of M we denote
the rank function of the dual matroid M∗ by ρ∗. The dual rank function ρ∗ is given by

ρ∗(X) = |X| − ρ(E) + ρ(E \X) (∀X ⊆ E). (A.3)

Any set function f : 2E → R is called a submodular function if it satisfies the submodu-
larity inequalities (A.2) with ρ being replaced by f . The negative of a submodular function
is called a supermodular function. Given a submodular function f : 2E → R with f(∅) = 0,
the submodular polyhedron associated with f is defined by

P(f) = {x ∈ RE | ∀X ⊆ E : x(X) ≤ f(X)}, (A.4)

where x(X) =
∑

e∈X x(e). (When P(f) ∩ RE
≥0 ̸= ∅, it is called a polymatroid and there

uniquely exists a monotone nondecreasing submodular function f ′ such that P(f) ∩ RE
≥0 =

P(f ′) ∩ RE
≥0.) Also the base polyhedron associated with f is defined by

B(f) = {x ∈ P(f) | x(E) = f(E)}. (A.5)

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



76 S. Fujishige, K. Takazawa & Y. Yokoi

In a dual manner, given a supermodular function g : 2E → R with g(∅) = 0, the supermod-
ular polyhedron associated with g is defined by

P(g) = {x ∈ RE | ∀X ⊆ E : x(X) ≥ g(X)} (A.6)

and the associated base polyhedron by

B(g) = {x ∈ P(g) | x(E) = g(E)}. (A.7)

For a submodular function f : 2E → R with f(∅) = 0 the dual supermodular function
f# : 2E → R is defined by

f#(X) = f(E)− f(E \X) (∀X ⊆ E). (A.8)

We have B(f) = B(f#). Note that (f#)# = f .
For a submodular function f : 2E → R and a supermodular function g : 2E → R with

f(∅) = g(∅) = 0, if we have

f(X)− g(Y ) ≥ f(X \ Y )− g(Y \X) (∀X,Y ⊆ E), (A.9)

then the polyhedron Q(f, g) ≡ P(f) ∩ P(g) is called a generalized polymatroid. Every
polymatroid is a generalized polymatroid.

When f and g are integer-valued, all the polyhedra P(f), P(g), B(f), and Q(f, g) are
integral. Moreover, given another integer-valued submodular f ′ and supermodular g′, the
intersections P(f) ∩ P(f ′), P(g) ∩ P(g′), B(f) ∩ B(f ′), and Q(f, g) ∩Q(f ′, g′), if nonempty,
are integral polyhedra.

For any generalized polymatroid Q(f, g), letting ê be a new element and putting Ê =
E ∪ {ê}, for an arbitrary t ∈ R define f̂ : Ê → R by f̂(Ê) = t and

f̂(X) =

{
f(X) if ê /∈ X

g(Ê \X) if ê ∈ X
(∀X ⊂ Ê). (A.10)

Then f̂ is a submodular function and the projection of the base polyhedron B(f̂) ⊂ RÊ

along the axis ê into the coordinate subspace RE is a generalized polymatroid Q(f, g).
Every generalized polymatroid is obtained in this way and vice versa. This is an isomorphic
correspondence.

For a submodular function f , a supermodular function g, and vectors l ∈ (R∪ {−∞})E
and u ∈ (R ∪ {+∞})E with l(e) ≤ u(e) for all e ∈ E we have the following three facts:

Fact 1. P(f)u ≡ {x ∈ P(f) | x ≤ u} is a submodular polyhedron.
Fact 2. P(g)l ≡ {x ∈ P(g) | x ≥ l} is a supermodular polyhedron.
Fact 3. B(f)ul ≡ {x ∈ B(f) | l ≤ x ≤ u}, if nonempty, is a base polyhedron. (In partic-

ular, this implies that for a generalized polymatroid Q(f, g) and α, β ∈ R with α ≤ β,
Q(f, g)βα ≡ {x ∈ Q(f, g) | α ≤ x(E) ≤ β}, if nonempty, is a generalized polymatroid, due
to the isomorphic correspondence between base polyhedra and generalized polymatroids.)

These polyhedra are integral if f and g are integer-valued and if finite l(e)s and u(e)s are
integers.

For any family F of subsets of E denote by Conv(F) the convex hull of characteristic
vectors χX ∈ RE for all X ∈ F , where χX(e) = 1 if e ∈ X and = 0 if e ∈ E \X.

Let M = (E, I) be a matroid with a rank function ρ. Then we have

Conv(I) = P(ρ) ∩ [0, 1]E, (A.11)
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which is called a matroid polytope and denoted by P(+)(ρ). Let S be the set of spanning
sets of M. Then,

Conv(S) = P(ρ#) ∩ [0, 1]E, (A.12)

where ρ# is the dual supermodular function of ρ. Define Ī = {E \X | X ∈ I}, which is the
family of co-spanning sets of M, i.e., the family of spanning sets of the dual matroid M∗.
Then we have

Conv(Ī) = P((ρ∗)#) ∩ [0, 1]E, (A.13)

where ρ∗ is the rank function of the dual matroid M∗. It follows from (A.3) and (A.8) that

(ρ∗)#(X) = |X| − ρ(X) (∀X ⊆ E). (A.14)

Finally, for any positive integer k define

Ik = {X1 ∪ · · · ∪Xk | ∀j ∈ {1, · · · , k} : Xj ∈ I}, (A.15)

where note that imposing the condition that Xj ∈ I (j = 1, · · · , k) are disjoint gives the
same Ik. The pair (E, Ik) is a matroid, called a union matroid of k copies of M, which we
denote by Mk. The rank function ρk of Mk is given by

ρk(X) = min{|E \X|+ kρ(X) | X ⊆ E}. (A.16)

Kenjiro Takazawa
Hosei University
3-7-2, Kajino-cho, Koganei-shi
Tokyo 184-8584, Japan
E-mail: takazawa@hosei.ac.jp

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.


