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Abstract The clustered traveling salesman problem (CTSP) is a generalization of the trav-
eling salesman problem (TSP) in which the set of cities is divided into clusters and the
salesman must consecutively visit the cities of each cluster. It is well known that TSP
is NP-hard, and hence CTSP is NP-hard as well. Guttmann-Beck et al. (2000) designed
approximation algorithms for several variants of CTSP by decomposing it into subprob-
lems including the traveling salesman path problem (TSPP). In this paper, we improve
approximation ratios by applying a recent improved approximation algorithm for TSPP by
Zenklusen (2019).
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1. Introduction

Let G = (V,E) be a complete undirected graph with vertex set V and edge set E associ-
ated with edge weights w(e) (e ∈ E) satisfying the triangle inequality. Let V be divided
into clusters V1, . . . , Vk. The clustered traveling salesman problem (CTSP) is a problem of
computing a shortest Hamilton cycle which visits the vertices of each cluster consecutively.
The traveling salesman problem (TSP) can be viewed as a special case of CTSP where there
is only one cluster V1 = V or each Vi consists of only one vertex.

Guttmann-Beck et al. [6] presented approximation algorithms for the following variants
of CTSP:

(1) The starting and ending vertices in each cluster are given.
(2) The two ending vertices in each cluster are given. We are free to choose any one as the

starting vertex and the other one as the ending vertex.
(3) Only the starting vertex in each cluster is given.
(4) No specific starting and ending vertices in each cluster are given.

Since all the variants are generalizations of TSP, they are all NP-hard. Table 1 shows
approximation ratios for these variants by Guttmann-Beck et al. [6]. Their algorithms use
previously known approximation algorithms to the following three closely related problems:
the traveling salesman path problem (TSPP), the stacker crane problem (SCP), and the rural
postman problem (RPP), which will be described in Section 2. In particular, Hoogeveen’s
5/3-approximation algorithm for TSPP plays a key role in their algorithms.

The aim of this paper is to improve the approximation ratios for CTSP by incorporating
a recent approximation algorithm for TSPP with improved approximation ratio 1.5 by
Zenklusen [11]. We show that this improvement for TSPP improves the approximation
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Table 1: Approximation ratios by Guttmann-Beck et al. [6]

Variant Ratio

(1) Start and end vertices are given 1.9091
(2) Two end vertices are given 1.8
(3) Only starting vertex is given 2.643
(4) End vertices are not specified 2.75

ratios for Variant (1), (2), and (4), while it does not directly improves that for Variant (3).
Table 2 shows the approximation ratios obtained in this paper.

Table 2: Approximation ratios obtained in this paper

Variant Ratio

(1) Start and end vertices are given 1.875
(2) Two end vertices are given 1.714
(3) Only starting vertex is given 2.643 (Unchanged)
(4) End vertices are not specified 2.67

Bao et al. [1] recently improved the approximation ratios for variant (3) and (4). The
approximation ratio for variant (3) is 1.9 and that for variant (4) is 2.5. We remark that,
while they use Hoogeveen’s 5/3-approximation algorithm for TSPP, applying Zenklusen’s
algorithm does not directly result in the improvement of the approximation ratio for variant
(3) and (4).

The rest of the paper is organized as follows. In Section 2 we review approximation
algorithms for TSP, TSPP, SCP, and RPP. Section 3 describes the approximation algo-
rithms for CTSP by Guttmann-Beck et al. [6]. In Section 4, we improve the approximation
ratios for CTSP by incorporating Zenklusen’s approximation algorithm for TSPP. Section
5 concludes this paper.

2. Preliminaries

In this section, after describing some definitions and notation, we review TSP, TSPP, SCP,
and RPP together with previous approximation algorithms for those problems. For a graph
G = (V,E), we denote by w(e) the weight of an edge e ∈ E. For a subset E ′ ⊆ E, we denote
w(E ′) =

∑
e∈E′ w(e), the total weight of the edges in E ′. Let OPT denote both an optimal

solution of the problem under consideration and its total weight, and MST(G) denote both
a minimum-weight spanning tree of G and its weight. In this paper, we always assume that
the edge weights satisfy the triangle inequality for a complete graph G, i.e.,

w(a, b) + w(b, c) ≥ w(a, c) (a, b, c ∈ V ).

2.1. The Traveling Salesman Problem

Let G = (V,E) be a complete undirected graph with edge weights w(e) (e ∈ E). The
traveling salesman problem (TSP) is a problem of computing a Hamitlon cycle of minimum
weight. The algorithm by Christofides [2] attains the current best approximation ratio 1.5.

2.2. The Traveling Salesman Path Problem

Let G = (V,E) be a complete undirected graph with edge weights w(e) (e ∈ E). The
traveling salesman path problem (TSPP) is a problem of computing a Hamilton path of
minimum weight. Hoogeveen [7] considered the following three variants of TSPP:
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1. Both end vertices are given.
2. Only one of the end vertices is given.
3. No end vertices are given.

Hoogeveen designed approximation algorithms for these three variants of TSPP. The
approximation ratio for Variant 1 is 5/3 and that for Variants 2 and 3 is 1.5. Guttmann-
Beck et al. [6] modified the algorithm for Variant 1 so that it can be applied to CTSP, while
maintaining the approximation ratio.
Theorem 2.1 ([6]). For TSPP in G = (V,E) with two end vertices s, t ∈ V given, there
exists a polynomial algorithm that finds Hamilton paths S1 and S2 between s and t satisfying
the following inequations:

w(S1) ≤ 2OPT− w(s, t),

w(S2) ≤
3

2
OPT +

1

2
w(s, t).

It is straightforward to see that the length of the shorter of the paths S1 and S2 is at
most 5OPT/3: it holds that w(S1) ≤ 5OPT/3 if w(s, t) ≥ OPT/3, and w(S2) ≤ 5OPT/3
otherwise.

Recently, Zenklusen [11] devised a new algorithm for Variant 1 of TSPP with an improved
approximation ratio 1.5. By combining the algorithms by Guttmann-Beck et al. [6] and
Zenklusen [11], we can straightforwardly obtain the following.
Lemma 2.1. For TSPP in G = (V,E) with two end vertices s, t ∈ V given, there exists
a polynomial algorithm that finds Hamilton paths S1 and S2 between s and t satisfying the
following inequations:

w(S1) ≤ 2OPT− w(s, t),

w(S2) ≤
3

2
OPT.

2.3. The Stacker Crane Problem

Let G = (V,E,D) be a mixed multigraph with undirected edge set E and directed set D.
The undirected graph (V,E) is a complete graph with edge weights w(e) (e ∈ E) satisfying
the triangle inequality. Each vertex is either the head si or the tail ti of exactly one directed
edge in D. A directed edge is often called an arc or a special arc. The stacker crane problem
(SCP) is a problem of computing a Hamilton cycle of minimum weight that traverses each
arc (si, ti) in the specified direction from si to ti. The arc (si, ti) represents that an object
at vertex si must be moved to vertex ti using a vehicle called stacker crane.

Since TSP can be reduced SCP by replacing each vertex by an arc of zero-weight, SCP
is a generalization of TSP and hence NP-hard. Frederickson et al. [5] designed a 1.8-
approximation algorithm for SCP. It finds two different solutions and then chooses the
better of the two solutions. We briefly review the basic ideas in the two algorithms and
name the whole algorithm Algorithm SCP. Let U =

∑
i w(si, ti) and A = OPT− U .

• Algorithm SmallArcs: Shrink each arc to obtain a vertex, execute Christofides’ algorithm
and then adjoin the shrunk arcs to obtain a solution for the original problem.

• Algorithm LargeArcs: Find a minimum-weight bipartite matching between the heads
and tails and add the set of directed egdes to obtain a directed cycle cover. We shrink
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the resulting cycles to obtain vertices, and find a minimum-weight spanning tree for the
vertices. We add two copies of each edge, and orient the copies in opposite directions.
The resulting graph is an Eulerian tour. Finally, we make it into a Hamilton cycle by
shortcutting vertices visited more than once.

If U is small compared to OPT, then the problem is close to TSP and Algorithm SmallArcs
finds a good solution, while Algorithm LargeArcs works well if U is large. The weight of
the solutions can be bounded as follows.

Theorem 2.2 ([5]). Algorithm SmallArcs finds a solution to SCP with weight at most
3A/2 + 2U , and Algorithm LargeArcs finds a solution to SCP with weight at most 3A+ U .

2.4. The Rural Postman Problem

Let G = (V,E) be a complete undirected graph, and E ′ ⊆ E be a specified subset of edges.
The rural postman problem (RPP) is a problem of computing a Hamilton cycle of minimum
weight that traverses all the edges in E ′. RPP is NP-hard, and Frederickson [4] designed a
1.5-approximation algorithm for RPP. (See also Eiselt et al. [3] and Jansen [8].) It finds two
different solutions in the following manner and then choose the better of the two solutions.
We name the whole algorithm Algorithm RPP.

• Algorithm SmallEdges: This Algorithm is an adaptation of Algorithm SmallArcs, where
D is replaced with E ′. It becomes greatly simplified when applied to RPP and turns out
to be a straightforward generalization of Christofides’ algorithm for TSP.

• Algorithm LargeEdges: This algorithm is similar to Algorithm LargeArcs for SCP. The
difference is that D is a set of undirected edges.

Similarly as Theorem 2.2, the following theorem is established.

Theorem 2.3 ([4]). Algorithm SmallEdges finds a solution to RPP with weight at most
3(A+U)/2, and Algorithm LargeEdges finds a solution to RPP with weight at most 3A+U .

3. Previous Approximation Algorithms for CTSP

In this section, we describe the approximation algorithms for CTSP by Guttmann-Beck et
al. [6]. Recall that CTSP is a problem of computing a shortest Hamilton cycle which visits
the vertices of each cluster consecutively.

3.1. Start and end vertices are given

In this subsection, we describe the approximation algorithm for Variant (1) of CTSP: the
starting vertex si and ending vertex ti are given for each cluster Vi (i = 1, . . . , k). The
algorithm by Guttmann-Beck et al. [6] is based on the following idea. We divide the problem
into two parts. Firstly, we find a Hamilton path Pi between si and ti in each cluster Vi.
Next, we connect the paths P1, . . . , Pk to obtain a Hamilton cycle in the following manner.
We replace each cluster Vi by a special arc from si to ti to obtain an instance of SCP. We
then find a solution to the instance of SCP, and replace each arc (si, ti) by Pi. The algorithm
is summarized as follows.

Algorithm 1
Step 1: For each cluster Vi (i = 1, . . . , k), compute a Hamilton path Pi with starting and
ending vertices si and ti.
Step 2: Apply Algorithm SCP to the graph with special arcs {(si, ti) | i = 1, . . . , k} to
obtain Hamilton cycle T .
Step 3: In T , replace the special arc (si, ti) by Pi for each i = 1, . . . , k, and return the
resulting Hamilton cycle.
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Figure 1 illustrates an example. By using Lemma 2.1 and Theorem 2.2, Guttmann-Beck
et al. [6] proved that Algorithm 1 yields 21/11-approximation.

Theorem 3.1 ([6]). The approximation ratio of Algorithm 1 is 21/11 ≈ 1.9091.

Initial state Step 1

Step 2 Step 3

Figure 1: Illustration of Algorithm 1.

3.2. Two end vertices are given

In this subsection, we consider Variant (2) of CTSP: for each cluster Vi (i = 1, . . . , k), we are
given two specified vertices s1i and s2i . We are free to choose any one of them as the starting
vertex and the other vertex as the ending vertex. We modify Algorithm 1 by applying
Algorithm RPP instead of Algorithm SCP, since each Pi can be oriented in any direction.
The algorithm is summarized as follows.

Algorithm 2.
Step 1: For each cluster Vi (i = 1, . . . , k), compute a Hamilton path Pi with ending vertices
s1i and s2i .
Step 2: Apply Algorithm RPP to the graph with the special edges {(s1i , s2i ) | i = 1, . . . , k}
to obtain Hamilton cycle T .
Step 3: In T , replace the special edge (s1i , s

2
i ) by Pi for each i = 1, . . . , k, and return the

resulting Hamilton cycle.

Figure 2 illustrates an example. By using Lemma 2.1 and Theorem 2.3, Guttmann-Beck
et al. [6] proved that Algorithm 2 yields 1.8-approximation.

Theorem 3.2 ([6]). The approximation ratio of Algorithm 2 is 1.8.

3.3. End vertices are not specified

In this subsection, we consider Variant (4) of CTSP: we are free to choose the starting and
ending vertices in the clusters. The approximation algorithm in [6] executes two different
heuristic algorithms, and select the shorter of the obtained Hamilton cycles. The first
algorithm is as follows. We apply a TSPP algorithm with unspecified ends to obtain a
Hamilton path Pi in each cluster Vi (i = 1, . . . , k). We then define the edges between the
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Initial state Step 1

Step 2 Step 3

Figure 2: Illustration of Algorithm 2.

ends of each Pi as special edges for an RPP instance, and compute an approximate RPP
solution of this instance. We finally replace each special edge by the corresponding path Pi.

The second algorithm is as follows. In each cluster Vi (i = 1, . . . , k), choose two vertices si
and ti that maximize w(si, ti) to be the end vertices in the cluster, and then apply Algorithm
2 (Section 3.2). The whole algorithm is summarized as follows.

Algorithm 3.
Step 1:

(a) Apply a TSPP algorithm with unspecified ending vertices to each Vi (i = 1, . . . , k). Let
Pi (i = 1, . . . , k) be the resulting path on Vi, and denote its ending vertices by ai and
bi.

(b) Apply Algorithm RPP with special edges (ai, bi) (i = 1, . . . , k).
(c) Let Th be a Hamilton cycle obtained by replacing the special edge (ai, bi) by Pi, for each

i = 1, . . . , k.

Step 2: In each cluster Vi, find vertices si and ti that maximize w(si, ti). Apply Algorithm
2 with ending vertices si and ti, and let Tl be the obtained Hamilton cycle.
Step 3: Return the shorter of the Hamilton cycles Th and Tl.

Figure 3 illustrates an example of the first algorithm. Guttmann-Beck et al. [6] proved
that Algorithm 3 yields 2.75-approximation.

Theorem 3.3 ([6]). The approximation ratio of Algorithm 3 is 2.75.

4. Improving the Approximation Ratios for CTSP

In this section, we improve the approximation algorithm for CTSP [6] by incorporating the
approximation algorithm for TSPP by Zenklusen [11]. Recall that Zenklusen [11] devised a
new algorithm for the Variant 1 of TSPP with an improved approximation ratio 1.5, while
the previous approximation algorithms for CTSP [6] apply 5/3-approximation algorithm for
this variant of TSPP [7].
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Initial state Step 1-(a)

Step 1-(b) Step 1-(c)

Figure 3: Illustration of Step 1 in Algorithm 3

4.1. Start and end vertices are given

In this subsection, we analyze the approximation ratio of the algorithm obtained by incor-
porating the algorithm for TSPP by Zenklusen [11] in Algorithm 1 (Section 3.1). We name
the algorithm Algorithm A.

Theorem 4.1. Let Tm be the Hamilton cycle returned by Algorithm A. Then,

w(Tm) ≤
15

8
OPT.

Proof. The algorithm consists of solving two subproblems of TSPP with given ending ver-
tices and SCP. We introduce some notation to analyze the algorithm. Let W be the sum
of the weights of the edges of OPT within each cluster Vi. Let A be the sum of the weight
of edges of OPT that connect vertices of two different clusters. By definition, we have OPT
= A +W . Let U be the total weight of arcs (si, ti) for i = 1, . . . , k. Let w(P ) be the total
weights of Pi for i = 1, . . . , k. It follows from Lemma 2.1 that

w(P ) ≤ min

{
2W − U,

3

2
W

}
≤ 3

4
(2W − U) +

1

4
· 3
2
W

=
15

8
W − 3

4
U. (1)

Note that the set consisting of edges of OPT connecting two different clusters and arcs
(si, ti) for i = 1, . . . , k is a solution to SCP of weight A + U . Thus, by Theorem 2.2,
the two solutions S1 and S2 obtained by Algorithm SCP in Step 2 of Algorithm A satisfy
w(S1) ≤ 3A/2 + 2U and w(S2) ≤ 3A + U . Let Ts be the shorter of the two solutions. It
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then holds that

w(Ts) ≤ min

{
3

2
A+ 2U, 3A+ U

}
≤ 3

4

(
3

2
A+ 2U

)
+

1

4
(3A+ U)

=
15

8
A+

7

4
U. (2)

In Step 3 of Algorithm A, the two solutions are combined by replacing arcs of weight U
in the SCP solution by the TSPP solution. We obtain an upper bound on the weight of the
solution Tm by combining (1) and (2):

w(Tm) = w(P )− U + w(Ts)

≤
(
15

8
W − 3

4
U

)
− U +

(
15

8
A+

7

4
U

)
=

15

8
(W + A) =

15

8
OPT.

2

Remark 1. If we use an algorithm for TSPP with approximation ratio α, it follows from
the same analysis that the approximation ratio of Algorithm A becames (12−3α)/(7−2α),
provided α ≤ 3.

4.2. Two end vertices are given

In this subsection, we analyze the approximation ratio of the algorithm obtained by incor-
porating the algorithm for TSPP by Zenklusen [11] in Algorithm 2 (Section 3.2). We name
the algorithm Algorithm B.

Theorem 4.2. Let Tm be the Hamilton cycle returned by Algorithm B. Then,

w(Tm) ≤
12

7
OPT.

Proof. The proof is similar to that of Theorem 4.1. In Step 1 of Algorithm B, it follows
from Lemma 2.1 that

w(P ) ≤ min

{
2W − U,

3

2
W

}
≤ 3

7
(2W − U) +

4

7
· 3
2
W

=
12

7
W − 3

7
U. (3)

Note that the set consisting of edges of OPT connecting two different clusters and special
edges (s1i , s

2
i ) for i = 1, . . . , k is a solution to RPP of weight A + U . By Theorem 2.3, the

two solutions R1 and R2 obtained by Algorithm RPP in Step 2 of Algorithm B satisfy
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w(R1) ≤ 3(A + U)/2 and w(R2) ≤ 3A + U . Let Tr be the shorter of the two solutions. It
then holds that

w(Tr) ≤ min

{
3

2
(A+ U), 3A+ U

}
≤ 6

7

(
3

2
(A+ U)

)
+

1

7
(3A+ U)

=
12

7
A+

10

7
U. (4)

In Step 3 of Algorithm B, the two solutions are combined by replacing edges of weight
U in the RPP solution by the TSPP solution. We obtain an upper bound on the weight of
the solution Tm by combining (3) and (4):

w(Tm) = w(P )− U + w(Tr)

≤
(
12

7
W − 3

7
U

)
− U +

(
12

7
A+

10

7
U

)
=

12

7
(W + A) =

12

7
OPT.

2

Remark 2. If we use an algorithm for TSPP with approximation ratio α, it follows from
the same analysis that the approximation ratio of Algorithm B becames 6/(5−α), provided
α ≤ 3.

4.3. End vertices are not specified

We analyze the approximation ratio of the algorithm obtained by incorporating the algo-
rithm for TSPP by Zenklusen [11] in Algorithm 3 (Section 3.4). We name the algorithm
Algorithm C.
Lemma 4.1 ([6]). For the Hamilton cycle Th computed in Step 1 of Algorithm C, it holds
that

w(Th) ≤
3

2
OPT +

1

2
W + 2U.

Lemma 4.2. For the Hamilton cycle Tl computed in Step 2 of Algorithm C, it holds that

w(Tl) ≤

{
3
2
OPT + 2W − 2U

(
U > W

2

)
,

3
2
OPT + 3

2
W − U

(
U ≤ W

2

)
.

Proof. Here, we can just take the RPP solution computed by Algorithm SmallEdges to
obtain the desired result. By Theorem 2.3, the RPP solution has weight 3(A + U)/2 ≤
3OPT/2. Then, we replace each special edge (si, ti) by a path connecting si and ti that
includes all vertices in Vi. By Lemma 2.1, the weights of such paths is at most 2W − U or
3W/2. Hence, we obtain

w(Tl) ≤

{
3
2
OPT− U + (2W − U) = 3

2
OPT + 2W − 2U

(
U > W

2

)
,

3
2
OPT− U + 3

2
W = 3

2
OPT + 3

2
W − U

(
U ≤ W

2

)
.

2
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Theorem 4.3. Let Tm be the Hamilton cycle returned by Algorithm C. Then,

w(Tm) ≤
8

3
OPT.

Proof. If U ≤ W/3, then, by Lemma 4.1 and the inequality W ≤ OPT, it holds that

w(Th) ≤
3

2
OPT +

1

2
W + 2U

≤ 3

2
OPT +

1

2
W +

2

3
W

≤ 3

2
OPT +

7

6
OPT

=
8

3
OPT.

If W/3 < U ≤ W/2, then, by Lemma 4.2 and the inequality W ≤ OPT, it holds that

w(Tl) ≤
3

2
OPT +

3

2
W − U

≤ 3

2
OPT +

3

2
W − 1

3
W

≤ 3

2
OPT +

7

6
W

≤ 3

2
OPT +

7

6
OPT

=
8

3
OPT.

If U > W/2, then, by Lemma 4.2 and the inequality W ≤ OPT, it holds that

w(Tl) ≤
3

2
OPT + 2W − 2U

≤ 3

2
OPT + 2W −W

≤ 3

2
OPT +W

≤ 3

2
OPT +OPT

=
5

2
OPT.

2

Remark 3. For this case, an approximation ratio obtained from an α-approximation algo-
rithm for TSPP does not immediately follow from the same analysis.
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5. Conclusions

In this paper, we have improved approximation ratios for Variants (1), (2), and (4) of CTSP
[6] by applying a recent improved approximation algorithm for TSPP by Zenklusen [11], as
shown in Tables 1 and 2. There is a similar problem, the subpath planning problem (SPP)
and the subgroup planning problem (SGPP) [9]. Sumita et al. [10] considered approximation
algorithms for SPP and SGPP. They proposed 1.5-approximation algorithm for SPP and
3-approximation algorithm for SGPP. Applying the approximation algorithm for Variant
(4) of CTSP to SGPP, it might be possible to improve the approximation ratio for SGPP.
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