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Abstract  In this paper, we address a Monte Carlo algorithm for calculating the Shapley values of minimum
cost spanning tree games. We provide tighter upper and lower bounds for the marginal cost vector and
improve a previous study’s lower bound on the number of permutations required for the output of the
algorithm to achieve a given accuracy with a given probability. In addition, we present computational
experiments for estimating the lower bound on the number of permutations required by the Monte Carlo
algorithm.
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1. Introduction

Consider a joint project in which members plan to connect to an information supplier directly
or indirectly by creating links between pairs of members and/or between a member and the
supplier. Assuming that there are costs associated with creating the links, the total cost can
be minimized by arranging the links to form a tree spanning all members and the supplier.
The minimum cost spanning tree game, introduced by Bird [4], is a model for analyzing
reasonable ways to allocate the total cost among the members under such circumstances.

Let N = {1,---,n} be a set of players and Ky» be the complete graph with vertex
set N' = N U{r}. Given a function ¢ that assigns a nonnegative cost ¢(v,w) to each edge
{v,w} of Ky, the minimum cost spanning tree game is the following cooperative (cost) game
(N,¢): for all S C N, ¢(S) is the cost of a minimum cost spanning tree for the subgraph of
Ky induced by S U {r}. The fundamental theory of these games was developed in [4], [7],
and [8], and examples of its applications include the problem of building a drainage system
that connects every house in a city with a water purifier, and the carpooling problem [12].

In cooperative game theory, a method of sharing the cost among players is called a
solution, and one of the most important solution concepts is the Shapley value [15] (see [17]
for a survey). Let (N, f) be a cooperative game. For a given permutation m of N, the
marginal cost vector X () is defined as X (7)) = f({w(1),--- ,7(9)}) — f{n(1), - ,7(i—
1)}) (¢ =1,--- ,n). The Shapley value of the game (N, f) is defined as the average over all its
marginal cost vectors. Because computation of the Shapley value of minimum cost spanning
tree games is #P-hard [1], when these games are applied to the problems described above,
an approximation algorithm is required that can provide a provably good approximation of
the Shapley value.

Monte Carlo methods are a natural approach for approximating Shapley values for ar-
bitrary cooperative games, and they have been well-studied in the literature. These algo-
rithms select uniformly random permutations, and output the average of the corresponding
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marginal cost vectors. Concentration inequalities, such as the Hoeffding inequality [9] and
Chebyshev inequality [16], are powerful tools for providing a lower bound on the number of
permutations required for such algorithms to achieve a given accuracy with a given prob-
ability. See [3] for weighted majority games and [5, 11] for general cooperative games and
[10] for supermodular games.

Ando et al. [2] studied the Monte Carlo algorithm applied to the Shapley value of min-
imum cost spanning tree games and, using the Chebyshev inequality [16], derived a lower
bound on the number of permutations for the output of the algorithm to achieve a given ac-
curacy with a given probability. In this study, we provide tighter upper and lower bounds on
the marginal cost vector and, using the Hoeffding inequality [9], improve a previous study’s
lower bound [2] on the number of permutations required for this algorithm. In addition, we
estimate the empirical lower bound via computational experiments and compare it with the
predicted lower bound.

The remainder of this paper is organized as follows. In Section 2, we review the defi-
nition of a minimum cost spanning tree game and several related fundamental results. In
Section 3, we present a Monte Carlo algorithm and an improved lower bound on the number
of permutations required for the algorithm to achieve a given accuracy with a given prob-
ability. In Section 4, we present the results of computational experiments to compare the
predicted and true lower bounds. Finally, in Section 5, we summarize our results.

2. Minimum Cost Spanning Tree Games

In this section, we review several definitions from cooperative game theory and define a
minimum cost spanning tree game. Here, we denote the set of real numbers by R and the
set of nonnegative real numbers by R, .

A cooperative (cost) game (N, f) is a pair consisting of a finite set N = {1,--- ,n},
called the set of players, and a function f: 2V — R with f(0) = 0, called the characteristic
function. For a given permutation m of N and v € N, we denote the set of players that
precede v in 7 by ST, that is,

ST ={w|we N,7 ' (w) <7 v)}

For all permutations 7w of N, the marginal cost vector X (m) : N — R of (N, f) with respect
to 7 is defined as

X(m)y = f(STU{v}) = f(S]) (veN). (2.1)
The Shapley value Sh(f) : N — R of the cooperative game (N, f) is then defined as

Shif)o = 3 X(x)e (veN), (22)

’ TI'GHN

where Il is the set of permutations of V.

All graphs considered in this paper are simple undirected graphs; that is, they do not
contain self-loops or parallel edges. For graph G = (V, A), subgraph H = (W, B) of G is
called a spanning tree of G if V =W and H is a tree. We also say that B is a spanning tree
of G =(V,A) if H= (W, B) is a spanning tree of G.

Let Kys be the complete graph with vertex set N’ = N U {r} and let c: (]\2[/) — R, be
a nonnegative-real valued function defined on the edge set of Kys, where r is interpreted as
the source of a service provided to players. This pair, (Kyv,c), is called a network. For all
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subsets I' of edges of Ky, the cost ¢(I") of T" is defined as
@)= > clvw). (2.3)
{v,w}erl
For all S C N, we define S" = SU{r}. The minimum cost spanning tree game associated
with the network (Kyv,c) is the cooperative game (N, ¢) defined by
¢(S) = min{¢(T") | T is a spanning tree of Kg'} (S C N), (2.4)

where Kg is the complete subgraph of Ky with vertex set .S’.

For a network (Kyv,c) where ¢ is {0, 1}-valued, we can characterize the characteristic
function of the associated minimum cost spanning tree game (NN, ¢) as follows.
Lemma 2.1 (Ando [1]). Let (Kyr,¢) be a network such that ¢ is {0, 1}-valued. Then, for
all S € N, &(S) is the number of connected components of graph G(c,S) = (5, E(c, S))
minus one, where

S/
E(e,S) = {{v,w} | {v,w} € (2),c(v,w) = 0}. (2.5)
For a general network (Kyv, ¢), let the distinct positive values ¢(v,w)’s be

O<Im<--<m (2.6)
and let v = 0. For all ¢ = 1,...,[, define ¢; : (]\2[/) — {0,1} by

1 ify < , W),
@mm_{ i < clow) e n), (2.7)
0 otherwise

Then, we have
!

c= Z(%’ — Yi—1)Ci- (2.8)
i=1
Norde, Moretti and Tijs [12] demonstrated that if ¢ is decomposed as in (2.8), then the
corresponding characteristic function ¢ is accordingly decomposed as

l
c= Z(% — Yi-1)Gi. (2.9)

The number of summands in (2.9) can potentially be reduced as indicated by the following
lemma.

Lemma 2.2. Let (Knv,¢) be a network and suppose that ¢ is decomposed as in (2.8). Let
[* <1 be the integer such that

v = max{c(v,7) | v € N}. (2.10)

Then, we have
l*
C= Z(% — Yi-1)Ci- (2.11)
i=1
Proof. 1t suffices to demonstrate that if ¢ > [*, then ¢;(S) = 0 (S C N). Suppose that i > I*
and S C N. Then, we have

c(v,r) < e < i, (2.12)
and thus, by (2.7) ¢;(v,r) =0 for v € N. It follows that 7' = {(v,r) | v € S} is a minimum
cost spanning tree of (Kg/, ¢;) with ¢;(T") = 0. Therefore, we have ¢;(S) = 0. O
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3. Monte Carlo Algorithm

Algorithm 1 is a Monte Carlo algorithm for calculating the Shapley values of minimum
cost spanning tree games. To obtain a lower bound on the number m of permutations
required by the algorithm, we use the Hoeffding inequality [9] in Lemma 3.1. The Hoeffding
inequality is often used to analyze the number of samples required for a general sampling-
based randomized algorithm to achieve a given accuracy with a given probability. In the
context of cooperative games, Bachrach et al. [3] studied a Monte Carlo algorithm for the
Shapley-Shubik power index (and the Banzhaf power index) of weighted majority games
and used the Hoeffding inequality to analyze the number of permutations (and coalitions)
required for the Monte Carlo algorithm. In addition, Maleki et al. [11] used the Hoeffding
inequality to derive a lower bound on the number of permutations required by the Monte
Carlo algorithm for the Shapley value of general cooperative games.

Input : Network (Kyv,c) and positive integer m
Output: Approximate Shapley value Sh for the minimum cost spanning tree game

(N, )
1 for count =1, --- ,m do
2 Choose a permutation 7 of N uniformly at random;
3 Compute the marginal cost vector X () of (N, ¢) with respect to m;

4 §EU<—%X(7T)1, (veN);
5 end

Algorithm 1: Monte Carlo algorithm for calculating the Shapley value

Lemma 3.1 (Hoeffding inequality [9]). Let Xy, -+, X,, be independent random variables

such that [; < X; <wj for j =1,--- ,m. Then, for all real numbers e > 0, we have
_ _ 2 2.2
Pr[|X — B[X]| > < 2exp (— e ) (3.1)
Zj:l (uj — 1)

where X = 371 X

Estimated upper and lower bounds can be obtained for the marginal costs X (7), (v € N)
by applying the following lemma.
Lemma 3.2. Let (Ky/, ¢) be a network with ¢ # 0. Suppose that the distinct positive values
of ¢(v,w) are as in (2.6), and let

A'U = Z{fyl* - C(Ua w) | w e N/,U} 7£ v, C(va) < ’7[*} (32)
for allv e N. Then, for allve N and S C N — v, we have

Before proving Lemma 3.2, we consider the case in which the cost function ¢ is {0, 1}-
valued. By Lemma 2.1, the lower and upper bounds on the marginal cost can be derived
by evaluating the difference in the number of connected components between G(c,S) and
G(c,SUv) forv ¢ S.

Lemma 3.3. Let (Kn/,c) be a network, where ¢ is {0, 1}-valued and ¢ # 0. Let deg(v) be
the degree of vertex v in graph G(c, N) = (N', E(c,N)), where E(c, N) is defined by (2.5).
Then, for allv € N and S C N — v, we have

1 —deg(v) <é(SUw)—¢(S) < 1. (3.4)
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Proof. Let (Kyv,c) be a network as described in the statement of the theorem. Let v € N
and S C N — v, and suppose that 7" is a minimum cost spanning tree of (Kg,¢). Then,
¢(S) = ¢(T). Because T'U {v,w} is a spanning tree of (Ksuyy, ¢) for any w € S’, we have

c(SUv) <e(T) + c(v,w) <e(S) + 1. (3.5)

Let D(c, S) be the vertex sets of the connected components of graph G(c, S) = (5, E(c, 5)),
and let
D' ={D|DeD(S),c(v,w) =0 for some w € D}.
Then, by Lemma 2.1, we have ¢(S) = |D(c,S)| — 1 and é¢(S Uwv) = |D(c, S)| — |D'|, from
which we obtain
¢(SUv) —¢(S)=—|D'| +1> —deg(v) + 1. (3.6)
Now, the inequalities (3.4) follow from (3.5) and (3.6). O

Proof of Lemma 3.2. Let (Ky/,c) be a network with ¢ # 0. Let v € N and S C N — v,
and suppose that ¢ is decomposed as in (2.8). For alli =1,---,l and v € N, let deg;(v)
be the degree of v in graph G(¢;, N). Then, because ¢; is {0, 1}-valued and ¢; # 0 for all
1=1,--- [, by Lemma 3.3, we have

Yoo — Z(% — i_1)deg;(v) = Z(% — im1)(—deg;(v) + 1)

< Z(% —%i-1)(G(SUv) —¢(9))
i=1
l*
< ) (=)
i=1
= M (3.7)
Because we also have
l*
ESUw) —&(S8) =Y (3 —vn-1)(@(S Uv) — &(S)) (3.8)
i=1
by Lemma 2.2, it follows from (3.7) that
l*
Yo = > (3 = yim1)deg,(v) < &S Uw) — &(S) < . (3.9)

i=1
Finally, we have S>'_ (v, — 7,_1)deg;(v) = A, because

l* *—1

D (i —vi)deg;(v) = degp (V)i — Y (degyyy(v) — deg;(v))%

i=1 i=1
= Z{%*—c(v,w)|w€N’,w7év,c(v,w)§%*}
— A, (3.10)

This completes the proof. m
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By Lemma 3.2 and the Hoeffding inequality (Lemma 3.1), we have the following main
results of this paper.
Theorem 3.1. Let (Knv,c) be a network with ¢ # 0. For all0 < e and 0 <n < 1, we have
the following. .
(i) For all players v € N, the output Sh of Algorithm 1 satisfies

Pr[|Sh, — Sh(é),| < ] > 1—1p (3.11)

> S
(i) Let A =max{A, | v € N}. Then, the output Sh of Algorithm 1 satisfies

Pr{|[Sh — Sh(@)l|,, < > 1 -7 (3.12)

A?log (%)
2¢2 :

ifm >

Proof. Let (Kyr,¢) be a network with ¢ # 0 and v € N, and let M be a set of m uniformly
random permutations of N. Because the marginal costs X (7), (7 € M) are defined by

X(m)y = e(57 U{v}) = &(S7),

by Lemma 3.2 we have
Yix — Av S X(ﬂ')y S Vi (ﬂ' c M) (313)
Because Sh, = L3 e X (), and
~ 1 1 . .
E[Sh,] = — > E[X(m),] = ~ > " Sh(é), = Sh(@),,

TeM TeM

by the Hoeffding inequality (Lemma 3.1) and (3.13), we have

o ~ 2m?2e? 2me>
Pr[|Sh, — Sh(¢),| > €] < 2exp <_Z—MA2) = 2exp (— Az ) . (3.14)
TE v v
2100 (2
(i) Ifm > 2 125;("), then, by (3.14), we have

Pr[|Sh, — Sh(@),| > € <7,

and thus, we have (3.11).

2100 (20
log (<)

(ii) If m > = 52—, then by (3.14) and the union bound we have

Pr[3v € N: [Sh, — Sh(é),| > ¢ < > Pr[|Sh, — Sh(e),| > €

veN

N
[\
@
"
e
/|\
[\~
b
I\me
N———

VAN
DO
S
@
>
o
/T\
)
3
(@)
no
~_

< n

from which the claimed inequality (3.12) follows. O
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We can also prove Theorem 3.1(i) using a result of Makeki et al. [11] for the Shapley
value of general cooperative games, which was suggested by Bachrach et al. [3]. However, we

prove the theorem by using the Hoeffding inequality directly for the sake of completeness.
n3’\/12
4ne?

Ando et al. [2] provided a lower bound on the number m of permutations to have

2o (22
(3.12) using the Chebychev inequality [16]. The bound A%Q(") in Theorem 3.1(ii) improves

that of Ando et al. because ny; > A.

Next, we consider the running time per iteration of Algorithm 1. This time is dominated
by the time required to compute the marginal cost vector X (), which is O(n?) because
X (), can be computed in O(n?) time by applying Prim’s algorithm [13] for allv = 1,--- | n.
However, if ¢ is {0, 1}-valued, then the running time can be reduced to O(n?) using a disjoint-
set data structure, as illustrated by the following lemma in [2].

Lemma 3.4 (Ando and Tokutake [2]). Let (N, ¢) be a minimum cost spanning tree game,
where ¢ is {0, 1}-valued, and let m be a permutation of N. The marginal cost vector X ()
of (N, ¢) with respect to ™ can be computed in O(n?) time.

Proof. Suppose that c is a {0, 1}-valued function on (]\2[/) Forall k=0,1,--- ,n let

Sk = {7T<1)7 U 77T(k)}
and let Dy be the vertex sets of the connected components of graph Gy = (5’, E}), where

!/

B = ({0} | o € () ctow) = 0).

Then, by Lemma 2.1, we have

X(?T),T(k) = 5(Sk) — 5(Sk_1)
= |Dg| — | Dy_1| (3.15)

fork=1,---,n.

To obtain the required time bound, we dynamically represent the vertex sets Dy (k =
0,1,---,n) using a linked-list-based implementation of a disjoint-set data structure [6], in
which the make-set and find operations take O(1) time and the union operation takes O(n)
time. Initially, we have Dy = {{v} |v = r,1,--- ;n}. For k = 1,--- n, suppose that we
have Dy_y. Dy can be computed as follows: for all w € Sj,_; such that c(n(k),w) = 0, we
determine whether (k) and w are in different components using the find operation and, if
so, we merge the components into one using the union operation. Thereafter, X (7)) can
be calculated using (3.15).

Because this procedure involves a total of n(n+1) find operations and n union operations,
it can be concluded that X (7) can be computed in O(n?) time. O

Corollary 3.1. Let (N, ¢) be a minimum cost spanning tree game. In general, the running
time of Algorithm 1 is O(mn®). If the cost function c is {0, 1}-valued, its running time is
O(mn?).

4. Computational Experiments

In Section 3, we consider a Monte Carlo algorithm for calculating the Shapley values of
minimum cost spanning tree games and provide an improved lower bound on the number of
permutations required for the algorithm to achieve a given accuracy with a given probability.
In this section, we compare this lower bound with the true lower bound via computational
experiments.
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4.1. Problem instances

To experimentally evaluate the accuracy of the output of the Monte Carlo algorithm, we
must know the Shapley values of the given minimum cost spanning tree games precisely.
Although computing the Shapley values of minimum cost spanning tree games is generally
#P-hard, the values can be calculated in polynomial time for certain games. One such class
of games is described as follows.

Proposition 4.1 (Ando [1]). Let (Kyv,c) be a network. If graph G(c;, N) = (N', E(c;, N))
is chordal for alli = 1,--- |1, where ¢; is defined by (2.7), then the Shapley value of the min-
imum cost spanning tree game (N, ¢) associated with the network (Kyr,c) can be computed
in O(In?) time.

We call a cost function c: (]\27,) — Ry chordal if graph G(¢;, N) = (N, E(¢;, N)) is
chordal for all i = 1,--- I, where ¢; is defined by (2.7). It should be noted that tree metrics
are a special class of chordal cost functions. A cost function c: (]g/) — R, is a tree metric
if there exists a nonnegative-weighted tree U = (V, E) with the leaf set being N’ such that
for each v,w € N’ the length of the unique path in U from v to w is equal to ¢(v,w) (see,
e.g., [14]).

In this study, we conducted experiments on minimum cost spanning tree games associ-
ated with the random chordal cost function c: (]\2[/) — R, , generated as follows. First, we
generated a sequence of chordal graphs G; (i = 1,--- 1) such that F(G;_1) C E(G;) for
i =2,---,1. Then, we set ¢ = S\_ (% — 7i_1)ci, where ¢;: (]g,) — {0,1} was such that
G(¢;) = G; and ~; were positive real numbers such that v,y < ; fori =2,--- | [.

4.2. Experiments

For each random chordal cost function c: (]\;) — R, we ran the Monte Carlo algorithm
(Algorithm 1) 20 times each for m = 1000, 2000, - - - , 10000, counting the ratio of successful
runs in each case. Here, we say a run of Algorithm 1 is successful if \éﬁv — Sh(é),| < e,
where we set v = 1 and € = 1/4. Figure 1 presents the average ratio of successful
runs for each of the 10 random chordal cost functions c: (]\2[/) — Ry with (n,l, () =

(100, 100, (7)), (100, 100, (1.5¢)), and (100, 100, (27)), respectively. To achieve |§Ev — Sh(¢),| <
e with probability 1 — }l, the required number m of permutations of the Monte Carlo algo-
rithm (Theorem 3.1) is

Ajlog (2)
e T e

w = [24ATlog 2] , (4.1)

where A, is defined by (3.2). For the 10 instances with (n,[, (7;)) = (100, 100, (1.57)), we
found 4,911.0 < A; < 7,570.5, and we should have thus required 401,214,455 < m <
953,423,452 permutations to achieve a probability of success of 1 — }1 = %. However, the
experimental results demonstrate that in the case of 7; = 1.5¢, the ratio of successful runs
exceeds % if m > 6,000 (see line of ; = 1.5 in Figure 1). The number m = 6,000 is much

smaller than the estimate given by Theorem 3.1.

5. Summary and Concluding Remarks

In this study, we examined the Monte Carlo algorithm for calculating the Shapley values
of minimum cost spanning tree games. We provided tighter upper and lower bounds on
the marginal cost vector and improved a previous study’s lower bound [2] on the number of
permutations required for the algorithm to achieve a given accuracy with a given probability.
We then estimated the true lower bound via computational experiments. The results suggest
that the algorithm can output favorable approximations of the Shapley value with fewer
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Figure 1: Average ratio of successful runs vs number of permutations

iterations than predicted by Theorem 3.1; therefore, it may be possible to further improve
the lower bound.
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