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Abstract  We consider Stackelberg patrolling security games in which a security guard and an intruder
walk around a facility. In these games, at each timepoint, the guard earns a reward (intruder incurs a cost)
depending on their locations at that time. The objective of the guard (resp., the intruder) is to patrol
(intrude) the facility so that the total sum of rewards is maximized (minimized). We study three cases:
In Case 1, the guard chooses a scheduled route first and then the intruder chooses a scheduled route after
perfectly observing the guard’s choice. In Case 2, the guard randomizes her scheduled routes and then
intruder observes its probability distribution and also randomize his scheduled routes. In Case 3, the guard
randomizes her scheduled routes as well, but the intruder sequentially observes the location of the guard and
reroutes to reach one of his targets. We show that the intruder’s best response problem in Cases 1 and 2 and
Case 3 can be formulated as a shortest path problem and a Markov decision process, respectively. Moreover,
the equilibrium problem in each case reduces to a polynomial-sized mixed integer linear programming, linear
programming, and bilinear programming problem, respectively.

Keywords: Game theory, optimization, eye-catching patrol, time-expanded network,
Markov decision process

1. Introduction

Over recent years, game-theoretic approaches have received considerable attention in terms
of guarding cities and facilities against terror attacks. Usually, as security resources are
limited, we cannot cover all possible security checkpoints at every moment. Game theory is
thus used for appropriately randomizing when and where the resources are placed. Indeed,
there exist many successful results that have been deployed in real-world domains such as
Los Angeles International Airport [19], the Federal Air Marshals Service [24], the US Coast
Guard [7,23], and the Los Angeles Sheriff’s department [28].

This paper considers rich Stackelberg patrolling games, related to Hozaki et al. [9], in
which a security guard (the leader, female) and an intruder (the follower, male) walk around
a facility represented as a time-expanded network. In these games, at each timepoint, the
guard earns a visibility-based reward (the intruder incurs a cost) that depends on their
locations at that time. The objective of the guard is to patrol the facility so that the total
sum of rewards is maximized. In contrast, the objective of the intruder is to reach one of
his targets so that the cost value is minimized.

We study three cases according to the intruder’s capability to observe deployment pat-
terns of the guard. In Case 1, the guard chooses a scheduled patrol route (i.e., a path on
the time-expanded network). After perfectly observing or learning the guard’s choice, the
intruder chooses a scheduled intruding route. In other words, this case assume the most
intelligent intruder. In Case 2, to prevent the intruder from learning, the guard randomizes
her strategies. That is, the guard chooses a probability distribution of the scheduled patrol
routes (this can be regarded as a flow with value 1 on the network). Here, we assume that,
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when the intruder makes his decision, he can use information about the probability distribu-
tion chosen by the guard, but cannot learn which scheduled patrol route has been realized
as a result of randomization. This is the basic setting of the recent Stackelberg security
games. In Case 3, we deal with the situation where the intruder can observe the location of
the guard sequentially. In this case, at each timepoint, the intruder can reroute to reach one
of his targets safely, depending on the location of the guard. Therefore, it seems reasonable
that the effect of randomization should be limited.

Significance of our models. Japanese police and security companies also share a
basic concept that eye-catching patrol becomes a strong deterrent to crime. Namely, it is
thought that terror attacks can be prevented beforehand by actively showing the presence
of security guards. Therefore, our modeling aimed at optimizing the visibility-based utility
is natural. On the other hand, when watching attackers dressed ordinary people, that is,
before their attack is executed, it is not so easy to distinguish them as attackers. It depends
on know-how of the guards patrolling. The important thing here is to ensure opportunities
for the guards to sufficiently gaze at anyone entering by any route. Our games presented in
this paper intend to make patrol routes to meet that demand.

Our contributions. Our first contribution is the modeling of three distinct cases.
The players’ strategies are clearly understood using the concept of time-expanded networks.
Our second contribution is to identify solution methods for the intruder’s best response.
Given a patrol strategy, these can be used to estimate the potential loss in the worst case
scenario. We show that the problems of finding a best response in Cases 1 and 2 can be
formulated as a shortest path problem and that the problem of finding a best response in
Case 3 can be formulated as a Markov decision process (MDP). Our third contribution is
to present mathematical optimization formulations of the equilibrium problems. Finding a
Stackelberg equilibrium in each case reduces to a mixed integer linear programming (MILP),
linear programming (LP), and bilinear programming (BLP) problem, respectively, where the
size of each optimization problem is polynomial in the size of the network.

2. Related Work

As an important class of attacker-defender Stackelberg games including network interdiction
[10,27], security resource allocation in networked physical domains such as urban road
network has been extensively studied [11-13,25]. This is close to our Case 2. However, as
opposed to our model, the security resources (security guards) are not always mobile.

To protect a mobile target, Fang et al. [7] represent the defender’s randomized sched-
uled routes compactly as flows on a time-extended network. In their game, the attacker’s
pure strategy is to select a target and the (discretized) time to attack. This leads to an
LP formulation of min-max type for finding an equilibrium. In our Case 2, we introduce
corresponding flow variables to represent the intruder’s scheduled routes as well as those of
the guard. Thus, another nontrivial step is required to derive a compact LP formulation.

There are many studies dealing with the situation where the guard, at each turn, chooses
the next connected node to move to, allowing the intruder to observe the locations of the
guard sequentially [1-3,5]. However, in the literature as well as [7], the intruder can move
toward one of his targets at any moment, regardless of the topology of the network and
incur a cost only when he attacks it; in other words, the intruder does not incur a cost while
he is moving to the target.

Hohzaki et al. [9] study a patrol problem in a building in which an intruder incurs a cost
at each timepoint even while he is moving toward a target. Their dynamic programming
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algorithm for obtaining a best response for the intruder can be applied to our Cases 1 and 2.
It corresponds to our shortest path approach using the time-expanded network. However, as
their game restricts the guard’s strategies to given several scheduled routes, their approach
cannot be applied to our equilibrium problems.

Finally, we note that the use of an MDP is not new in itself [6, 17, 18, 21], because this is
a fundamental tool for handling dynamic environments. For example, Delle Fave et al [6]
use a MDP to generate patrol policies with considering execution uncertainty. However, to
the best of our knowledge, the model presented here has never been studied.

3. Problem Formulation

Suppose that the facility to be patrolled over a given time interval {0,1,..., O} is represented
as a directed graph G = (U, E) with super sources s%,s' in U and super targets &, ¢ in U,
where U is a set of nodes and £ is a set of arcs. The super source s® for the security guard
connects some (or possibly all) other nodes, and the super target ¢ is connected by some
(or possibly all) other nodes. The super source s' for the intruder connects each source node
(e.g., entrance to the building), and the super target #' is connected by each target node.
See Figure 1.

. source
® : target

Figure 1: Facility represented as a directed graph G = (U, E)

A scheduled patrol route of the security guard is a pair of an s%-t8 walk of length less
than © and the timings of her moves on this path. A scheduled route of the intruder is a
pair of an s'-t' walk of length less than © and the timings of his corresponding movements.
Suppose that we are given a reward (or cost) function r : U x U — Rsq. If the guard is on
u € Y and the intruder is on v € U at some time, then the guard receives a reward (or the
intruder incurs a cost) r(u,v). We assume r(u,v) = 0 for all pairs (u,v) such that either
wor v is in {s8, s, ¢85 t'}. The objective of the guard (resp., the intruder) is to maximize
(minimize) the total sum of the timepoint-wise rewards (costs). As a special case, we can
use the degree of detection [9] defined by

gy o Sl)a(e)

T {d(u0)y?

where 0(u,v) € {0 (invisible), 1 (visible)} is the visibility of the intruder to the guard, d(u,v)
is the distance between them and a(v) € [0,1] is the brightness at the intruder’s position.
This visibility-based utility models the reward that decreases quadratically with the distance

(3.1)

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



On Dynamic Patrolling Security Games 155

between the guard and intruder. We can also deal with a probability criterion. If we set
the cost of the guard as
r(u,v) :=log(l — puv),

where py, € [0, 1) represents the probability of detection depending on their locations, then
the total sum of the cost represents the probability of the intruder arriving at his super
target without being detected.

To model their strategies more clearly, we use the concept of time-expanded networks [8]
(see Figure 2). For the given graph G = (U,E), we generate the corresponding time-

-

G=U,¢)

Figure 2: Time-expanded network AV'(©) = (V, A)

expanded network N (0) = (V, A) with rewards 7 : V¥ xV — Ry in the following manner:
For each u € U, we create © + 1 copies ug, uq, ..., us. Namely,

V=Au|lueld, §=0,1,...,0}.

For each e = (u,v) € &, there are © copies e, €1, ...,eo_1, where ey connects ug to vp,.
Moreover, for each u € U and 6 € {0,1,...,© — 1} there exists a holdover arc (ug, ugs1).
Namely,

A = {(ug,vg41) | (u,v) €E, 0=0,1,...,0 — 1}
U{(vg,vp+1) v e, 6 =0,1,...,0 —1}.

For every u,v € U and every 1,0 € {0,1,...,0}, we set

) | r(u,v) ifnp=0,
7 (ty; vp) = { 0 otherwise. (3-2)

For the sake of convenience, we overload the notation 7 to be used for any pair of arcs
(e,a) € Ax A and let 7(e,a) := 7#(0%e,07a), where, 0"a and 0~ a represent the initial
vertex and the terminal vertex of arc a, respectively. We are now in position to describe
our security games.

3.1. Casel

Let us consider a leader-follower game. The leader is the security guard, and chooses w € 2%
as her patrol path, where Q8 represents the set of all s§-t§ path on N (O). The follower is
the intruder. After perfectly observing or learning the security guard’s choice, the intruder
chooses w’ € Q' as his intruding path, where ' represents the set of all si-ty, path on N(©).
Thus, for any profile (w,w’) in 28 x Q! the payoff 1 (w,w’) is defined as follows:

Py (w,w') = Z Z 7(e,a)l,(e)1ly(a),

e€A acA
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where

weNUQ, ae A

1,(a) =

Hence, the Stackelberg equilibrium is written as follows:

1 ifaisonw
0 otherwise,

: /
b i ) 33

Figure 3 shows the game tree for this case.

Figure 3: Game tree for Case 1

3.2. Case 2

In this case, the guard chooses a flow f € F® as her randomized patrol path, where F*
represents the set of all feasible s§-t§ flow with value |f| = 1 on M(©). Namely, F# is the
set of all functions f : A — R satisfying

1 v=sf
dYof@=> flay=4 0 wveV\{s &} (3.4)
a€dtv a€d~v -1 v= t%,

fa)=0, VaeA (3.5)

where 0Tv and 4~ v denote the set of arcs a € A leaving node v and entering node v,
respectively. Notice that mixed strategies (or probability vectors) on Q9 and flow strategies
(i.e., F&) are outcome-equivalent in our game as well as [26]. This outcome equivalence is
also related to well known Kuhn’s theorem [15] stating that mixed strategies and behavior
strategies are outcome-equivalent in games with perfect recall. Similarly, let F*, the strategy
set of the intruder, be the set of all functions A : A — R satisfying

1 v=s
D hla)= > hla)=S 0 veV\{s)th} (3.6)
a€dtv a€d~v -1 v= tb,

h(a) 20, Vae A (3.7)

We note that, when the intruder makes his decision, he can use information about the flow
f chosen by the guard, but he cannot learn which patrol path has been realized as a result
of randomization. In this game, the objective value turns to the expected value of the total
sum of rewards. Thus, for any profile (f, h) € F&x F', the payoff 1(f, h) is given by

Yolf h) = > i(e.a)f(e)h(a).

ecA ac A
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Hence, the Stackelberg equilibrium is written as follows:

i h). 3.8
max min y(f, h) (3.8)

Figure 4 shows the game tree for this case.

Figure 4: Game tree for Case 2

3.3. Case 3

In this case, at each time 6, the intruder can observe the position of the guard uy € Vi (and
his own position vy € V}), where V5 (resp., V), a subset of V, denotes the set of copied
nodes for time 6 such that there exists a directed path to ¢, (resp., tg) in N (©). We denote
U?:o V5V by X. The probability of the intruder passing through some arc a € §Tvy may
depend on ug. Therefore, the choice of the intruder is a function m : AxX — [0, 1] such that
m( - |u,v) is a probability distribution on §*v for every (u,v) in X. We denote all possible
choices of the intruder by M. The game tree for this case appears in Figure 5.

Figure 5: Game tree for Case 3

For any flow f in F%, we define f : A — [0, 1] in the following manner: For every a € A,
if the initial vertex u of a (i.e., u = 0%a) satisfies s+, f(e) > 0, then we set

o f)
fo) = 7@

otherwise, f(a) is arbitrary, but for now we define f(a) = 1/|6%u|. We note that f satisfies
Y acsto f(a) =1for all v in V. In game theory terms, the choices of the guard f € {f| f €
F&} and the intruder m € M correspond to behavior strategies for the extensive-form game
with perfect recall, depicted in Figure 6, in which the players sequentially choose an arc to
pass through next. Here, the guard has no information on the intruder’s past decisions. On
the other hand, the intruder has perfect information on the guard’s past decisions.
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Figure 6: A part of the game tree for Case 3

For any w = (u°, € ul,et,... 271 u®) in Q8 and any w’ = (v°,a° v, al, ..., a®1 0®)

in (2, the probability of realizing the pair of the paths (w,w’) is given by
-1
P(w,o'| fym) = [ F(e)mla? |, o).
=0

Thus, for any (f,m) € F&x M, the pay-off ¢5(f, m) is defined as follows:

m) = Z Z 1 (w, W )P(w,w'| f,m).

weNs el

Hence, the Stackelberg equilibrium is written as follows:

max min 3.9
feFe mélM ws(f, ) ( )
4. Strategy Evaluation

In this section, we show that the intruder’s best response problems in Cases 1 and 2 and
Case 3 can be formulated as a shortest path problem and a MDP, respectively. Given a
patrol strategy, these formulations can be used to estimate the potential loss in the worst
case scenario.

4.1. Shortest path approach to Cases 1 and 2

Suppose that the security guard’s strategy f € F® is fixed (Notice that a path is a special
case of a flow). Then the problem of finding the best response (or one of the best responses)
for the intruder is the following minimization problem:

min h) = min C(
heFi valf, he]—'lz sla

where

lr(a) =) F(e,a)f(e), ac A (4.1)

ecA

This is the minimum-cost flow problem on the time-expanded network N'(0) = (V, A) with
costs {7 : A — R, uncapacitated arcs, and supplies/demands b : V — R, where

e
1 ifv=s,

b(v) =< —1 ifv=rty,
0 otherwise.
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It is well known that this setting of the minimum-cost flow problem has a solution h* € F'
such that h*(a) € {0,1} for every a € A. Therefore, our desired problem reduces to
the problem of finding the shortest path from s} to ti on A(0) with the lengths (costs)
l; : A — R>(. Hence, we can obtain the intruder’s best response using Dijkstra’s Algorithm.
4.2. MDP formulation for Case 3

Suppose that a patrol strategy of the guard f € F% is given. We would like to find the
intruder’s best response (or one of the best responses) to f . This problem reduces to the
finite MDP © = (X, (A", A'(")), 7, p) whose components are defined as follows:

1. X is the state space given by X = (Jg_ Vs xVi. A state z = (28,2') € X is made
up of two components, where 28 (resp., z') € V represents the location the guard (the
iI}truder) is currently. Let X be the set of all states except the terminal state, namely,
X =X \{(t&, 1)} |

2. A', the set of all arcs a € A such that there exists a directed path from d*a to ti on
N(©), is the action space. For every z € X, A'(z) C A' represents the set of all
feasible actions in state z, and it is given by

Al(z) =62 N A, o= (a8, 2) e X.
For convenience, we also let A% be the set of all arcs a € A such that there exists a
directed path from 9%a to t§ on N(©), and we define A8(z) as follows:

As(z) =628 N A%, x= (28 2) € X.

3. 7: X = Ry is the cost function defined by (3.2).
4. p={p(-|r,a)} is a Markov transition law. For every r = (28,7') € X and every
a € Al such that a € A'(z), and for every y = (y8,y') € X, we set

p(ylz,a) = p(y&, y'|28, z', )
_ { fas,y®) if (2%,98) € A%, y' = 0 a,

0 otherwise.

If the process is in state x and action a is chosen, then the process goes to the next

state y according to conditional transition probabilities p(y |z, a).

Figure 7 illustrates the finite MDP ®. In this figure, xy represents the state at time 6
(0 =1,2,...,0), and ay represents the action chosen at time § (# =1,2,...,0 —1).

time : 0 1 0-1 S
action : aop € Al(zo) a; € Al(z) ae-1 € A(zo_1)
| | |
v v v
state : @ >@ - To—_1 =@
| ~p(-|wo,a0) | ~p(-|r1,a1) | ~p(-|re—1,a0-1) |
v v v v
reward : 7(xo) (1) M(re—1) P(re)

Figure 7: Finite Markov decision process ©

Definition 4.1 (Markov policy). A mapping  : X — Al is called a (deterministic) Markov
policy if m(x) € Al(x) for all v € X. We denote the set of all Markov policies by II.

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



160 A. Kira, N. Kamiyama, H. Anai, H. Iwashita & K. Ohori

Suppose that a Markov policy 7 is employed by the intruder. In this case, the MDP
commencing from each state xg can be regarded as a Markov chain. In other words, if we let
X,, be the state after n step transitions from the initial state zg, then {X,} is the Markov
chain satisfying

P*(Xpi1 = y| X = 2) = ply| 2. 7(2)), 2,y € X,

where P™ represents the conditional probability given that the policy 7 is employed. We
denote the total expected cost by v(z; 7). Namely,

S}

v(z;m) = E”l > #(Xy)

0=0(z)

X@(I):J}}, re X, mell,

where E™ represents the conditional expectation given that the policy 7 is employed, and
0(z) is an integer such that x € Vag(z) xVé(m). Our goal is to find the optimal policy (or one
of the optimal policies) 7* such that
v(z; ") <wv(z;m), Yere X, Vrell,
and the optimal value function v : X — R satisfying
v(z) =v(x, ), xeX.

The following results directly follow from the basic theory of dynamic programming for finite
MDPs (e.g., see [4,20]). Hence, we can obtain the best response for the intruder and the
optimal value v(sg, t}) (i.e., the expected total reward in worst case) by solving the Bellman
equation.

Theorem 4.1 (Bellman equation).

v(tg, ty) = 0,
=7

v(x)

() + min Z v(@7e,07a)f(e), z € X.

acAl(x)

ecAg(x)
Theorem 4.2. Let ™ be the Markov policy which, when the process is in state x, selects
the action (or an action) minimizing the summation in the Bellman equation:

7*(x) € arg min Z v(07e,07a)fle), =€ X.
acAl(z) cE A8 ()

Then 7 is optimal.

5. Equilibrium Problem

In this section, we show that the equilibrium problem in each case reduces to a MILP,
LP, and BLP problem, respectively, such that the size of each optimization problem is
polynomial in the size of the time-expanded network.

5.1. Compact LP formulation for Case 2

We note again that the inner minimization problem for the intruder is the well known
minimum-cost flow problem. It has the LP problem form:

Min li(a)h(a)
o | M
s.t. (3.6),(3.7),
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and its dual form:

Max  p(th) — p(sh)

D(f) st. p(0~a) —p(0Fa) £ ls(a), Vae A

Using the dual form, our desired equilibrium problem can be expressed by the following LP

problem as follows:
Max objective function of D(f)

s.t.  constraints of D(f)
(3.4),(3.5), (4.1).

This problem has at most |V| + 2|A| variables and |V| + 2|.A| constraints. Therefore we
can obtain a Stackelberg equilibrium using a general-purpose LP solver. Our approach is
essentially the same as the compact LP formulation for the polyhedral zero-sum game [14].

5.2. Compact MILP formulation for Case 1

The LP formulation for Case 2 becomes a MILP formulation for Case 1 by replacing the
nonnegative constraint f(a) 2 0 with the binary constraint f(a) € {0,1} for every a € A.
To see this is true, notice that the difference between Cases 1 and 2 is that the strategies
in Case 2 are flows, but those in Case 1 are restricted to paths (i.e., binary integer flows).
However, we can equivalently replace the inner minimization problem for the intruder in
(3.3) with that in (3.8), because the coefficients of the constraints in the minimum-cost flow
problem form a totally unimodular matrix [22]. Furthermore, we can equivalently replace
it with the dual problem. Hence we obtain the result.

5.3. BLP formulation for Case 3
We first relax the Bellman equation to inequalities:

o(th. 1) <0, (5.1)

v(z) <ia)+ Y v(0 e, 07a)f(e), a € Alx), z € X. (5.2)
ecAg(x)

It is known that solving the Bellman equation is equivalent to the following LP problem [16].

Using this fact, the equilibrium problem can be expressed by the following BLP problem:

Max objective function of M(f)

~

s.t.  constraints of M(f)

0-1
Z fla)=1, Wve UV§
a€dtvnAs 0=0

~

f(a) 20, Vae A2,

where the value of the game is equal to the value of v(sf, s})) at every solution in this problem.
Notice that, as shown in (3.9), the outer maximization of the equilibrium problem is taken
with respect to f (i.e., flows), but is replaced by f (i.e., behavior strategies) in the BLP
formulation. This validity follows from the outcome-equivalence of f and f.
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6. Computational Experiments

In this section, we present computational results for the evaluation of strategies in Cases 2
and 3 (Case 1 is a special case of Case 2) and the results of computing the Stackelberg
equilibrium in Case 2.

6.1. Virtual facility model

To test our approaches in a practical setting, we generate graphs on a square lattice as
facilities to be patrolled (see Figure 8). Nodes are arranged at normal cells of an n x n
square grid. The first and last columns are the intruder’s sources and targets, respectively,
whereas the guard can start from any node at time 0. Obstacles that block the vision
of the guard are placed at random, and are depicted as black-colored cells. We set three
scenario variables: (i) spatial size, (ii) temporal size, and (iii) obstacle ratio. The spatial size
represents the number of cells (nodes). The temporal size, that is ©, represents the length
of the time interval. The obstacle ratio determines the proportion of obstacles in the grid.
We use the degree of detection, defined in (3.1), as the reward function. The brightness of
all cells that are not obstacles is set to 1.

|

re 0200

| M&:ﬁ . |
. #Z —@— L 1/5 1/4
TieT ? . i

i

1/5¢-1/5—>1/5 1/4—>1/4
N ﬂ . k&, ha Y

Figure 8: Graph on a square lattice with Figure 9: Move probabilities of the robotic
random obstacles patroller

To observe the computational behaviors of the intruder’s best response, we consider a
simple patrol robot following a random walk (see Figure 9.).

6.2. Strategy evaluation

We implemented the shortest path algorithm for Cases 1 and 2 and the algorithm solving
the Bellman equation for Case 3 using C++. We executed them on a Linux Workstation
with Intel® Xeon®:-E3-1275 processor of 3.60GHz and 32GB memory installed.

First, we fixed the obstacle ratio to zero and the temporal size to 200. Then, we repeated
the process of generating a facility and computing the intruder’s best responses while varying
the spatial size from 10 x 10 to 100 x 100 nodes. The results are shown in Figure 10. As
expected, the payoff from the intruder’s best response in Case 3 is generally much smaller
than that in Case 2. This is because, at each timepoint, the intruder can reroute to reach
one of his target safely. Although the computational time increases quadratically with the
spatial size in both cases, it is found that our approaches are successfully work in a realistic
time for problems with spatial sizes of up to 100 x 100. In the largest case, the MDP with
200 x (100 x 100)? = 20 billion states is exactly solved.
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Figure 10: Effect of the spatial size

Second, we fixed the obstacle ratio to zero and the spatial size to 40 x 40 nodes. Then
the computational experiments were carried out for various temporal size (see Figure 11).
The results clearly show that the computational time increases linearly with the temporal
size in both cases, but Case 3 is more sensitive to the size. We can also observe that the
expected payoff for Case 3 becomes the same as the expected payoff for Case 2 when the
temporal size matches the shortest distance between the sources and the targets, because
the intruder loses his ability to reroute.

0.30 30
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Figure 11: Effect of the temporal size

Finally, we fixed the number of time steps to 200 and the spatial size to 40 x 40 nodes.
Then we carried out the experiments for various obstacle ratios. The results are shown
in Figure 12.* We can observe that increasing the obstacle ratio first reduces the payoffs,
especially in Case 3, the payoff goes to zero. This is because the intruder can use obstacles
successfully to escape the patrol robot’s time eyes. However, when the obstacle ratio exceeds
a certain value, the payoffs turn to increase. This is because the obstacles reduced the
number of available routes of the intruder.

*We computed the visibility 6(u,v) for all pair (u,v) of nodes in advance by determining whether or not
there is an obstacle on the segment wv. This time is not included in the evaluation time, and is much shorter
than the evaluation time.
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Figure 12: Effect of the obstacle ratio

6.3. Equilibrium strategies in Case 2

We fixed the obstacle ratio to zero and the temporal size to 100. Then, we repeated the
process of generating a facility and computing the Stackelberg equilibrium for spatial sizes
from 3 x 3 to 10 x 10 nodes. In this experiments, we used Gurobi Optimizer ver. 6.5.1
(Gurobi Optimization, Inc.) as the optimization engine to solve the LP problem formulated
in Section 5. The results are depicted as line graphs (in green) in Figure 13. For comparison,
the results of the strategy evaluation for the robotic patroller, obtained in Section 6.2,
are depicted as a line graph (in blue). The computational time required to compute the
Stackelberg equilibrium is not insignificant unfortunately. However, this solution enables us
to consider how good the given strategy is by comparing with exact optimal strategies.
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Figure 13: Effect of the spatial size

Second, we fixed the obstacle ratio to zero and the spatial size to 10 x 10 nodes. The

computational experiments were carried out with various temporal sizes. The results are
shown in Figure 14.
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Figure 14: Effect of the temporal size

Finally, we fixed the number of time steps to 50 and the spatial size to 10 x 10 nodes.
The computational experiments were carried out for various obstacle ratios. The results
are shown in Figure 15. We can observe that the random walk strategy of the patrol robot
becomes progressively worse, compared with the equilibrium strategies, as the obstacle ratio
increases. In the literature, it is often said that using the simple random walk strategy is
a suboptimal solution, that is, it is not so worse. However, we see that it depends on the
structure of the facility to be patrolled.
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Figure 15: Effect of the obstacles ratio

7. Concluding Remarks

We have formulated rich dynamic patrolling games in which a security guard patrols a
facility so as to maximize the total sum of rewards (degree of detection), whereas an intruder
attempts to reach a target while minimizing this value. For all three cases, we have proposed
the mathematical optimization formulation to compute the intruder’s best response. Given
a patrol strategy, these formulations can be used to estimate the loss in the worst case
scenario. Moreover, for all three cases, we have proposed the mathematical optimization
formulation for computing the equilibrium strategy. MILP formulation for Case 1 and BLP
formulation for Case 3 have scalability issues. However, these formulations together with LP
formulation for Case 2 are useful in clearly understanding the computational difficulties of
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the problems. Constructing more effective solution methods is our future work. The authors
believe that the findings from this study will be valuable for many real-world applications.

Although we assume that the guard and the intruder have the same maximum moving
speed, our models can be naturally expanded to handle cases in which the maximum speeds
of them are different by preparing two time-expanded networks (one for the guard and one
for the intruder). By adding constraints to the guard’s flow strategies (i.e., F#), our model
can handle cases where the security guard must visit some given checkpoints. In the future,
we would like to verify the effectiveness of the proposed method while conducting further
numerical experiments assuming such various situations.
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