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Abstract  Optimal contribution selection (OCS) is a mathematical optimization problem that aims to
maximize the total benefit from selecting a group of individuals under a constraint on genetic diversity. We
are specifically focused on OCS as applied to forest tree breeding, where selected individuals will contribute
equally to the gene pool. Since the diversity constraint in OCS can be described with a second-order cone,
equal deployment in OCS can be mathematically modeled as mixed-integer second-order cone programming
(MI-SOCP). However, if we apply a general solver for MI-SOCP, non-linearity embedded in OCS requires
a heavy computation cost. To address this problem, we propose an implementation of lifted polyhedral
programming (LPP) relaxation and a cone-decomposition method (CDM) by generating effective linear
approximations for OCS. Furthermore, to enhance the performance of CDM, we utilize the sparsity structure
that can be discovered in OCS. Through numerical experiments, we verified CDM with the sparse structure
successfully solves OCS problems much faster than generic approaches for MI-SOCP.
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1. Introduction

As in other types of breeding, forest tree improvement is based on recurrent cycles of se-
lection, mating and testing. In the selection phase, we should take genetic diversity into
consideration so that tree health and the potential for genetic gain in the future are con-
served. A general objective of optimal contribution selection (OCS) [4, 20, 21, 25] is to
maximize the total economic benefit under a genetic diversity constraint by determining the
gene contribution to be made from each candidate. Based on the type of contribution, OCS
problems can be classified into unequal and equal deployment problems. While an unequal
deployment problem (UDP) does not require the same contribution for selected candidates,
an equal deployment problem (EDP) stipulates that a specified number of selected individ-
uals must contribute equally to the gene pool.

A mathematical optimization formulation for UDP is given by Meuwissen [13] as follows:

maximize : g'x )
subject to : efx =1, 1<z <wu, ' Az < 20.

The decision variable is & € R™ that corresponds to the gene contributions of individual
candidates, where m is the total number of candidates. The objective is to maximize the
total benefit g”’x where the vector g = (g1, 92,...,9m)’ contains the estimated breeding
values (EBVs) [27] representing the genetic value of candidates in . In this paper, we
assume that g is given. Using a vector of ones e € R™, the first constraint e’z = 1 requires
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that the total contribution of all candidates be unity. The second constraint is composed
by a lower bound I € R™ and an upper bound u € R™.

The crucial constraint in (1) is 7 Az < 260 that requires the group coancestry Z*Az he
under an appropriate level § € R, , where R, is the set of positive real numbers. Group
coancestry was originally introduced by Cockerham [12], and defined as the probability that
two genes sampled randomly from a population are identical by descent (IBD), i.e., have
a common ancestor. Group coancestry can be derived from the numerator relationship
matrix A € R™*™ proposed earlier by Wright [14], where each element A;; in the matrix
A is the probability that genotypes ¢ and j will carry genes at any given chromosome
location that are IBD. If group coancestry 2*Az is too high, the close relatedness among
individuals in the population will cause genetic diversity to be lower, so that the long-term
performance would be depreciated. Pong-Wong and Woolliams [24] observed that the matrix
A is always positive definite, and they formulated the UDP as a semi-definite programming
(SDP) problem. Their SDP approach gave the exact optimal value to the UDP for the first
time, but Ahlinder et al. [20] reported that the computation cost of the SDP approach was
very high, even when using a parallel SDP solver [15,31]. To reduce the heavy computation
burden, Yamashita et al. [4] proposed an efficient numerical method based on second-order
cone programming (SOCP) [8].

The current research is mainly concerned with EDP of form:

maximize : g'x
: T 1 T (2)
subject to : efx =1, z; € {0,~} (i=1,...,m), " Az < 20.

We should emphasize that the simple bound I < & < w in the UDP is replaced by another
constraint x; € {0, %} to require an equal contribution from each chosen candidate. Here,
N is the parameter to indicate the number of chosen candidates. In short, we have to choose
exactly N individuals from a list of m available candidates in the EDP. Through this paper,
we assume that (2) is feasible.

The OCS problem has been widely solved through a software package GENCONT developed
by Meuwissen [25]. The numerical method implemented in GENCONT is based on Lagrange
multipliers, but it forcibly fixes variables that exceed lower or upper bounds (0 <uz; < %) at
the corresponding lower and upper bound. Thus, even though GENCONT generates a solution
quickly, the solution is often suboptimal. To resolve this difficulty in GENCONT, another
tool dsOpt, incorporated in the software package OPSEL [26], was proposed by Mullin and
Belotti [21]. dsOpt is an implementation of the branch-and-bound method combined with
an outer approximation method [11]. This implementation was designed to acquire exact
optimal solutions, but dsOpt generates a huge number of subproblems in the framework of
branch-and-bound, so that computing the solution takes a long time. Hence, there has been
a strong desire for a different approach to solve the EDP in a more practical time.

In contrast to existing implementations [21,25], this paper is focused on the fact that
the crucial quadratic constraint 7 Az < 20 in (1) and (2) can be described as a second-

order cone <\/@, Ua:) € K™. The matrix U is the Cholesky factorization of A such

that A = UTU. Throughout this paper, we use K™ to denote the (m + 1)-dimensional
second-order cone:

K™= {(Uo,'U> € R+ x R™ : H’UH2 < ’Uo}.

Here, R, is the set of nonnegative real numbers. Introducing a new variable y = Nz, we
convert the OCS problem (2) into an MI-SOCP (mixed-integer second-order cone program-
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ming) formulation:

maximize : Y

T
N
. . . (3)
subject to : e'y=N, y; €{0,1} (i =1,...,m), (\/20N,U11> e xm.

The main difficulty in this MI-SOCP formulation is the non-linearity arising from the second-
order cone, and this leads to a heavy computation cost. Recently, many approaches have
been proposed to solve MI-SOCP formulations [22, 29, 30, 32|, but these cannot directly
exploit the structure of the matrices A or U.

In this paper, we examine three approaches. The first one is a lifted polyhedral pro-
gramming relaxation with active constraint selection method (LPP-ACSM) that removes
the non-linearity, exploiting an extension of polyhedral programming relaxation for the
second-order cone programming problem [16,17,23]. The second approach is a cone de-
composition method (CDM) that is based on a geometric cut in a combination with a
Lagrangian multiplier method. A cutting plane is a geometric cut if the plane is computed
with an orthogonal projection [7]. Cone decomposition itself has already been used in CPLEX,
but there depends on an outer approximation, therefore, the proposed CDM generates a
different linear approximation. The last approach to reduce heavy computation burden is
utilizing the sparsity found in the inverse of Wright’s numerator relationship matrix A~
This sparsity exploitation is the key property developed in [4] (See also Section 4). This
sparsity and the geometric cuts are combined into a sparse linear approximation, and it can
strongly enhance the performance of CDM.

In addition, we prove that the Lagrangian multiplier method in the framework of CDM
gives the analytical form for the geometric cut, therefore, the proposed CDM and and its
sparse variant generate the linear cuts without relying on iterative methods.

The remainder of this paper is organized as follows. In Section 2, we briefly review LPP,
then propose its enhancement LPP-ACSM. Section 3 proposes the framework of CDM and
demonstrates that the geometric cut in CDM has an analytical form. Section 4 is focused
on CDM with the enhancement by exploiting the sparsity structure in the inverse matrix.
The numerical results will be presented in Section 5. Finally, in Section 6, we give some
conclusions and discuss future studies.

2. Lifted Polyhedral Programming Relaxation

Lifted polyhedral programming (LPP) relaxation [16,23] is an approach to solve MI-SOCP
problems by employing a polyhedral relaxation. Instead of an MI-SOCP problem that in-
volves difficult non-linear constraints, we solve a mixed-integer linear programming problem
(MI-LP) as the resultant problem.

In LPP relaxation, many hyper-planes are generated for constructing a polyhedral cone
P to approximate K™. Here, € > 0 is a parameter to control the tightness of LPP
relaxation. Vielma et al. [16] gave the detailed formulation of P.". They first decompose
the (m + 1)-dimensional second-order cone K™ into multiple 2-dimensional second-order
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cones K? and linear constraints:

K™ :={(vg,v) e R, x R™: EI((W)}LO € RT™ such that

' t:
(831,03, 67"") e KC* (izl,... : EJ =0, ,J_1>,

5 5?:}2] for j =0,---,J — 1 such that ¢; is odd}

with J = [logym], and {t;}/_, is defined recursively as to = m and t;4; = [%W for
2
constraint v > v? + v3 + v3 + v3. Based on the above decomposition, this constraint is
decomposed into T'(4) = [2] + |2] = 3 cones of K% v > (61)% + (63)% (61)* > vi + 0% and
()" > w3 + vi
Then, a replacement of K? in (4) by W;(e) defined below generates P™:

j=0,...,J —1so that T(m) = Z}]_ol V—]J For example, K* is determined by a quadratic

Wi(e) := {(’Uo,’Ul,'UQ) e Ry xR?*: 3(a, B) € R*9 such that

T T .
Vg = Qg (e) COS (25 ®) ) + Bs; (e sin <W> , oy = vy cos(m) + vg sin(7),

B1 > |vgcos(m) — vy sin(m)|, a;y1 = vy cos (;) + f; sin (;)

Biv1 > |5 cos (%) — a sin (%) , forie{l,...,s;(e) —1}}

5i(e) = F%ﬂ - [1og4 (?ﬂ log(1 + e))—‘ for j€ {0, J—1}.

The polyhedral cone P!" is a good approximation of ™ in the sense that P" is wedged
between K™ and K", where K" is an € extension of K™ defined by K" = {(vo,v) €
Ry x R™ : ||Jv|la < (1 + €)vg}. More precisely, P satisfies K™ C P C K™ as proven
in [17].

Naturally, when we take smaller €, the relaxation P becomes tighter, but we require
more hyper planes to build P”. In particular, the number of linear constraints in W;(e)
is 4 + 3(s;j(€) — 1), when we divide each linear inequality that involves absolute values into
two linear inequalities. The number of linear inequalities will be larger as we set a tighter
€. Therefore, another implementation is needed to reduce the larger number of added linear
inequalities.

We propose a conversion of active linear constraints at the solution into equality con-
straints. In an optimization problem P, inequality constraints alx < b; (i =1,...,p) with
a; € R7and b; e R (i=1,...,p) are called active constraints at an optimal solution x* if
al'z* = ;. For the EDPs, we conducted preliminary experiments changing the parameter
€ as 0.04, 0.05, and 0.08 and found that the constraints of form

(5)

where

f1 > —wvy cos(m) + vy sin(m) (6)

in (5) were always active at «*(e), where x*(¢€) is the optimal solution for the LPP relaxation
with e. Therefore, we numerically checked the activeness of the inequality (6).
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Based on this observation, we propose an LPP relaxation with an active constraint
selection method (LPP-ACSM) to solve a restricted formulation of the EDP (3).
Algorithm 2.1. [LPP relaxation with active constraint selection method (LPP-ACSM)]
1. Build an MI-LP problem by replacing ™ in (3) with P".

2. Replace the inequality constraints of form 7 > |vg cos(m) — vy sin(m)| in (5) with the
corresponding equality constraints 51 = —vq cos(m) + vy sin(m).
3. Solve the MI-LP problem generated in Step 2.

Note that K™ is decomposed into T'(m) cones of K* in (4). In each K?, we reduce one
linear constraint by applying LPP-ACSM. Therefore, the number of constraints reduced in
the LPP-ACSM is T'(m) and we could expect a reduction in computation time.

3. Cone Decomposition Method

In this section, we propose a cone decomposition method (CDM) for EDP (3). The basic
concept of the cone decomposition method also draws on the properties of second-order
cones. The above LPP approach decomposes the (m + 1)-dimensional second-order cone
K™ into multiple two-dimensional second-order cones K? in a recursive style as shown in
(4). In contrast, the proposed CDM makes use of different decomposition, based on the
following theorem from [6].

Theorem 3.1. [6] Let

m
H" = {(vo,'v,'w) e R, UJQ» <wv (j=1,...,m), ij < g, vy > 0},

i=1

A~

then K™ = Proj(voyfv)(H ), where Proji,, vy s the orthogonal projection onto the space of
(vo, v) variables.

Theorem 3.1 gives another decomposition of K™ by using an auxiliary vector w € R™.
Corollary 3.2. A second-order cone K™ can be also written as

KM .=

{(vo,v) € R™™ : 3w € R™ such that UJQ- <wjvy (j=1,...,m), ij < vy, vg > O}.

j=1

The utilization of Corollary 3.2 leads to another reformulation of our OCS (3) as follows:

maximize : ZF
subject to : ey =N,z = Uy, (7)
22 <wico (1=1,...,m), S w; <co y; €{0,1} (i=1,...,m)

where z; is the ith element of z and ¢y = V/20N. In this new formulation, the decision
variables are y, z, and w.

The nonlinear constraint in (7) is only the quadratic constraint 2? < w;cy with two
variables z; and w;. In the proposed CDM, we generate cutting planes to these quadratic
cones. Particularly, we use the geometric cuts as cutting planes, that is, we generate the
cutting planes employing orthogonal projections [7].

The framework of the proposed CDM is given as Algorithm 3.3.

Algorithm 3.3. [Cone decomposition method (CDM)]
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Step 1 Let P° be an MI-LP problem that is generated from an optimization problem
(7) by omitting the quadratic constraints z? < w;cy (i = 1,...,m). However,
this constraint implicitly guarantees the nonnegativity of w;. To make the MI-LP
relaxation tighter, we explicitly add w; > 0 (i = 1,...,m). Apply an MI-LP solver
to PY, and let its optimal solution be ('QO, 20, 'EUO). Let k£ = 0.

Step 2 Let a set of generated cuts C* = 0.

Step 3 For each i = 1,...,m, if (£F)? < ¢ is violated, apply the following steps.

Step 3-1 Compute the orthogonal projection of (2%, F) onto 2? < w;cy by solving the
following sub-problem with the Lagrangian multlpher method;

minimize (z — Zk) + % (@D — wf)Q
subject to : 22 < wcy.

N =

Let (zF, w") be the solution of this subproblem.
Step 3-2 Add to C* the following linear constraint

2k Zk T 2 — ZF <0
wf — wk w; — wk -
Step 4 If C* is empty, output §* as the solution and terminate.

Step 5 Build a new MI-LP P*+! by adding C* to P*. Let the optimal solution of P**!
be ( THAR LA ﬁ)kH). Return to Step 2 with k£ + k + 1.

In Step 3-1 of Algorithm 3.3, we compute the orthogonal projection. It would be desirable
to compute the orthogonal projection on the original quadratic constraint 7 Az < 26, but
such orthogonal projection does not have an analytic form. Kiseliov [9] proposed some nu-
merical method, but this is an iterative method. Another iterative method is also proposed
by [5] to solve different case of second-order cones. In contrast, the orthogonal projection
in Step 3-1 is onto a specific cone z? < wey. We can derive its analytical form, as proven
in the next theorem. Note that the decomposition in Corollary 3.2 enables us to derive this
theorem.

Theorem 3.4. Assume that (3,1%) € R? wviolates 2> < by and 0 < < ¢g. Let (Z,w) € R?
be the orthogonal projection of( d)) onto z*> < wcy. Then, (Z, w) can be given by an
analytical form.

In the proof of Theorem 3.4, we make use of Cardano’s Formula [18] to obtain a root of
a cubic function analytically.

Theorem 3.5. [Cardano’s Formula [28]] Let F'(\) be a cubic function F(\) = a\® + bA\?* +
cA+d with a # 0. Then F(X) =0 has three solutions

)\1 - S‘i‘T—%,
Ny = —HE -2+ 25T,
e ]

where

s=\ri Vo i T=ir JPim ="

9a2
9abc — 27ad — 2b3
54a3 '

and, R =
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Proof. (for Theorem 3.4)
The orthogonal projection (Z,w) € R? is the optimal solution of the following subprob-
lem.
minimize (z = 2)* 4+ L (w — )
subject to : 22 < wey.

N —=

(8)

This problem has a convex closed feasible region and its objective function is strongly convex,
therefore, this problem has a unique solution. Since (2, ) is outside of the region 2% < wcy,
the projection exists on the boundary of the region. We can replace z? < wey with 22 = wey,
and (8) is equivalent to the following optimization problem:

minimize : 3 (z — 22+ L (w—w)” ()
subject to : 2?2 = wcy.
To apply the Lagrangian multiplier method, a Lagrangian function of (9) with a La-
grangian multiplier A € R is given by:

1

Llzw,\) = %(z _ P 4 S (w — ) = Aweo — 22).

Setting VL = 0, we have

V.L=2—-24+2\z=0, (10)
Vol = w— 1 — Aco = 0, (11)
VaL = —cow + 22 = 0. (12)

Substituting (10) and (11) into (12) leads to a cubic function with respect to A:
4N + (4¢h + deg) A + (c§ + deo) A + (cotd — 2%) = 0. (13)

Defining a = 4¢3, b = 4c+4cow, ¢ = 3 +4cow, and d = cyi — 2%, we apply Theorem 3.5
to obtain A. In Theorem 3.5, we have three solutions Ay, Ag, A3. Among the three solutions,
only A; can generate the analytical solution since the other two contain nonzero imaginary
parts. To prove that A and A3 are complex numbers, it is enough to show S # T, and this
is equivalent to show @Q® + R? # 0. Computing

3ac — b2\ ° 9abc — 27a%d — 203\ 2
3 9
@R = < 9a? ) +( 54a3 )

27ad? — 18abed + 4ac® + 4b3d — b3c?
108a4 '

we can prove that Q3+ R? # 0 by showing the numerator is nonzero. Substituting a, b, ¢, d,
we derive

27a*d® — 18abed + 4ac® + 4b°d — b*c® = 32¢33%(co — 2)* + 432¢5 2"
where the right-hand side part can be transformed as follows:

32¢33%(co — 20)* + 432¢5 2t = 16¢35%(2¢h — 12c51 + 24cow® + 27co2* — 160°)
> 16¢52%(2¢) — 12ci + 24cow® + 27ch — 1610°)
= 16¢32*(2¢] + 15cg + 8c? + 16(cy — w)1w?).
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Here, the inequality is due to 2% > 1cy. When we solve an MILP for obtaining the (2, ), we
add w; > 0 (i =1,...,m), therefore its solution satisfies 0 < 1 < ¢y. Since ¢g = V20N # 0,
we know that the numerator is nonzero. Therefore, we proved that Ay and A3 have nonzero
imaginary parts.

Thus, we only have the analytical solution by A;. After we obtain A as A, it is easy
to compute z and w by (10) and (11). Therefore, the optimal solution (Z,w) of (8) has an
analytical form. O

Through the analytical form of the optimal solution (z,w), we can also derive an ana-

lytical form
_\T _
() ()
W — W w — W

N>

The substitution of z = 55 and w = Acy+w results in an analytical form of the geometric
cut as
z z
. 5 \/GZNO(A— \/92N0)<0,
(z C4+1> (z C’4—|—1>+ / p|lw—w+ / 1) <
where

3

864N302 P2 72N20 ’

540N 2* + /20 (@N - 2@)3 (@N - 2@)2
O = c

20N + V200
B 30N . .
Oy =2 (01 —(c2— 02)%> Yo ((012 G+ 01) N

Cs , and

Note that the analytical solution of (8) can be also proved via solving a one-dimensional
unconstrained optimization problem. Rewriting problem (8) as
.. . 1 A\ 2 1 2 ~ 2
minimize 3(z — 2)° + 5 <z—0 — w)
and utilizing Cardano’s Formula, we can also obtain the optimal solution (z,w) of (8) in an
analytical form. There, we again need a discussion that only one root of the corresponding
cubic function is a real number.

The termination of the proposed method is guaranteed by the following theorem.
Theorem 3.6. Algorithm 3.3 terminates in a finite number of iterations.

Proof. The number of points we are interested for y is at most 2™, where m is the number
of candidate genotypes, due to the binary constraints y; € {0,1} (i =1,...,m). In the kth
iteration, the generated cuts in C* remove 2*, w*. Since §" is directly connected to 2* by
the constraint z = Uy and U is invertible, §* is not feasible in P¥*1. At least one solution
will be infeasible in each iteration, therefore, the number of iterations is also at most 2™. [

4. Cone Decomposition Method with a Sparse Matrix

A sparsity structure in A~" (the inverse of Wright’s numerator relationship matrix) was the
key property in [4] to reduce the computation time for solving UDP (1). We exploit this
sparsity structure to improve the performance of CDM. In particular, we will discuss that
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MI-LP problems which need to be solved in CDM will have fewer nonzero elements by the
sparsity, and this will lead to a shorter computation time.

As indicated earlier, Wright’s numerator relationship matrix A describes the addi-
tive genetic similarity between individuals. Each element of A is determined by pedi-
gree information [14]. When p(i) and ¢(i) are the parents of genotype i (we can as-
sume 1 < p(i) < ¢(i) < i < m without loss of generality), the element A;; is given by
A = m A is important for explaining genetic (co)variances and has numerous
applications in the field of quantitative genetics, including the methods for estimation of
breeding values that require inversion of A. Henderson [3] outlined a method for deriving
A~ based on the root-free factorization of A and showed the high sparsity of the inverse
triangular factor of A. An efficient use of this sparsity then allows direct computation of
A~ as a sum of individual contributions based on a chronological reading of the pedigree.

The resulting sparse structure of A~' was the key property in [4] to reduce the com-
putation time for solving UDP (1). We also exploit this sparsity structure to improve the
performance of CDM. In particular, we will discuss that MI-LP problems which need to
be solved in CDM will have fewer nonzero elements by the sparsity, and this will lead to a
shorter computation time.

The sparsity structure in A™' can be derived from an efficient formula due to Hen-
derson [3]. We can decompose the positive definite matrix A~" into A™' = B” B, where
B € R™™ is the matrix defined in [4]. If we use b] to denote the ith row of B, b is given
by

el for i € Py,
b =< o (e — %ep(,-))T for i€ Py, (14)
T .
Vai (€ = 3epi) — 5€q0)  for i €Po.
Here, o; € R (i = 1,...,m) is a constant computed using Quaas’s algorithm [2], and

e; € R™ is the ith unit vector. From the actual value of o; € R (i = 1,...,m) obtained by
Quaas’s algorithm, it holds that bl b; < 2. The set of genotype {1,...,m} is classified by
the pedigree information into the disjoint three sets Py (no parents are known), P; (only
one parent p(i) is known), and Py (both parents p(i) and ¢(i) are known).

1000 1000

2000 20mf, ..

3000 3000 [r* ': "ﬂ-
4000 apoo | w4 i
5000 5000
6000 6000 Lo
7000 7000
8000 8000

9000 9000

10000 10000
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

nz = 23137740 nz = 30100

(a) Matrix U (b) Matrix B

Figure 1: Non-zero element structure of matrix U and B for m = 10100

The important property in (14) is that the number of the nonzero elements in each b;
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is at most three. For the case Pq, the nonzero elements appear at only the ith, p(i)th and
q(i)th positions.

Figure 1 illustrates the structure of nonzero elements in the matrices U and B for an
EDP of size m = 10100. The matrix U contains 23137740 nonzero elements, while B has
only 30100 elements, thus we observe that matrix B has nonzero elements almost 769 times
fewer than U.

We exploit the sparsity in the framework of CDM. Let us recall that the original quadratic
constraint in (3) is equivalent to a quadratic constraint y? Ay < 20N2. We then introduce
a new variable v € R™ by a relation v := Ay; thus the quadratic constraint can be replaced
by vT A7 v < 20N?. Since A™' = BT B and b! is the ith row of B, the quadratic constraint
vTA7'v < 20N? is further equivalent to

(V20N, (bTv, blw, ... b u)T) e K™ (15)

Thus, using Corollary 3.2 and ¢y = V20N, (15) can be decomposed into

Zwi < coand (bl v)? <wico (i=1,...,m). (16)

i=1

If (9,%;) € R™ x R, violates the inequality (b v)?> < wjco, we can again consider a
geometric cut, but this time we utilize the orthogonal projection of (¥,1;) onto (b] v)? <
wico. We use d¥w; + (df)Tv + d? < 0 to denote the geometric cut as a cutting plane
that separates the point (®,;) from the cone (b} v)? < wsco. This cutting plane has an
advantage for computation efficiency as described in the next theorem.

Theorem 4.1. Assume that (0,) violates (b'v)? < wcy. Then, the geometric cut d*w +
(d*)Tv+d° < 0 by the orthogonal projection onto (b'v)? < wcy can be given by an analytical
form. In particular, the number of the nonzero elements in d° is at most that of b.

Since the number of the nonzero elements in each b; is at most three, this geometric cut
is a sparse linear constraint. This property is remarkably effective when we solve MI-L.P
problems iteratively. In contrast, the cutting plane used in dsOpt [26] is derived from the
first-order Taylor series. For an iterate y* that violates the quadratic constraint y” Ay <
20N?, the cut in dsOpt is of form (Ay*)Ty < V20N2,/(y*)T AyF. Since this cut involves
the dense matrix A, it usually involves m nonzero elements, thus it is much denser than the
geometric cut generated from Theorem 4.1.

Proof. In a similar way to Theorem 3.4, let (v, w) be the orthogonal projection of (v,w)
onto (b'v)? < wcy. Then, (B, w) can be obtained by the following sub-problem:

minimize : 3|Jv — 9[> + 1 (w — )

2
SU.bjeCt to (bT’U)2 = wey. (17)

A Lagrangian function is defined with a Lagrangian multiplier A € R:
1 1
£(0,w,3) = gl = 8 + 5(w — @)* — Mweo — (570)%).
By setting the differentials to zero, we obtain

v—D 20TV =0, w—1=Ay, wc=(bv).
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A distinguished difference from Theorem 3.4 is an application of the Sherman-Morrison-
Woodbury formula [1]. The use of this formula leads to

2A(b"0)b

=T +2X\b" ) o =0 .
14+2\b"0

(18)

The substitution of w =  + A¢y and (18) into wcy = (b”v)? results in the following cubic
function

(4c2(B"B)*)N? + (4cib" b + 41y (" b)?)A\* + (cj + dadeg(bT b))\ + (e — (b 9)?) = 0. (19)

We can use a similar step to Theorem 3.4 to show that this cubic function again has only
one real root, which we will denote by A.  In particular, if we can show Q®+ R? # 0,
Theorem 3.5 guarantees an analytical form on A. We put the coefficients of (19) to derive
the positivity of Q3 + R%:
the numerator of @Q° + R?
= 16(bTb)3(bTA)2
(—16(b"b)*w® + 24(b"b)*cov® + 27(b" b) (b" 0)cy — 12(b" b)cgd + 2¢})
— 16(67b)}(b70)%C (2 (co — 267b))* + 27(b7b) (b7 )2 c0>

V

16(b7b)3 (b7 )23 ( (co — 26" b)) +27(bTb)wco>

(
16(67b)* (67 9)2c3 (4(6"b)ib + co)” (2c0 — (b))
0.

v

The first inequality comes from (b’ ®)? > 1cy > 0 and the last inequality from b'b < 2,

which is guaranteed by the actual value of o from Quaas’s algorithm, and 0 < w < ¢.
Using A\, we obtain ¥ = © — fj;;b;b

(0,w) and (b'v)? < wey at (v, W) can be given by

~ _ T
() (2n)=o
w—w w w

therefore, this cut can be rewritten as d“w + (d")Tv + d° < 0 with

b and w = W + Acg. The geometric cut between

- 2A(b"0)b
d¥ = —=Xo, d’= (—}J)T
1+ 2X\b
— T —
2A(be;)b) < 2)\(bT@)b) -
dO = — _— v— —m—— + AC w + )\C .
(1 +2)b7b 1+2X\67b of o)
Consequently, we obtain an analytical form for the geometric cut. In addition, since
fig;;)b € R, the number of nonzero elements in d’ is at most that of b. O

With the geometric cut for the cone (b v)? < w;icy, we develop Algorithm 4.2.
Algorithm 4.2. [Cone decomposition method with the sparsity in the inverse of the nu-
merator relationship matrix (CDM-B)]

Step 1 Let P° be an MI-LP problem that is generated from an optimization problem by
omitting the quadratic constraints (b v)? < wico (i = 1,...,m). Apply an MI-LP

solver to P°, and let its optimal solution be (@0, 0°, 12)0). Let k£ = 0.
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Step 2 Let a set of generated cuts C* = (.
Step 3 For each i = 1,...,m, if (b]®")? < w¥c, is violated, add the geometric cut
obtained by Theorem 4.1 to C*.
Step 4 If C* is empty, output §* as the solution and terminate.
Step 5 Build a new MI-LP P**! by adding C* to P*. Let the optimal solution of P**!
be (@kH, @’““,w’““). Return to Step 2 with & «+ k + 1.
Since Algorithm 4.2 is a variant of CDM that exploits the sparsity of the matrix B, it
will be referred as CDM-B. This algorithm also terminates in a finite number of iterations.
Theorem 4.3. Algorithm 4.2 terminates in a finite number of iterations.

Proof. In a similar way to Algorithm 3.3, we again rely on the upper bound 2™ for the
number of points for feasible y. In each iteration of Algorithm 4.2, we remove 9" and

w". Therefore, we employ the constraint y; = bl v for i = 1,...,m to show that 4" such
that ¢ = b! " is removed in the kth iteration. Therefore, the number of iterations in
Algorithm 4.2 is at most 2. m

5. Numerical Results

Numerical experiments were conducted to compare the performance of the three proposed
methods (LPP-ACSM, CDM, and CDM-B) with existing software (dsOpt as implemented
in OPSEL, GENCONT, a general MI-SOCP solver CPLEX, and existing LPP). The proposed
methods were implemented using Matlab R2017b by setting CPLEX as the MI-LP solver. All
methods were executed on a 64-bit Windows 10 PC with Xeon CPU E3-1231 (3.40 GHz) and
8 GB memory space. The data were taken from https://doi.org/10.5061/dryad.9pnbm
or generated by the simulation POPSIM [10]. The sizes of the test instances are m =
200, 1050, 2045, 5050, 10100, and 15222. We set parameter N = 50, 100, and as a stopping
criterion for CPLEX, we used gap = 1%, 5%. The computation time was limited to 3 hours
for each execution.

We are first focused on the results from the OCS solver GENCONT in Table 1. In this table,
the first column is m, the number of candidates, while the second column is 26. The columns
“gTx” and “x” Ax” are the obtained objective values and group coancestry, respectively.
The fifth column shows the computation time, and the last column the number of chosen
candidates by GENCONT. In particular, if « is a feasible solution, it should hold z? Az < 20
and the number of chosen candidate should be exactly N. We only show the solution for
m < 5050, since the results with m = 10100 and 15222 were not obtained due to out of
memory.

From Table 1, we observe that the number of chosen candidates did not match the given
parameter N. This indicates that GENCONT failed to output feasible solutions.

The results for other methods where N = 50 and N = 100 are presented in Tables 2 and
3, respectively. In contrast to GENCONT, the other methods output the solution that match
N. The first column indicates methods conducted in the numerical experiments. In the
tables, while CPLEX-default is used to solve (3) using the default setting; CPLEX-LPrelax
is used for solving (7) by setting mip.strategy.search=2 in CPLEX to use LP relaxation
forcibly.

For the LPP relaxation and its modification (LPP-ACSM), we fixed € = 0.005 for gen-
erating P.", so that these two methods output feasible solutions. In addition, since only
LPP and LPP-ACSM require the parameter ¢, we show the value of € for only these two
methods in the column (14 €)26. The other methods do not need the parameter €, and this
is indicated by “*” in the tables.
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Table 1: Numerical results on GENCONT

N =50
m 20 g'x xTAxz time (sec) # selected N
200 0.0334 11472 0.03340 3.54 64
1050 0.0627 2591 0.06270 7.20 81
2045 0.0711 438.36  0.07109 111.52 71
5050 0.1081  43.44 0.10810 1561.43 78
N =100
m 20 g'ez xTAx time (sec) # selected N
200 0.0258 8.89 0.02580 0.48 93
1050 0.0539  24.07  0.0539 4.77 94
2045 0.0628 432.75 0.06279 106.48 74
5050 0.0994  42.08 0.09940 1533.31 81

When the computation could not finish within the time limit of 3 hours, it is indicated
as "> 3 hours’ and the best objective values up to that point are shown in the tables. We
indicate out of memory by “OOM.”
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Table 2: Numerical comparison for EDPs (N = 50)
gap = 5% gap = 1%
Method m 20| (1+€)20 g x| T Az | time (sec) | g7z | *T Az | time (sec)
CPLEX-default * 24.99 | 0.03340 1.06 | 25.19 | 0.03340 8735.24
CPLEX-LPrelax * 25.16 | 0.03340 1.96 | 25.19 | 0.03340 3.96
dsOpt * 25.12 | 0.03340 5.32 | 25.18 | 0.03340 606.94
LPP 200 | 0.0334 | 0.03373 24.83 | 0.03340 26.81 | 25.11 | 0.03340 3691.26
LPP-ACSM 0.03373 24.84 | 0.03340 47.75 | 25.15 | 0.03340 2587.16
CDM * 25.02 | 0.03340 1.69 | 25.15 | 0.03340 1.72
CDM-B * 25.02 | 0.03340 1.64 | 25.04 | 0.03340 1.84
CPLEX-default * 24.97 | 0.06267 3.56 | 24.97 | 0.06267 6.64
CPLEX-LPrelax * 24.94 | 0.06265 4.27 | 24.94 | 0.06265 4.64
dsOpt * 24.97 | 0.06169 5.19 | 24.85| 0.06268 | > 3 hours
LPP 1050 | 0.0627 | 0.06333 24.54 | 0.06129 976.54 | 24.89 | 0.06291 | 10063.39
LPP-ACSM 0.06333 24.72 | 0.06215 1230.01 | 24.89 | 0.06291 1634.58
CDM * 24.65 | 0.06118 9.41 | 24.96 | 0.06238 12.11
CDM-B * 24.66 | 0.06138 2.98 | 24.95 | 0.06264 4.98
CPLEX-default * 437.21 | 0.07100 3.95 | 437.21 | 0.07100 3.83
CPLEX-LPrelax * 438.07 | 0.07060 2.97 | 438.08 | 0.07060 3.52
dsOpt * 432.94 | 0.06700 7.09 | 435.87 | 0.07020 14.42
LPP 2045 | 0.0711 | 0.07181 OOM OOM
LPP-ACSM 0.07181 OOM OOM
CDM * 434.26 | 0.06760 1.76 | 437.38 | 0.06960 2.52
CDM-B * 432.59 | 0.06640 1.68 | 436.16 | 0.07060 1.86
CPLEX-default * 41.90 | 0.10776 73.16 | 42.57 | 0.10781 | > 3 hours
CPLEX-LPrelax * 42.46 | 0.10658 11.42 | 42.46 | 0.10658 15.19
dsOpt * 41.57 | 0.10471 236.70 | 42.67 | 0.10807 | > 3 hours
LPP 5050 | 0.1081 | 0.109184 OOM OOM
LPP-ACSM 0.109184 OOM OOM
CDM * 42.56 | 0.10742 187.24 | 42.56 | 0.10742 182.10
CDM-B * 42.04 | 0.10507 5.37 | 42.54 | 0.10719 6.36
CPLEX-default * 44.89 | 0.06931 | > 3 hours | 44.89 | 0.06931 | > 3 hours
CPLEX-LPrelax * 45.91 | 0.06789 104.44 | 46.48 | 0.07008 200.55
dsOpt * 46.00 | 0.07005 4509.83 | 46.21 | 0.06975 8787.37
LPP 10100 | 0.0701 | 0.070803 OOM OOM
LPP-ACSM 0.070803 OOM OOM
CDM * 45.27 | 0.06896 1003.67 | 46.43 | 0.07005 1204.47
CDM-B * 45.88 | 0.06939 17.93 | 46.54 | 0.06989 28.93
CPLEX-default * 118.33 | 0.03840 | > 3 hours | 107.56 | 0.03280 | > 3 hours
CPLEX-LPrelax * 454.07 | 0.03860 350.14 | 458.85 | 0.03880 1080.17
dsOpt * OOM OOM
LPP 15222 | 0.0388 | 0.039189 OOM OOM
LPP-ACSM 0.039189 OOM OOM
CDM * 452.57 | 0.03880 450.84 | 461.83 | 0.03880 547.02
CDM-B * 449.01 | 0.03860 50.66 | 461.83 | 0.03880 112.58
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gap = 5% gap = 1%
Method m| 20| (14620 g x| T Az | time (sec) | g7z | *T Az | time (sec)
CPLEX-default * 23.19 | 0.02580 4.31 | 23.49 | 0.02580 13.14
CPLEX-LPrelax * 23.52 | 0.02580 3.08 | 23.52 | 0.02580 3.54
dsOpt * 23.14 | 0.02575 1.30 | 23.54 | 0.02580 566.89
LPP 200 | 0.0258 | 0.026059 | 23.38 | 0.02585 10.60 | 23.53 | 0.02585 2289.65
LPP-ACSM 0.026059 | 23.24 | 0.02580 11.35 | 23.58 | 0.02585 4003.32
CDM * 23.53 | 0.02580 1.78 | 23.55 | 0.02580 2.03
CDM-B * 23.53 | 0.02580 1.57 | 23.52 | 0.02580 1.73
CPLEX-default * 22.53 | 0.05389 6.68 | 22.53 | 0.05389 3.64
CPLEX-LPrelax * 22.55 | 0.05371 8.10 | 22.55 | 0.05371 5.61
dsOpt * 21.79 | 0.05358 6.07 | 22.25 | 0.05382 193.08
LPP 1050 | 0.0539 | 0.054440 | 22.35 | 0.05401 1047.81 | 22.35 | 0.05401 1088.16
LPP-ACSM 0.054440 | 22.34 | 0.05392 1059.46 OOM
CDM * 22.49 | 0.05339 17.02 | 22.49 | 0.05339 15.23
CDM-B * 22.49 | 0.05369 3.12 | 22.49 | 0.05369 3.19
CPLEX-default * 420.04 | 0.06100 3.21 | 420.04 | 0.06100 3.08
CPLEX-LPrelax * 420.79 | 0.06190 4.28 | 420.79 | 0.06190 3.08
dsOpt * 419.53 | 0.06155 7.93 | 419.53 | 0.06155 7.96
LPP 2045 | 0.0628 | 0.063429 OOM OOM
LPP-ACSM 0.063429 OOM OOM
CDM * 418.67 | 0.06010 2.56 | 418.67 | 0.06010 243
CDM-B * 420.06 | 0.06165 2.43 | 420.06 | 0.06165 241
CPLEX-default * 40.63 | 0.09932 58.37 | 40.63 | 0.09932 54.43
CPLEX-LPrelax * 40.56 | 0.09868 27.22 | 40.56 | 0.09868 19.23
dsOpt * 40.13 | 0.09860 134.55 | 40.47 | 0.09936 367.29
LPP 5050 | 0.0994 | 0.100498 OOM OOM
LPP-ACSM 0.100498 OOM OOM
CDM * 40.28 | 0.09821 183.56 | 40.35 | 0.09742 197.38
CDM-B * 40.02 | 0.09639 6.40 | 40.67 | 0.09943 7.87
CPLEX-default * 43.79 | 0.06059 2720.18 | 44.34 | 0.06070 | > 3 hours
CPLEX-LPrelax * 44.43 | 0.06061 197.51 | 44.42 | 0.06061 216.66
dsOpt * 43.36 | 0.06018 584.77 | 44.44 | 0.06100 7538.99
LPP 10100 | 0.0610 | 0.061611 OOM OOM
LPP-ACSM 0.061611 OOM OOM
CDM * 43.86 | 0.06095 948.07 | 44.53 | 0.06092 1282.72
CDM-B * 44.26 | 0.05994 28.24 | 44.47 | 0.06081 29.23
CPLEX-default * 436.92 | 0.02990 5084.69 | 436.92 | 0.02990 | > 3 hours
CPLEX-LPrelax * 423.75 | 0.02985 603.78 | 438.96 | 0.03000 710.21
dsOpt * OOM OOM
LPP 15222 | 0.0300 | 0.030301 OOM OOM
LPP-ACSM 0.030301 OOM OOM
CDM * 432.13 | 0.02865 632.34 | 439.88 | 0.02960 448.82
CDM-B * 433.19 | 0.02865 27.59 | 439.97 | 0.02950 47.51

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



148 S. Safarina, T. J. Mullin & M.Yamashita

We expected that selecting active constraints could enhance the implementation of LPP.
However, the result in Table 2 and 3 shows that both LPP and LPP-ACSM failed to obtain
the solution due to OOM for large problems m > 2045. A relatively small ¢ = 0.005
demands a huge number of linear constraints and this makes both methods slower as the
problem size is getting larger. In addition, the improvement by LPP-ACSM was limited for
the large problems.

Difficulty with memory consumption occurred not only in LPP and LPP-ACSM, but
also in dsOpt; however, dsOpt only failed to handle the largest problem m = 15222 due to
insufficient memory.

In contrast to the above methods, the other methods CPLEX-default, CPLEX-LPrelax,
CDM, and CDM-B obtained the optimal solution without having such memory problems.
In the case m = 15222, CPLEX-default could not complete its computation within the
time limit (three hours), and the best objective values in the three hours were much worse
than CPLEX-LPrelax, CDM, and CDM-B; for gap = 1%, while CDM and CDM-B obtained
g’z = 461.83, CPLEX-default only reached g’z = 107.56.

CPLEX-LPrelax obtained the optimal solution less than three hours. This method is even
more efficient than the proposed method CDM, excepting the largest problem. Therefore,
from the difference between the result of CPLEX-default and those CPLEX-LPrelax, we
can infer that the default setting of CPLEX cannot solve EDPs efficiently, and we have to
explicitly let CPLEX know that LP relaxation is effective for EDPs.

Through Tables 2 and 3, CDM-B shows better performance among all methods including
the proposed method CDM. CDM-B can even reduce the computation time into ﬁ times
that of CDM when m = 10100 and gap = 1%. For both gap = 5% and 1%, CDM-B is the

most effective.

Table 4: The number of nonzero elements in MI-LP problems arising from CDM and CDM-B

gap = 5% \ gap = 1%

N m nnz nnz

CDM CDM-B CDM CDM-B
200 1700 1700 1702 1688
1050 | 21290 7633 | 21460 8035
2045 5960 5953 6035 6006

o0 5050 | 74601 17539 | 74601 17778
10100 | 164574 34570 | 164948 35110
15222 | 51123 41985 | 51397 41431

200 1842 1906 1864 1824
1050 | 21948 8084 | 21948 8084
100 2045 6820 6656 6820 6656

5050 | 76357 18619 | 76391 18619
10100 | 165850 35883 | 166357 35842
15222 | 51719 41290 | 51917 42642

Table 4 presents an evidence supporting efficiency of CDM and CDM-B. The column
“nnz” is the number of nonzero elements in MI-LP problems that are solved at the last
iteration of CDM and CDM-B. The table shows that the number of nonzero elements of
CDM-B is smaller than CDM, which leads to reductions in both computation time and
memory size. For instance, in the column with N = 50, m = 10100, and gap = 5%,
while CDM has 164574 nnz, CDM-B has only 34570 nnz. It means that the number of
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nonzero elements is CDM is almost 5 times CDM-B, and this is reflected in Table 2 that
the computation time of CDM is much slower than CDM-B. Thus, the computation time is
consistent with the number of nonzero elements.

6. Conclusion and Future Work

In this paper, we proposed LPP with an active constraint selection method (LPP-ACSM),
cone decomposition method (CDM), and CDM with sparse matrix (CDM-B) to achieve
optimal contribution selection in the context of tree breeding. We compared the efficiency of
the proposed methods with those found in existing breeding selection software (GENCONT and
dsOpt), the optimization solver CPLEX, and LPP. From the numerical results, we observed
that LPP and LPP-ACSM failed to obtain solutions for problems with large m due to out
of memory. Since we needed very tight €, the number of constraints tended to be huge.

Our final proposed method, CDM-B, can efficiently obtain the optimal solution of EDP.
For the largest problem m = 15222, while CPLEX-default could not find satisfactory solu-
tions in three hours, CDM-B can efficiently obtain favourable feasible solutions in just two
minutes.

In future studies, we will consider a combination of CDM-B with heuristic methods,
for example, the method proposed in [19]. In particular, a feasible value obtained by the
method of [19] would give a good tentative value in the framework of branch-and-bound
for solving MI-LP (P*). Another direction is that the decomposition in CDM-B and the
generation of linear cuts can be used not only to solve the OCS problem in tree breeding,
but can also be applied to other MI-SOCP problems. We will also consider another problem
of OCS that involves not only simple binary constraints, but also other types of integer
constraints.
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