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Abstract Separable convex resource allocation problem aims at finding an allocation of a discrete resource
to several activities that minimizes a separable convex function representing the total cost or the total loss.
In this paper, we consider the separable convex resource allocation problem with an additional constraint
that the L1-distance between a given vector and a feasible solution is bounded by a given positive constant.
We prove that the simplest separable convex resource allocation problem with the L1-distance constraint
can be reformulated as a submodular resource allocation problem. This result implies that the problem can
be solved in polynomial time by existing algorithms for the submodular resource allocation problem. We
present specialized implementations of the existing algorithms and analyze their running time.

Keywords: Discrete optimization, resource allocation problem, separable convex func-
tion, polymatroid constraint

1. Introduction

Resource allocation problem is a problem of finding an optimal allocation of some discrete
resources to several activities, in the setting where cost (or loss) occurs according to resource
allocation and total cost should be minimized. Investigation of resource allocation problem
is initiated by Koopman [12] in 1953, and then various research has been done on the topic
for more than fifty years. Resource allocation problem has many variations, which leads
to wide range of applications such as investment planning, manpower planning, production
planning and optimal armaments planning.

In this paper, we deal with the following resource allocation problem with a separable
convex objective function and a simple constraint on the total resource to be allocated. This
problem is often referred to as the simple resource allocation problem (see, e.g., [9, 11]).

Minimize
n∑

i=1

fi(xi)

subject to
n∑

i=1

xi = N,

x ∈ Zn
+.

Here, n and N are positive integers, fi : R → R is a convex function (i = 1, . . . , n), and
Zn

+ denotes the set of n-dimensional nonnegative integral vectors. We assume that each
function fi is given explicitly or given by a function evaluation oracle that, given xi, returns
the value fi(xi) in constant time.

It is well known that the simple resource allocation problem can be solved by a greedy
algorithm [7], which runs in O(N log n) time. Note that the running time of the greedy
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algorithm is exponential in the input size O(n + logN) of the problem, which means that
the running time becomes huge for a problem with a large input size. Galil and Megiddo [6]
and Katoh et al. [10] independently developed polynomial-time algorithms for the simple
resource allocation problem, both of which run in O(n(logN)2) time. The fastest algorithm
so far for the simple resource allocation problem is due to Frederickson and Johnson [3],
which runs in O(n log(N/n)) time. It is known that this time complexity O(n log(N/n)) is
the best possible under a certain standard computation model [8].

While the simple resource allocation problem is the most basic resource allocation prob-
lem, more general resource allocation problems with generalized upper bound constraint,
nested constraint, tree constraint, and network constraint have been discussed in the lit-
erature [9, 11]. Polymatroid constraint is a common generalization of the constraints men-
tioned above, and the resource allocation problem with the polymatroid constraint is called
the submodular resource allocation problem. A greedy algorithm is also applicable to the
submodular resource allocation problem [2], and a polynomial-time scaling algorithm is
proposed by Hochbaum [8] (see also Moriguchi and Shioura [13]).

In this paper, we consider the simple resource allocation problem with the L1-distance
constraint formulated as follows, where the L1-distance constraint is a constraint that the
L1-distance from a given vector to a solution vector is bounded by a given constant.

(L1SRA) Minimize
n∑

i=1

fi(xi)

subject to
n∑

i=1

xi = N,

∥x− y∥1 ≤ K,
x ∈ Zn

+.

Here, K is a nonnegative integer, and y is an n-dimensional nonnegative integral vector
with

∑n
i=1 yi = N .

The resource allocation problem with the L1-distance constraint arises naturally when
re-allocation of a given resource is required. Let us consider a situation where the original
allocation of a resource is given by a vector y and we are required to re-allocate the resource.
In such a situation it is often the case that we have a constraint that a new allocation x is
close to the original allocation y, which can be represented by the L1-distance constraint
∥x − y∥1 ≤ K. Indeed, such a constraint is used by Freund et al. [4] in the formulation of
the bike allocation problem in a bike sharing system.

The aim of this paper is to reveal the combinatorial structure of the problem L1SRA
and to show its polynomial-time solvability. For this, we show that L1SRA can be formu-
lated as a submodular resource allocation problem. This result immediately implies the
polynomial-time solvability of L1SRA since the submodular resource allocation problem
can be solved in polynomial time. Furthermore, we apply to L1SRA the existing algorithms
for the submodular resource allocation problem such as the greedy algorithm [2] and the
scaling algorithm [8] and analyze the running time of the specialized implementations. In
particular, we show that the greedy algorithm and the scaling algorithm for L1SRA run in
O(min(N,K) log n) time and O(n log nmin(log(N/n), log(K/n))) time, respectively.

2. Review of Submodular Resource Allocation Problem

The simple resource allocation problem considered in Introduction is the most fundamental
resource allocation problem that has only one constraint on the total resource to be allocated.
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Algorithm 1 procedure GREEDY

1: x := (0, 0, . . . , 0)⊤, E ′ := E;
2: while

∑n
i=1 xi < N do

3: Find j∗ ∈ E ′ such that dj∗(xj∗) = minj∈E′ dj(xj).
4: if x+ χj∗ satisfies the polymatroid constraint then
5: xj∗ := xj∗ + 1;
6: else
7: E ′ := E ′ \ {j∗};
8: end if
9: end while
10: return x;

In this section, we explain a more general resource allocation problem called the submodular
resource allocation problem and present its algorithms.

A set function ρ : 2E → Z is said to be submodular if it satisfies the submodular
inequality:

ρ(S) + ρ(T ) ≥ ρ(S ∪ T ) + ρ(S ∩ T ) (∀S, T ∈ 2E), (2.1)

where E = {1, 2, . . . , n}. We also say that a set function ρ is monotone nondecreasing if the
inequality ρ(S) ≤ ρ(T ) holds for every S, T ∈ 2E with S ⊆ T . A polymatroid constraint is
a constraint given as

x(S) ≤ ρ(S) (∀S ∈ 2E)

with a monotone nondecreasing submodular function ρ : 2E → Z with ρ(∅) = 0, where
x(S) =

∑
i∈S xi. The simple resource allocation problem with a polymatroid constraint is

called the submodular resource allocation problem. In the submodular resource allocation
problem, we assume ρ(E) = N without loss of generality.

In the following, we explain a greedy algorithm [2] and a scaling algorithm [8] as two
fundamental algorithms for the submodular resource allocation problem. These algorithms
are used to solve L1SRA in Section 3.

We first explain a greedy algorithm (see Algorithm 1). For each i ∈ E and xi ∈ Z+, we
denote the increment of function fi as

di(xi) = fi(xi + 1)− fi(xi).

We also denote by χj ∈ {0, 1}n the j-th unit vector. The greedy algorithm starts with an
initial solution given by x = (0, 0, . . . , 0)⊤. In each iteration, some variable xi with the
minimum value of the increment di(xi) is increased by one. This step is repeated until the
sum of all components of vector x is equal to N . The time complexity of this algorithm
is O(N(log n + F )), where F denotes the time required to check whether a given vector
satisfies a polymatroid constraint.

We then describe a scaling algorithm for the submodular resource allocation problem [8].
In the scaling algorithm, we increase variables by multiple units in each iteration, while in
the greedy algorithm variables are increased by single unit.

This scaling algorithm consists of the main routine named procedure SCALING and
the subroutine named procedure SM-INCREMENT(s, l) (see Algorithms 2 and 3). In
procedure SM-INCREMENT(s, l), where s ∈ Z+ and l ∈ Zn

+, we start with the initial
solution l and iteratively increment some variable by s units; if it is infeasible, then we find
maximum feasible increment α and increase the variable by α units. procedure SCALING
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Algorithm 2 procedure SM-INCREMENT(s, l)

1: x := l, E ′ := E;
2: while E ′ ̸= ∅ do
3: Find j∗ ∈ E ′ such that dj∗(xj∗) = minj∈E′ dj(xj).
4: if x+ s · χj∗ satisfies the polymatroid constraint then
5: x := x+ s · χj∗ ;
6: else
7: α := max{α′ | x+ α′ · χj∗ satisfies the polymatroid constraint};
8: x := x+ α · χj∗ , E

′ := E ′ \ {j∗};
9: end if
10: end while
11: return x(s) := x;

Algorithm 3 procedure SCALING

1: s := ⌈N/2n⌉, l := (0, 0, . . . , 0)⊤;
2: while s ≥ 2 do
3: Call SM-INCREMENT(s, l), and let x(s) be its output;

4: Let l be defined by li := max (x
(s)
i − s, 0) for each i ∈ E;

5: s := ⌈s/2⌉;
6: end while
7: Call SM-INCREMENT(1, l), and let x∗ be its output;
8: return x∗;

repeatedly executes procedure SM-INCREMENT(s, l), where s and l are initially set to
s = ⌈N/2n⌉ and l = (0, 0, . . . , 0)⊤, and in each iteration the step size s is gradually decreased
and the vector l is updated. The time complexity of procedure SCALING is O(n(log n+
F̃ ) log(N/n)), where F̃ denotes the time required to compute α in Step 7. Note that
F̃ = O(F log n) since α can be computed by binary search.

We can use any lower bound of an optimal solution as an initial solution of these algo-
rithms instead of the zero vector (see, e.g., [5]). As a candidate of such an initial vector, we
can use any vector b that satisfies x ≥ b for every feasible solution x of the problem. For
example, this condition is satisfied by the vector b given by

bi = ρ(E)− ρ(E \ {i}) (i ∈ E).

The time complexity of the modified greedy algorithm and the modified scaling algorithm
depend on Ñ = ρ(E)− b(E) instead of the parameter N and given as O(Ñ(log n+F )) and
O(n(log n+ F̃ ) log(Ñ/n)), respectively.

3. Structure and Algorithms of L1SRA

We show that L1SRA can be formulated as a submodular resource allocation problem and
can be solved efficiently.
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3.1. Connection with submodular resource allocation problem

To show that L1SRA can be formulated as a submodular resource allocation problem, we
use a set function ρ : 2E → Z defined by

ρ(S) =


0 (if S = ∅),
N (if S = E),

min(N, y(S) + k) (otherwise),

(3.1)

where k = ⌊(K/2)⌋.
Lemma 3.1. (i) The function ρ is monotone nondecreasing and submodular.
(ii) The feasible region R ⊆ Zn of L1SRA is equal to the set Rρ ⊆ Zn given by

Rρ = {x ∈ Zn
+ | x(S) ≤ ρ(S) (∀S ∈ 2E), x(E) = N}.

Proof. [Proof of (i)] The function ρ is monotone nondecreasing by definition. We prove
that ρ satisfies the submodular inequality (2.1) for every S, T ∈ 2E. Recall that y is a
nonnegative vector with y(E) = N . The submodular inequality holds obviously if one of
S and T is in {∅, E}. In the following, we discuss the case where S and T are nonempty
proper subsets of E.

Suppose that ρ(S) = N . Then we obtain ρ(S ∪ T ) = N , and therefore it holds that

ρ(S)+ρ(T ) = N +min(N, y(T )+k) ≥ N +min(N, y(S∩T )+k) ≥ ρ(S∪T )+ρ(S∩T ).

The proof for the case ρ(T ) = N is similar. We then assume ρ(S) = y(S) + k and ρ(T ) =
y(T ) + k. Then it holds that

ρ(S) + ρ(T ) = (y(S) + k) + (y(T ) + k)

= (y(S ∪ T ) + k) + (y(S ∩ T ) + k)

≥ min(N, y(S ∪ T ) + k) + min(N, y(S ∩ T ) + k)

≥ ρ(S ∪ T ) + ρ(S ∩ T ).

Therefore, the function ρ satisfies the submodular inequality.
[Proof of (ii)] We first show that x ∈ Rρ holds for all x ∈ R. For x ∈ R, the vector x
is nonnegative and satisfies x(E) = N since R is the feasible region of L1SRA. Therefore,
it suffices to show that x satisfies the polymatroid constraint x(S) ≤ ρ(S) (S ∈ 2E). The
polymatroid constraint holds obviously if S = ∅ and S = E. Therefore, in the following, we
discuss the case with ∅ ⊂ S ⊂ E and show the inequality x(S) ≤ ρ(S) = min(N, y(S) + k).

This inequality is equivalent to the two inequalities x(S) ≤ N and x(S) ≤ y(S) + k.
The former inequality follows from x(E) = N and x ≥ 0. We use the L1-distance constraint
∥x−y∥1 ≤ K in order to show the latter inequality x(S) ≤ y(S)+k. The L1-distance ∥x−y∥1
is an even number since x(E) = y(E). Therefore, it holds that ∥x− y∥1 ≤ 2⌊(K/2)⌋ = 2k.
Since the sum of all components of the vector x− y is zero, it holds that∑

i∈E

max(0, x(i)− y(i)) =
∑
i∈E

max(0,−x(i) + y(i)).

Consequently, we obtain

2k ≥ ∥x− y∥1
=

∑
i∈E

max(0, x(i)− y(i)) +
∑
i∈E

max(0,−x(i) + y(i))

= 2
∑
i∈E

max(0, x(i)− y(i)).
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By the inequality above, it holds that

x(S)− y(S) ≤
∑
i∈S

max(0, x(i)− y(i)) ≤
∑
i∈E

max(0, x(i)− y(i)) ≤ k.

This inequality implies x ∈ Rρ.
We then show that x ∈ R holds for all x ∈ Rρ. For x ∈ Rρ, it is easy to see that x

satisfies the constraints of L1SRA, except for the L1-distance constraint. In the following,
we show that the vector x satisfies the L1-distance constraint ∥x− y∥1 ≤ K.

We define subsets S+, S− ⊆ E by

S+ = {i ∈ E | xi ≥ yi}, S− = {i ∈ E | xi < yi}.

It is noted that S+ ∩ S− = ∅ and S+ ∪ S− = E. Also, the set S+ is nonempty since
x(E) = y(E). If S− = ∅, then we have x = y since x(E) = y(E) = N , implying that
∥x− y∥1 = 0 ≤ K. In the following, we assume S− ̸= ∅ and prove the inequality ∥x− y∥1 ≤
K.

It holds that

∥x− y∥1 =
∑
i∈S+

(xi − yi)−
∑
j∈S−

(xj − yj)

= (x(S+)− y(S+))− (x(S−)− y(S−))

= x(S+)− x(S−)− y(S+) + y(S−).

Since x(S+) + x(S−) = y(S+) + y(S−) = N , it follows that

∥x− y∥1 = 2x(S+)− 2y(S+). (3.2)

Since the vector x satisfies the submodular constraint x(S) ≤ ρ(S) for S ⊆ E, we obtain

x(S+) ≤ ρ(S+) = min (N, y(S+) + k) ≤ y(S+) + k,

which, combined with (3.2), implies

∥x− y∥1 = 2(x(S+)− y(S+)) ≤ 2k ≤ K.

This concludes the proof of x ∈ Rρ.

From Lemma 3.1 the next theorem follows immediately.

Theorem 3.1. L1SRA can be reformulated as a submodular resource allocation problem
with a polymatroid constraint associated with the submodular function ρ : 2E → Z in (3.1).

Remark 3.1. Theorem 3.1 shows that if we add the L1-distance constraint to the simple
resource allocation problem, then the resulting problem can be reformulated as a submodular
resource allocation problem. On the other hand, the example below shows that if the L1-
distance constraint is added to a slightly more general resource allocation problem, then the
resulting problem cannot be reformulated as a submodular resource allocation problem.

As a more general resource allocation problem, we consider the resource allocation prob-
lem with the generalized upper bound constraint ; the generalized upper bound constraint is
a constraint of the form x(Sj) ≤ bj (j = 1, 2, . . . ,m), where {S1, S2, . . . , Sm} is a partition of
the set E and b1, b2, . . . , bm are nonnegative integers. If the L1-distance constraint is added

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Separable Convex Resource Allocation Problem with L1-distance Constraint 115

to the problem, then the feasible region is given as the set of nonnegative integral vectors
x ∈ Zn

+ satisfying
x(E) = N,
∥x− y∥1 ≤ K,
x(Sj) ≤ bj (j = 1, 2, . . . ,m).

As a concrete example, we consider the following special case with E = {1, 2, 3, 4}:

x1 + x2 + x3 + x4 = 4,
|x1 − 1|+ |x2 − 1|+ |x3 − 1|+ |x4 − 1| ≤ 2,
x1 + x2 ≤ 2, x3 + x4 ≤ 4.

Assume, to the contrary, that this feasible region can be represented by a polymatroid
constraint. Then, the set function ρ : 2E → Z defined by

ρ(S) = max{x(S) | x ∈ Z4
+ is a feasible solution} (S ∈ 2E)

must be a submodular function (see, e.g., [5]). By the constraint x1 + x2 ≤ 2, it holds that

ρ({1, 2}) ≤ 2.

Since the vectors (0, 2, 1, 1) and (1, 1, 2, 0) are feasible solutions, we obtain

ρ({2}) = 2, ρ({2, 3}) = 3, ρ({1, 2, 3}) = 4.

Therefore, for S = {1, 2}, T = {2, 3}, it holds that

ρ(S) + ρ(T ) ≤ 5 < 6 = ρ(S ∪ T ) + ρ(S ∩ T ).

Consequently, the set function ρ does not satisfy the submodular inequality (2.1), a con-
tradiction. This implies that the feasible region given above cannot be represented by a
polymatroid constraint.
Remark 3.2. It can be shown that the set of vectors satisfying the L1-distance constraint
∥x − y∥1 ≤ K has a nice structure called a bisubmodular polyhedron. This fact, however,
does not imply the statement of Theorem 3.1. That is, the intersection of a bisubmod-
ular polyhedron and a hyperplane of the form

∑
i∈E xi = N cannot be represented by a

polymatroid constraint, as shown below.
We denote 3E = {(X,Y ) | X, Y ⊆ E, X ∩ Y = ∅}. A function µ : 3E → R is called a

bisubmodular function if it satisfies the following inequality:

µ(X1, Y1) + µ(X2, Y2) ≥ µ((X1 ∪X2) \ (Y1 ∪ Y2), (Y1 ∪ Y2) \ (X1 ∪X2))

+ µ(X1 ∩X2, Y1 ∩ Y2) (∀(X1, Y1), (X2, Y2) ∈ 3E).

A bisubmodular polyhedron is a polyhedron given as follows by using a bisumobular func-
tion µ:

P∗(µ) = {x ∈ Rn | x(X)− x(Y ) ≤ µ(X,Y ) (∀(X, Y ) ∈ 3E)}.

It is known that P∗(µ) is an integral polyhedron for an integer-valued bisubmodular function
µ [5]. Optimization of a linear function over a bisubmodular polyhedron can be solved by a
certain greedy algorithm, and minimization of a separable convex function over an integral
bisubmodular polyhedron can be solved in polynomial time (see, e.g., [5]).
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Note that the set of vectors satisfying the L1-distance constraint ∥x − y∥1 ≤ K is
represented by a bisubmodular polyhedron P∗(µ) associated with the bisubmodular function
µ : 3E → R given by µ(X, Y ) = K + y(X)− y(Y ) (∀(X, Y ) ∈ 3E); bisubmodularity of this
µ is easy to see from the definition.

In the following, we show by a concrete example that the intersection of an integral
bisubmodular polyhedron and a hyperplane of the form

∑
i∈E xi = N cannot be represented

by a polymatroid constraint in general.
We consider the convex hull S ⊆ R4 of the set

S = {(0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1)}.

Each vector in the set S corresponds to a matchable set of an undirected graph with vertex
set {1, 2, 3, 4} and edge set {(1, 2), (3, 4)}; a vertex set of a graph is said to be matchable
if there exists a matching that exactly covers the vertex set. It is known that given an
undirected graph, the convex hull of the characteristic vectors of all matchable sets is an
integral bisubmodular polyhedron [1]. Intersection of the convex hull S and the hyperplane
x1 + x2 + x3 + x4 = 2 is given as the convex hull of the sets {(1, 1, 0, 0), (0, 0, 1, 1)}, and it
is not difficult to see that this set cannot be represented by a polymatroid constraint.

3.2. Algorithms for L1SRA

We present algorithms for solving L1SRA and analyze the running time. Theorem 3.1
implies that we can apply to L1SRA the greedy algorithm and the scaling algorithm in
Section 2. We analyze the running time of the algorithms.

Theorem 3.2. L1SRA can be solved by the greedy algorithm and the scaling algorithm in
O(N log n) time and in O(n log n log(N/n)) time, respectively.

Proof. To obtain the bound O(N log n) for the greedy algorithm, it suffices to show that
F = O(1), i.e., we can check in constant time whether a given vector x in each iteration of
the algorithm satisfies the polymatroid constraint associated with the submodular function
ρ in (3.1).

By keeping the value x(E) during the run of the algorithm, we can check the constraint
x(E) ≤ ρ(E) in constant time. In the case where the set S is nonempty proper subsets of
E, we can check the polymatroid constraint x(S) ≤ ρ(S) = min(N, y(S)+k) (∅ ⊂ ∀S ⊂ E),
by checking the two inequalities x(S) ≤ N and x(S) ≤ y(S)+k for each S. Since the vector
x is nonnegative, x(S) ≤ N holds automatically if the constraint x(E) ≤ ρ(E) = N holds.
On the other hand, we can rewrite the inequality x(S) ≤ y(S) + k as∑

i∈S

(xi − yi) ≤ k.

Since the maximum value of the left-hand side is
∑

i:xi>yi
(xi − yi), it suffices to check the

inequality ∑
i:xi>yi

(xi − yi) ≤ k.

We can check the inequality by keeping the value
∑

i:xi>yi
(xi − yi) in each iteration. It

is noted that the set S∗ = {i ∈ E | xi > yi} is not equal to the set E in each iteration
since x(E) ≤ N = y(E). It is easy to see that we can update the value

∑
i:xi>yi

(xi − yi)
in constant time whenever the vector x is updated. Therefore, we can decide in F = O(1)
time whether a vector x satisfies the polymatroid constraint.
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To obtain the bound O(n log n log(N/n)) for the scaling algorithm, we also need to show
that F̃ = O(1), i.e., we can compute in constant time the maximum feasible increment α of
the variable xj. Since the maximum feasible increment α is computed by

α = min(N − x(E), k −
∑

i:xi>yi

(xi − yi)−min(0, xj − yj)),

the discussion above shows that the value α can be computed in constant time, i.e., F̃ =
O(1).

In the following, we show that the running time of the greedy algorithm and the scaling
algorithm can be made faster in the case where K is smaller than N . Our idea is to replace
the initial solution of the algorithms, which is originally set to the zero vector (see Section 2).

Consider a typical situation where K is much smaller than N . Since an optimal solution
x∗ of L1SRA satisfies ∥x∗ − y∥1 ≤ K by the L1-distance constraint, the vector x∗ is much
closer to y than to the zero vector. We see from this observation that it makes sense that the
initial solution is set to some vector close to y instead of the zero vector. The initial solution
of the algorithms, on the other hand, must be a lower bound of some optimal solution of
L1SRA (see the discussion in Section 2). Since the vector y is not a lower bound of any
optimal solution for L1SRA in general, we cannot use y as an initial solution. Hence, as a
good initial solution we need a vector that is close to y and is a lower bound of some optimal
solution for L1SRA.

The next lemma shows that such a vector can be obtained by solving a certain optimiza-
tion problem. Note that any vector x ∈ Zn

+ with
∑n

i=1 xi = N − k and x ≤ y satisfies the
L1-distance constraint ∥x− y∥1 ≤ K.
Lemma 3.2. Let x′ be an optimal solution of the following optimization problem:

(SRA−) Minimize
n∑

i=1

fi(xi)

subject to
n∑

i=1

xi = N − k,

x ≤ y,
x ∈ Zn

+.

Then, there exists an optimal solution x∗ of L1SRA with x∗ ≥ x′.

Proof. Let x∗ be an optimal solution of L1SRA, and assume that the value
∑n

i=1max(0, x′
i−

x∗
i ) is the minimum among all optimal solutions. Since

∑n
i=1max(0, x′

i − x∗
i ) ≤ 0 implies

x∗ ≥ x′, we assume
∑n

i=1max(0, x′
i − x∗

i ) > 0 and derive a contradiction.
By the assumption, there exists h ∈ E with x′

h > x∗
h. We define

S ′
+ = {i ∈ E | x′

i ≥ x∗
i }, S ′

− = {i ∈ E | x′
i < x∗

i }.

Then, h ∈ S ′
+ holds. Since

n∑
i=1

x′
i = N − k < N =

n∑
i=1

x∗
i ,

we have S ′
− ̸= ∅. In the following, we show the existence of j ∈ S ′

− with x′
j < yj.
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We have ∑
i∈S′

+

(yi − x′
i) <

∑
i∈S′

+

(yi − x∗
i ) ≤

∑
i∈E

max(0, yi − x∗
i ),

where the first strict inequality is by the definition of S ′
+ and h ∈ S ′

+. Since the vec-
tor x∗ satisfies the L1-distance constraint ∥x∗ − y∥1 ≤ K, we can obtain the inequality∑n

i=1max(0, yi − x∗
i ) ≤ k, as in the proof of Theorem 3.1, from which follows that∑

i∈S′
+

(yi − x′
i) < k. (3.3)

On the other hand, it holds that∑
i∈S′

+

(yi − x′
i) +

∑
i∈S′

−

(yi − x′
i) =

n∑
i=1

(yi − x′
i)

=
n∑

i=1

yi −
n∑

i=1

x′
i

= N − (N − k) = k,

which, together with (3.3), implies that
∑

i∈S′
−
(yi − x′

i) > 0. This inequality shows that

x′
j < yj holds for some j ∈ S ′

−.
By the convexity of functions fh and fj and the inequalities x′

h > x∗
h and x′

j < x∗
j , it

holds that

fh(x
∗
h + 1)− fh(x

∗
h) ≤ fh(x

′
h)− fh(x

′
h − 1), (3.4)

fj(x
′
j + 1)− fj(x

′
j) ≤ fj(x

∗
j)− fj(x

∗
j − 1). (3.5)

Denoting f(x) =
∑n

i=1 fi(xi) (x ∈ Zn), we have the following inequality by (3.4) and (3.5):

f(x∗) + f(x′) ≥ f(x∗ + χh − χj) + f(x′ − χh + χj). (3.6)

The vector x′ − χh + χj is a feasible solution of SRA− since x′
j < yj, and therefore it holds

that f(x′) ≤ f(x′−χh+χj). This inequality and (3.6) imply f(x∗) ≥ f(x∗+χh−χj). On the
other hand, the vector x∗ + χh − χj satisfies the L1-distance constraint since the inequality
yh ≥ x′

h > x∗
h holds, and therefore x∗ + χh − χj is a feasible solution of L1SRA, from which

follows the inequality f(x∗) ≤ f(x∗+χh−χj). Hence, it holds that f(x
∗+χh−χj) = f(x∗),

implying that the vector x∗ +χh −χj is also an optimal solution of L1SRA, a contradiction
to the choice of x∗ since x′

h > x∗
h. Therefore, there exists an optimal solution x∗ of L1SRA

with x∗ ≥ x′.

By Lemma 3.2, L1SRA can be solved by the greedy algorithm and the scaling algorithm
by using an optimal solution of SRA− as an initial solution. We estimate the time complexity
of the resulting algorithms.

An optimal solution of SRA− can be found in O(min(K log n, n log(K/n))) time since
SRA− is essentially equivalent to the simple resource allocation problem. If we use an
optimal solution of SRA− as an initial solution b of the greedy algorithm and the scaling
algorithm, the value of the parameter Ñ (see Section 2) satisfies

Ñ = ρ(E)− b(E) = N − (N − k) = k = O(K).
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Therefore, the time complexity of the greedy algorithm is

O(K log n) + O(K log n) = O(K log n),

and the time complexity of the scaling algorithm is

O(n log(K/n)) + O(n log n log(K/n)) = O(n log n log(K/n)).

From the discussion above and Theorem 3.2, we obtain the following result:

Theorem 3.3. L1SRA can be solved by the greedy algorithm and the scaling algorithm
in O(min(N,K) log n) time and O(n log nmin(log(N/n), log(K/n))) time, respectively, by
using the zero vector or an optimal solution of SRA− as an initial solution of the algorithm.
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