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Abstract Ross (2015) introduced a remarkable theorem, named the “Recovery Theorem.” It enables us
to estimate the real world distribution from the risk neutral distribution derived from option prices un-
der a particular assumption about a representative investor’s risk preferences. The real world distribution
estimated with the Recovery Theorem is suitable for many financial problems such as market risk man-
agement and portfolio optimization due to its forward looking nature. However, it is not easy to derive
the appropriate estimators because of an ill-posed problem in the estimation process. We propose a new
method to derive the accurate solution by formulating the regularization term involving prior information.
Previous studies propose methods to estimate the real world distribution, but they do not investigate the
estimation accuracy. We show the effectiveness of the proposed method through the numerical analysis with
hypothetical data.
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1. Introduction

In general, we need to estimate asset distributions to solve financial problems such as market
risk management and optimal asset allocation. A common approach is to estimate the dis-
tribution from historical data. However, the financial market is quite volatile, and utilizing
a forward looking distribution in implied option prices is more desirable and suitable than
a backward looking distribution derived using historical data.

The payoff of an option is determined by the future price of the underlying asset and
therefore the option prices contain forward looking information. The forward looking risk
neutral distribution can be derived from option prices under the assumption of a complete
market (Breeden and Litzenberger [7]). The risk neutral distribution generally differs from
the real world distribution which expresses market participants’ consensus. In particular,
the expected return (mean) of the risk neutral distribution must be equal to the risk free rate
and the expected return of the real world distribution does not have to be. Previous studies
proposed methods to adjust a risk neutral distribution to a real world distribution (risk
adjustment methods). Bliss and Panigirtzoglou [5] adjust the distribution assuming CARA
utility or CRRA utility as a representative investor’s preference. Fackler and King [10]
proposed the method that uses a beta distribution as a calibration function. Shackleton
et al. [22] proposed the nonparametric method that uses kernel density estimation as a
calibration function. However, these methods do not offer a completely forward looking real
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world distribution because the adjustment parameters are estimated from historical data1.

Ross [21]2 introduced a remarkable theorem, named the “Recovery Theorem.” It enables
us to estimate a completely forward looking real world distribution from option prices un-
der a particular assumption about a representative investor’s risk preferences. Our paper
discusses the method of estimating the distribution using the Recovery Theorem. Ross [21]
shows quite a simple estimation procedure. However, many improvements are required for
practical use. Spears [23], Audrino et al. [1], Backwell [2], Jackwerth and Menner [12]
and Jensen et al. [13] have developed the practical methodology for estimating the real
world distribution from option prices using the Recovery Theorem3. Spears [23] indicates
that estimators derived by the simple method of Ross [21] are intuitively inaccurate, and
compares the estimators under various constraints. Audrino et al. [1] point out that it is
necessary to solve an ill-posed problem in the estimation process, and propose application
of the Tikhonov method, which is a standard regularization method for ill-posed problems.
In addition, they estimate a real world distribution from thirteen years of S&P500 option
data and investigate the effectiveness of a simple investment strategy based on the moments
of the distribution. Backwell [2] shows that the time-homogeneity of state prices, which is
hypothesized when estimating a real world distribution, cannot be realized in the market.
The estimation method is also proposed to reduce the bias. Jackwerth and Menner [12]
estimate real world distributions of the S&P500 index under the economic constraiants and
find that such distributions are incompatible with realized returns. They showed one of
the reason is numerical instabilities of the recovery method. Jensen et al. [13] generalize
the Recovery Theorem by removing the assumption of time-homogeneity. Moreover, they
estimate a real world distribution from S&P500 option data and verify the predictive power
of the moments. However, the uniqueness of the estimated distribution is not guaranteed.

As shown in Audrino et al. [1], the regularization method is required to derive the
appropriate estimators of the real world distribution because there is an ill-posed problem
in the estimation process. However, there are no previous studies which use prior information
to solve the ill-posed problem and evaluate the accuracy of the estimation method.

Our contribution is summarized in the following two points.

1. We propose a new method to derive a more accurate solution by formulating the reg-
ularization term involving the prior information. Our proposed method provides clear
interpretation of the relationship between the regularization parameter and the estima-
tors.

2. We conduct numerical analysis on the estimation accuracy with hypothetical data to
show the effectiveness of the proposed method and the criteria for selecting a regular-
ization parameter. We find the following four points from the results.

(1) The divergence of the distribution estimated by the method of Ross [21] from true

1Kiriu and Hibiki [14] compare the investment performance of the real world distribution risk-adjusted based
on historical data and that of the risk neutral distribution in the asset allocation framework. They show
that the risk adjustment using historical data deteriorates investment performance because the appropriate
parameter is not obtained from historical data.
2The working paper version of this paper was published in 2011.
3There are other studies related to the Recovery Theorem. Carr and Yu [8], Dubynskiy and Goldstein [9],
Walden [24], Park [19], and Qin and Linetsky [20] studied the theoretical extension into a continuous time
or infinite state. These studies mainly focus on the conditions in which the real world probability can be
recovered from the risk neutral probability. Martin and Ross [17] apply the Recovery Theorem to the long
bond, which is a zero coupon bond with infinite maturity, and investigate the result. Borovička et al. [6]
and Bakshi et al. [3] criticize the assumptions of the Recovery Theorem, but we do not discuss this problem.
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distribution becomes larger than that of the risk neutral distribution due to the nu-
merical instabilities. In other words, risk adjustment with the basic recovery method
deteriorates the estimation accuracy.
(2) Stabilizing the solution by introducing a regularization term increases the estimation
accuracy.
(3) The proposed method can estimate a real world distribution more accurately than
the Tikhonov method.
(4) The criteria for selecting a regularization parameter offers the solution whose diver-
gence from the true distribution is smaller than that of the risk neutral distribution in
most cases.

This paper proceeds as follows. Section 2 summarizes the Recovery Theorem of Ross [21].
Section 3 shows the procedure for estimating the real world distribution from option prices
by the Recovery Theorem and proposes the new method. In Section 4, we show the results
of the numerical analysis and examine the effectiveness of the proposed method. The final
section describes our conclusion and future work.

2. Recovery Theorem

In this section, we summarize the Recovery Theorem of Ross [21]. We assume an arbitrage
free and complete market in discrete time with a finite state, one period model. Market
states θi (i = 1, . . . , n) are defined by ri, the underlying stock index returns from time 0.
P := (pi,j) is an n× n transition state price matrix. pi,j is a state price from θi to θj

4. We
similarly define an n× n transition risk neutral probability matrix Q := (qi,j) and an n× n
transition real world probability matrix F := (fi,j). We also describe the notation Q as “risk
neutral probability” and F as “real world probability” depending on the context. Matrix P
is assumed to be irreducible5, and therefore matrix Q and matrix F are also irreducible. In
this section, we suppose that matrix P is known because it can be estimated from option
prices6. Matrix Q is easily derived from matrix P , since qi,j is expressed as follows:

qi,j =
pi,j∑n
k=1 pi,k

(i, j = 1, . . . , n). (1)

On the other hand, it is difficult to derive matrix F because the state price is simulta-
neously a function of both a real world probability and market risk preferences. However,
Ross [21] showed that matrix F can be derived from matrix P under the assumption that
there is a representative investor with Time Additive Intertemporal Expected Utility The-
ory preferences over consumption (TAIEUT investor). A utility function of the TAIEUT
investor is given by

u(ci) + δ
n∑

j=1

fi,ju(cj) (i = 1, . . . , n) (2)

where ci is the consumption at θi, u(c) is a utility for the consumption c and δ(> 0) is
the discount factor of the utility. We assume that u(c) holds the nonsatiation condition

4The state price pi,j shows the price of the security at θi which pays one dollar if the next state becomes θj
and nothing otherwise.
5Irreducibility is defined as the existing k ∈ N which satisfies (P k)i,j > 0 for all i, j. This assumption is
very likely to be held.
6This is explained in Section 3 in detail.
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Figure 1: Estimation steps

u′(c) > 0 but do not restrict its parametric form. The relationship between fi,j and pi,j is
expressed as

fi,j =
1

δ

u′(ci)

u′(cj)
pi,j (i, j = 1, . . . , n). (3)

The ratio of pi,j to fi,j is called pricing kernel, and it is expressed as

ϕi,j :=
pi,j
fi,j

= δ
u′(cj)

u′(ci)
(i, j = 1, . . . , n). (4)

Pricing kernel is dependent on investor’s risk preferences.
Since matrix P is non-negative and irreducible, the Perron-Frobenius Theorem asserts

that matrix P has a unique strictly positive eigenvector v associated with the maximum
eigenvalue λ. The Recovery Theorem says that

δ = λ (5)

u′(ci) = v−1
i (i = 1, . . . , n) (6)

hold, where vi denotes the i-th element of v.
We can get matrix F from matrix P with the Recovery Theorem as follows. We solve the

eigenvalue problem of matrix P and derive the maximum eigenvalue λ and the corresponding
eigenvector v. Then, we can calculate the elements of matrix F as

fi,j =
1

λ

vj
vi
pi,j (i, j = 1, . . . , n). (7)

In addition, Ross [21] proves that the real world probability becomes equal to the risk
neutral probability, or F = Q, when the sum of the row elements of matrix P is the same
for each row, and it is a special case of the Recovery Theorem.

3. Implementation of the Recovery Theorem

In this section, we describe the process of estimating the real world distribution with the
Recovery Theorem. The process is divided into three steps as referenced by Spears [23] in
Figure 1.

An n×m current state price matrix is defined as S := (sj,τ ), where sj,τ is a current state
price for τ(= 1, . . . ,m) periods transition from current state θi0 to next state θj. Matrix S
is estimated from option prices in Step 1. In Step 2, we estimate the n× n transition state
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Estimating FL Distribution with the RRT 87

price matrix P from the n×m matrix S. This section discusses Step 1 and Step 2 because
Step 3 simply applies the Recovery Theorem as mentioned in Section 2.

For simplicity, we assume that (1) the number of states n is odd, (2) the current state
is the center state (ri0 = 0 where i0 = (n + 1)/2), and (3) the return of each state is
symmetrical from the center state (ri0−k = ri0+k, (k = 0, . . . , i0 − 1)).

The i0-th row vector of the matrix P , pi0 , represents a state price distribution of the
current state. We denote pi0 as the state price distribution. Likewise, we denote qi0 as the
risk neutral distribution and f i0 as the real world distribution.

3.1. Step 1: from option prices to matrix S

Breeden and Lizenberger [7] showed that a state price is calculated from option prices. The
state price function s(k, τ) is represented as follows:

s(k, τ) =
∂2c(k, τ)

∂k2
(τ = 1, . . . ,m) (8)

where k is the strike price and c(k, τ) is the call option price function. We can get matrix S
by discretizing s(k, τ). Although this equation is quite simple, there are many methods of es-
timating the state price function, such as the method of assuming mixed log-normal distribu-
tion (Melick and Thomas [18]), the method of using polynomial approximation (Malz [16]),
the method of using a smoothing spline (Bliss and Panigirtzoglou [4]) and the method of
using a neural network (Ludwig [15]).

However, in our numerical analysis of the estimation accuracy, we generate matrix S
from hypothetical data to eliminate the effect of the estimation method of Step 1.

3.2. Step 2: from matrix S to matrix P

In Step 2, we estimate the n × n matrix P from the n ×m matrix S assuming that state
transitions follow a time-homogeneous Markov chain. We assume that n ≤ m, which means
that the number of equations is greater than the number of estimation variables, except for
the analysis in Section 4.4.4.

3.2.1. Basic method (Ross [21])

We explain the basic method of Ross [21] to estimate matrix P . Denote the first column
vector of matrix S by s1. This vector corresponds to the one-period state price distribution
of the current state from its definition. It is formulated as,

s1 = p⊺
i0
. (9)

Because matrix P represents the one-period state transition, we have the following relation-
ship among sτ , sτ+1, and P .

s⊺τ+1 = s⊺τP (τ = 1, . . . ,m− 1) (10)

Denote the (m−1)×nmatrix transposed from the n×mmatrix S except the last column and
the first column respectively by matrix S⊺

−col.m and S⊺
−col.1. Equation (10) can be expressed

as,

S⊺
−col.mP = S⊺

−col.1. (11)

Matrix P should be estimated by minimizing the differences of both sides of Equation
(11) under the no-arbitrage conditions pi,j ≥ 0 (i, j = 1, . . . , n) and Equation (9). The
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mathematical formulation is

min
P

||S⊺
−col.mP − S⊺

−col.1||
2
2 (12)

subject to s1 = p⊺
i0

(13)

pi,j ≥ 0 (i, j = 1, . . . , n). (14)

3.2.2. Tikhonov method (Audrino et al. [1])

Audrino et al. [1] indicate that the average condition number7 of 11 × 11 matrix S⊺
−col.m

estimated from S&P 500 option data is very large, and therefore the problem of Equations
(12-14) is ill-posed. The ill-posed problem has a set of candidates of optimal solutions whose
objective function values are almost the same due to low independence of the equations.
Consequently, it has the awkward characteristic that the solution is highly sensitive to a
small noise. They propose to use the Tikhonov method, which is a standard regularization
method for ill-posed problems. The regularization method is formulated by adding the
regularization term to the objective function to stabilize the solution. Specifically, the
objective function is reformulated as,

min
P

||S⊺
−col.mP − S⊺

−col.1||
2
2 + ζ||P ||22 (16)

subject to (13) and (14).

The second term is a regularization term and || · ||2 denotes the Euclidean norm. ζ is called a
regularization parameter and controls the trade-off between fitting and stability. Equation
(16) can be transformed using an n× n unit matrix I and an n× n null matrix O.

min
P

∥∥∥∥[S⊺
−col.m√
ζI

]
P −

[
S⊺
−col.1

O

]∥∥∥∥2
2

(17)

Because the coefficient of matrix P determines the stability of the solution, we focus on the
condition number of the matrix created by combining matrices S⊺

−col.m and
√
ζI vertically.

Figure 2 shows the condition number for the hypothetical data explained in Section 4 (base
case, σ = 0%). The condition number of the original problem (Equation (12) which corre-
sponds to ζ = 0 in the Tikhonov method) is very large, at 1.3×1017. The condition number
decreases as ζ increases.

In the regularization method, we stabilize the solution by adding a regularization term
to the objective function. In other words, we derive the solution of the original problem
under certain prior information, which is ancillary information about the solution, to solve
the problem. It is expected that a solution is derived accurately under appropriate prior
information. However, it seems the Tikhonov method does not give the appropriate prior
information of this recovery problem. The Tikhonov method stabilizes the solution by the
prior information that matrix P is closed to the null matrix as shown in the regularization
term of Equation (16). However, the state prices are expected to be unimodal with extreme

7A condition number κ is difined as the maximum ratio of a relative error in P of Equation (11) to a relative
error in S⊺

−col.1. It is written as

κ =
λmax(S

⊺
−col.m)

λmin(S
⊺
−col.m)

, (15)

where λmax(S
⊺
−col.m) and λmin(S

⊺
−col.m) are maximal and minimal singular values of S⊺

−col.m respectively.
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Figure 2: Condition number with respect to regularization parameter

value around main diagonal because the probability of moving to the same state should be
higher than the probability of moving to some faraway state. In addition, if we set ζ as
infinity, P = O is derived. In this case, we cannot get the real world distribution because
the Recovery Theorem can apply only to the irreducible matrix8. Therefore, the solution of
Step 2 (matrix P ) is likely to become stable as ζ increases, whereas the solution of Step 3
(matrix F ) is likely to become unstable. According to these properties, the prior information
of the Tikhonov method is poorly related with the Recovery Theorem.

Audrino et al. [1] also proposed the selection method of optimal ζ, which minimizes the
discrepancy between original state price matrix (SO) and the state price matrix implied
in matrix P (SP ). The τ -th column vector of SP is equal to the transposed vector of the
i0-th row of P τ which is P to the τ -th power(τ = 1, . . . ,m). They use the generalized
Kullback-Leibler (KL) divergence as a measure of the discrepancy between two matrices.
They propose the selection criteria which minimizes the following function hA(ζ) defined as

hA(ζ) :=
n∑

i=1

m∑
τ=1

sOi,τ ln

(
sOi,τ
sPi,τ

)
−

n∑
i=1

m∑
τ=1

sOi,τ +
n∑

i=1

m∑
τ=1

sPi,τ . (18)

Optimal ζ is derived by iterative calculation. However, they do not evaluate the estima-
tion accuracy. Therefore the effectiveness of this selection criteria function has not been
examined. We examine the effectiveness in Section 4.

3.2.3. Proposed method

We propose a new method which modifies the regularization term of the Tikhonov method
considering the characteristics of this recovery problem and which has a clear interpretation
of the relation between regularization parameter ζ and final estimated value, f i0 . Specif-
ically, we modify the regularization term of the Tikhonov method by taking the following
two different kinds of prior information into account.

PI 1. The state dependent discount factor of the current state is close to those
of other states.
The sums of the row elements of the matrix P represent the state dependent discount
factors, namely,

∑n
k=1 pi,k are close to

∑n
k=1 pi0,k(i = 1, . . . , n).

8To be precise, all of the components of the matrix except the i0-th row become zero because of Constraint
(13). Even in this case, matrix P is not irreducible.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



90 T. Kiriu & N. Hibiki

PI 2. The risk neutral distribution of the current state is close to those of the
other states.
qi0 is determined because of Constraint (13)9, while qi(i = 1, . . . , i0 − 1, i0 + 1, . . . , n)
are unknown. Because it is difficult to set the appropriate values as prior information,
we simply assume that qi0 is close to qi, and the risk neutral probabilities which have
the same distance from the initial state are close to each other10, namely,
qi0,j are close to qi0+k,j+k(j = 1, . . . , n; k ∈ Z, 1 ≤ i0 + k ≤ n, 1 ≤ j + k ≤ n). If qi0

is unimodal with an extreme value around θi0 , this information means that we expect
the risk neutral probability matrix Q is also unimodal with the extreme value around
the main diagonal.

We modify the regularization term based on the two kinds of prior information as follows,

min
P

||S⊺
−col.mP − S⊺

−col.1||
2
2 + ζ||P − P̄ ||22 (19)

⇔ min
P

∥∥∥∥[S⊺
−col.m√
ζI

]
P −

[
S⊺
−col.1√
ζP̄

]∥∥∥∥2
2

(20)

where,

P̄ =



1 2 i0−1 i0 i0+1 n−1 n

1
∑i0

k=1 sk,1 si0+1,1 · · · sn−1,1 sn,1 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

i0−1
∑2

k=1 sk,1 s3,1 · · · si0,1 si0+1,1 si0+2,1 · · · sn,1 0

i0 s1,1 s2,1 · · · si0−1,1 si0,1 si0+1,1 · · · sn−1,1 sn,1

i0+1 0 s1,1 · · · si0−2,1 si0−1,1 si0,1 · · · sn−2,1

∑n
k=n−1 sk,1

...
... · · · ...

...
... · · · ...

...

n 0 0 · · · 0 s1,1 s2,1 · · · si0−1,1

∑n
k=i0

sk,1


. (21)

The problem is subject to the constraints (13-14). The values are accumulated in the
first column and last column of matrix P̄ , and we set zero to the elements which cannot be
determined by PI 2. The proposed method 11 attempts to find the solution which is close
to P̄ from the feasible set. The condition number of the problem is the same as that of the
Tikhonov method as shown in Figure 2 because the same coefficient of matrix P is used.
Therefore, when we use the same ζ in both methods, the sensitivities of the solution to a
small noise are also the same for each other.

The proposed method has a clear interpretation about the relation between regularization
parameter ζ and the final estimated value, f i0 . PI 1 makes all column sums of matrix P̄
equal. As we stabilize the solution of Step 2 by increasing ζ, the estimated real world
distribution f i0 becomes close to the risk neutral distribution qi0 because the real world
distribution becomes equal to the risk neutral distribution when the sum of the row elements
of matrix P is the same for each row. In other words, the proposed method uses the risk

9A risk neutral distribution qi0 is easily calculated from a state price distribution pi0 by Equation (1).
10For example, we assume there are only three states where the returns are −5%, 0%,+5% for each state.
The return of a transition from −5% to 0% ((1 + 0)/(1 − 0.05) − 1 = +5.3%) is different from that of a
transition from 0% to +5% ((1 + 0.05)/(1 + 0) − 1 = +5%). However, both returns are regarded as +5%
approximately.
11Mathematical formulation involving Equation (19) is called generalized Tikhonov regularization. The
proposed method is a special case in which the matrix P̄ is defined as Equation (21), while we set P̄ = O
in the ordinary Tikhonov method.
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neutral distribution as the basis of estimation. This is methodologically reasonable because
the Recovery Theorem is used to get the real world distribution from the risk neutral
distribution.

To investigate the relation between the prior information and the estimation accuracy
in Section 4.4.3, we formulate the estimation method which assumes only PI 1 or only PI
2, respectively12.

When we solve the problem assuming only PI 1, we replace the objective function (12)
with the following function.

min
P,x

||S⊺
−col.mP − S⊺

−col.1||
2
2 + ζ||P − P̄ (x)||22 (22)

where,

P̄ (x) =



1 2 i0−1 i0 i0+1 n−1 n

1 x1,1 x1,2 · · · x1,i0−1 x1,i0 x1,i0+1 · · · x1,n−1 x1,n

...
... · · · ...

...
... · · · ...

...

i0−1 xi0−1,1 xi0−1,2 · · · xi0−1,i0−1 xi0−1,i0 xi0−1,i0+1 · · · xi0−1,n−1 xi0−1,n

i0 s1,1 s2,1 · · · si0−1,1 si0,1 si0+1,1 · · · sn−1,1 sn,1

i0+1 xi0+1,1 xi0+1,2 · · · xi0+1,i0−1 xi0+1,i0 xi0+1,i0+1 · · · xi0+1,n−1 xi0+1,n

...
... · · · ...

...
... · · · ...

...

n xn,1 xn,2 · · · xn,i0−1 xn,i0 xn,i0+1 · · · xn,n−1 xn,n


(23)

subject to
n∑

k=1

xi,k =
n∑

k=1

sk,1 (i = 1, . . . , i0 − 1, i0 + 1, . . . , n). (24)

xi,j (i = 1, . . . , i0 − 1, i0 + 1, . . . , n; j = 1, . . . , n) are intermediate variables. When we solve
the problem assuming only PI 2, we set the objective function (22) and replace the matrix
P̄ (x) with,

P̄ (x) =



1 2 i0−1 i0 i0+1 n−1 n

1 x1

∑i0
k=1 sk,1 x1si0+1,1 · · · x1sn−1,1 x1sn,1 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

i0−1 xi0−1

∑2
k=1 sk,1 xi0−1s3,1 · · · xi0−1si0,1 xi0−1si0+1,1 xi0−1si0+2,1 · · · xi0−1sn,1 0

i0 s1,1 s2,1 · · · si0−1,1 si0,1 si0+1,1 · · · sn−1,1 sn,1

i0+1 0 xi0+1s1,1 · · · xi0+1si0−2,1 xi0+1si0−1,1 xi0+1si0,1 · · · xi0+1sn−2,1 xi0+1

∑n
k=n−1 sk,1

...
... · · · ...

...
... · · · ...

...

n 0 0 · · · 0 xns1,1 xns2,1 · · · xnsi0−1,1 xn

∑n
k=i0

sk,1


.

(25)

xi (i = 1, . . . , i0 − 1, i0 + 1, . . . , n) are intermediate variables. Note that in the case of
assuming either PI 1 or PI 2, the sensitivity of the solution of the Tikhonov method is not
the same as that of the proposed method even if we use the same value of ζ because the
matrix P̄ (x) contains variables. Table 1 summarizes the prior information and corresponding
formulations with the objective function (22) for each recovery method.

The selection method of ζ is also important in finding the accurate solution. The objec-
tive function of the optimization problem in Step 2 is Equation (19), and it consists of two
terms. The first term shows the fitting error. We denote it by yfit. The second term except
ζ, (||P − P̄ ||22), shows the deviation between the matrices P and P̄ . We denote it by yreg.
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Table 1: Prior information and corresponding formulations for each recovery method
Name Prior Information ζ P̄ Constraints
Basic None = 0 - Eqs. (13), (14)
Tikhonov P is close to null matrix > 0 Null matrix Eqs. (13), (14)
PI 1 PI 1 > 0 Eq. (23) Eqs. (13), (14), (24)
PI 2 PI 2 > 0 Eq. (25) Eqs. (13), (14)
Proposed PI 1 and PI 2 > 0 Eq. (21) Eqs. (13),(14)
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Figure 3: Decomposition of the objective function: yfit and yreg with respect to the regu-
larization parameter

Table 3 shows yfit and yreg for the hypothetical data which we explain in Section 4 (base
case, σ = 1%) for various values of ζ.

As ζ increases, yfit increases and yreg decreases monotonically. Both yfit and yreg have
the domain in which the values greatly change. For example, the value of yfit greatly
increases around log10 ζ = 0, and yreg decreases around log10 ζ = −6. This is one of the
characteristics of the ill-posed problem. The purpose of adding the regularization term to
the objective function is to find the stable solution based on the prior information rather
than a degenerate solution. We propose a method of selecting ζ by minimizing a selection
criteria function hK(ζ) defined as,

min
ζ

hK(ζ) :=
yfit(ζ)− yfit(0)

yfit(∞)− yfit(0)
+

yreg(ζ)− yreg(∞)

yreg(0)− yreg(∞)
. (26)

yfit(ζ) and yreg(ζ) are functions of ζ as shown in Figure 3. hK(ζ) is the sum of the normalized
values of yfit and yreg. yfit(0) and yreg(0) are the values without the regularization term
and yfit(∞) and yreg(∞) are the values derived under the condition P = P̄ . Therefore,
yreg(∞) = 0 must hold. In addition, hK(0) = 1 and hK(∞) = 1 must hold because both
yfit(ζ) and yreg(ζ) are monotonic functions. We obtain different values of hK(ζ) by solving
the optimization problems for different values of ζ, and then we adopt ζ that minimizes
hK(ζ).

12We can formulate the estimation method which involves the respective regularization parameters for PI
1 and PI 2. However, we omit it since the analysis is very complicated.
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Figure 4: Overview of analysis

4. Numerical Analysis of Estimation Accuracy

4.1. Overview

We analyze the estimation accuracy to examine the effectiveness of the proposed method
by comparing a preset hypothetical distribution and a distribution which is estimated from
the data with noise. We use hypothetical data because it is difficult to specify the true
distribution from market data. Using hypothetical data enables us to evaluate estimation
accuracy independently of the estimation method of Step 1. Figure 4 shows the overview of
the analysis.

A specific procedure of the analysis is described as follows. Each number corresponds to
the number in Figure 4.

1⃝ First, we provide two hypothetical matrices: hypothetical real world probability matrix
FH and hypothetical pricing kernel matrix ΦH .

2⃝ A transition state price matrix PH is calculated backward from the matrices FH and
ΦH .

3⃝ A current state price matrix SH is calculated backward from the matrix PH .

4⃝ We generate a current state price matrix with noise SN by adding white noise to the
matrix SH . We assume the noise ei,j follows a normal distribution with mean 0 and
standard deviation σ. Each component of the matrix SN is expressed as,

sNi,j = sHi,j(1 + ei,j) (i, j = 1, . . . , n). (27)

5⃝ We estimate a matrix PN from the matrix SN (Step 2) using the basic method, Tikhonov
method, and proposed method.

6⃝ A matrix FN is derived by applying the Recovery Theorem for the matrix PN .

7⃝ If the estimated real world distribution obtained from matrix FN or fN
i0
is close to fH

i0
, the

preset real world distribution obtained from the matrix FH , we evaluate the estimation
results as having a high accuracy. A specific evaluation criteria of the estimation accuracy
is described in Section 4.2.

4.2. Setting

We explain the base setting of the analysis which includes the definition of the state, the
number of maturities, evaluation criteria, and comparison of methods.
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• State
A market state is defined by the return from time 0. We set 31 returns (states) in total,
placed by 2% symmetrically from the return of 0%. Specifically, r1 = −30%, r16 = 0%, and
r31 = 30%.

• Number of Maturities
We can apply any number of maturities m because we calculate the matrix SH backward
from hypothetical data. We set the number of maturities m as equal to n in the base case
for simplicity. On the other hand, the number of maturities of options traded in the market
is likely to become smaller than the number of states in practice when we estimate a matrix
S from market data. We analyze the practical case where m < n in Section 4.4.413.

• Evaluation criteria
The estimation accuracy is evaluated by the Kullback-Leibler divergence (KL divergence) of
the estimated distribution fN

i0
from the preset hypothetical distribution fH

i0
. KL divergence

is a measure of the difference between the two distributions and is defined as14

DKL(f
H
i0
||fN

i0
) :=

n∑
j=1

fN
i0,j

ln

(
fN
i0,j

fH
i0,j

)
. (28)

If fN
i0

is exactly equal to fH
i0
, DKL(f

H
i0
||fN

i0
) = 0 holds. We also use Euclidean distance

instead of KL divergence as a measure of the estimation accuracy, but we arrive at the same
conclusion. Therefore, we show only the result using KL divergence hereafter15.

• Comparison of methods
We compare the estimation accuracy of five methods: “risk neutral (RN) method,” “perfect
method,” and three methods we demonstrated in Section 3.2 (basic method, Tikhonov
method, and proposed method).

The RN method uses the risk neutral distribution qN
i0

as an approximation of the real

world distribution fN
i0
. Risk adjustment by the Recovery Theorem affects the estimation

accuracy both positively and negatively. The positive effect is that the risk preference of
investors to the distribution can be reflected. The negative effects are that the estimation
accuracy is affected by the noise due to the ill-posed problem and it is biased by prior
information. From the comparison of the estimation accuracy calculated by each method
and the RN method, we evaluate which effect is larger, positive or negative.

The perfect method uses the transition state price matrix PH calculated from hypo-
thetical data as the prior information P̄ . In this method, the solution is estimated under
the perfectly accurate prior information. Therefore, it is expected that the estimation ac-
curacy monotonically improves as ζ increases. Unfortunately, we cannot use this method
practically because we cannot know the true state price matrix PH when the distribution
is estimated from market data. We add this method as a benchmark for comparison to
evaluate the estimation accuracy.

13We omit the result of the case where m > n, because the conclusion is almost the same as the case where
m = n.
14We add a very small value (10−20) to each component of fH

i0 and fN
i0 to prevent its anti-logarithm from

being zero and avoid dividing it by zero. However, this procedure has no impact on the result.
15We note that the estimation accuracy of the state price distribution si0 is the same among all methods
because of the constraint (13).
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4.3. Hypothetical data

The hypothetical data ΦH and FH should be generated as appropriately as possible to
reproduce the ill-posed problem. We explain the setting of the hypothetical data.

• Pricing kernel matrix
We assume that the TAIEUT investor has a CRRA utility function U(c) = c1−γ/(1− γ)

with a relative risk aversion γ. Pricing kernel ϕ is decomposed into U ′ and δ as shown in
Equation (4). We denote the (i, j) element of matrix ΦH by

ϕH
i,j = δ

(
1 + rj
1 + ri

)−γ

(i, j = 1, . . . , n). (29)

The parameters of γ = 3 and δ = 0.999 are used in the base case16.

• Real world probability matrix
The real world probability matrix FH is generated based on the S&P500 historical daily

price data. We set a reference date and calculate twelve returns in the periods from the
reference date to the dates which come every 30 calendar days. If it is a holiday, the return
until the day before a holiday is calculated. A matrix is generated by counting the number
of state transitions of the return sequence in one period. We denote the return of state θj by
rj in the matrix, which is discretely set every 2%. When a real historical return is between
rj − 1% and rj +1%, it is assigned to state θj. For example, suppose that a return is 12.5%.
It is between 11%(12% − 1%) and 13%(12% + 1%), and therefore 12% is assigned to the
return. A return greater than or equal to 29% (less than or equal to −29%) is assigned to
30% (−30%). This is repeated daily by changing the reference date from Jan 3, 1950 to Jan
3, 2014. Then, all the matrices are summed up. Finally, each element of the summed matrix
is divided by each sum of the row elements to make it a probability matrix. The generated
matrix FH is shown in Table 2. FH is almost unimodal with extreme values around the
main diagonal because the probability of moving from current state to some close state
should be higher than the probability of moving from current state to some faraway state.
The real world distributions f i are positively skewed. These are well-known stylized facts
about the real world probability.

4.4. Result

4.4.1. Characteristics of each estimation method

We check the characteristics of each estimation method. Figure 5(a) illustrates the hypo-
thetical transition state price matrix PH and Figure 5(b-f) illustrate the transition state
price matrix PN estimated with each estimation method. The noise parameter is set as
σ = 1% and the regularization parameter is set as ζ = 10−3 for each method. Figure 6 il-
lustrates the hypothetical pricing kernel (True) and the estimated pricing kernels estimated
with each estimation method. Risk neutral distribution pH

i0
is also included as RND in

Figure 6.
As for the basic method, the estimated transition state price matrix is largely disturbed

by the noise because of the ill-posed nature of estimation. As a result, the estimated
pricing kernel is also largely disturbed by the noise. This result is consistent with Jackwerth

16Bliss and Panigirtzoglou [5] estimate a risk aversion parameter γ implied in S&P500 option data and
historical price data from 1993 to 2010. The estimated value is dependent on maturity. The minimum
value is 3.37 and the maximum value is 9.52. Therefore, we use γ = 3 in the base case and γ = 10 in the
robustness check of 4.4.5.
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Table 2: Hypothetical real world probability matrix FH generated from the S&P500 his-
torical data (Values that are lower than 10−2 are replaced into blanks)

���� ���� ���� ���� ���� ���� �	�� �	�� �	�� �	�� �	�� ��� ��� ��� ��� �� �� �� �� �� 	�� 	�� 	�� 	�� 	�� ��� ��� ��� ��� ��� ���

����

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����

���� ���� ���� ���	 ���� ���	 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����

���� ���� ���� ���� ���
 ���� ���� ���
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����

���� ���	 ���� ���� ���� ���� ���
 ���	 ���
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����

���� ���� ���� ���� ���� ���� ���� ���
 ���	 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����

���
 ���� ���� ���� ���� ���
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�	��

���� ���� ���� ���
 ���� ���� ���
 ���� ���
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�	��

���� ���� ���� ���� ���
 ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�	��

���� ���� ���� ���� ���� ���
 ���	 ���� ���	 ���� ���
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�	��

���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� ���	 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�	��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���	 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���
 ���	 ���� ���
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

���

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���
 ���� ���
 ���	 ���� ���� ���	 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ���� ���	 ���� ���� ���� ���� ���� ���� ���� ����

	��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���
 ���	 ���� ���� ���� ���� ���� ���� ����

	��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���	 ���� ���	 ���� ���� ���� ���� ���� ���� ����

	��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

	��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� ����

	��

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� ���� ���� ���� ����

���

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ���� ���� ���� ���� ����

���

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���
 ���	 ���� ���	 ���	 ���� ���� ���	

���

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���	 ���
 ����

���

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���	 ���	 ���


���

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���	 ���� ���� ��
�

���

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��	�

�

�

∖ �

�

and Menner [12]. They report that the state price matrix obtained from real option data
with the basic method is largely disturbed by the noise. The Tikhonov method offers
smooth transition state price matrix by stabilizing the solution with regularization method.
However, large state prices is found not only around main diagonal but also around sub
diagonal, and estimated pricing kernel is U-shape. These are due to the bias introduced
by regularization terms of the Tikhonov method. In contrast, the proposed method offers
smooth transition state price matrix that has large state prices only around main diagonal.
In addition, the estimated pricing kernel decreases monotonically and takes similar value
as the hypothetical pricing kernel especially in the range where the risk neutral probability
is positive. The pricing kernel estimated under PI 1 is smooth because PI 1 makes state
dependent discount factors stable. However, the state price matrix estimated under PI 1
is not smooth and takes large values for states that are far away from the current state.
The state price matrix estimated under PI 2 does not take large values for states that are
far away from the current state, but pricing kernel under PI 2 is not smooth and is largely
different from the hypothetical pricing kernel.

As we mentioned in Section 3, the proposed method assumes the two sets of prior
information, PI 1 and PI 2. PI 1 makes state dependent discount factors stable. This also
makes pricing kernel stable. PI 2 gives large state prices around main diagonal and small
state prices around sub diagonal. Therefore, the proposed method offers more accurate
solution than the other methods.

4.4.2. Base analysis

Base analysis compares the estimation accuracy under the setting in Section 4.2 and hypo-
thetical data in Section 4.3. The optimization problem in Step 2 is still ill-posed because
the condition number of matrix AH calculated backward from the matrices ΦH and FH is
very large, and 1.3×1017. The results for the specific random numbers are shown hereafter,
but we obtain the same conclusions for the different random seeds.

Figure 7 displays the KL divergence of fN
i0

from fH
i0

for various values.

First, we discuss the result of the case of σ = 0% where the matrix SN is generated
without noise. Theoretically, the KL divergence of the basic method is equal to zero.
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(f) PI 2
Figure 5: State price matrices P for different estimation methods (σ = 1%, ζ = 10−3)
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Figure 6: Pricing kernels for different estimation methods (σ = 1%, ζ = 10−3)
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Figure 7: Base case: KL divergences with respect to regularization parameters

However, the calculated KL divergence of the basic method is 4.4×10−3 due to the estimation
error. This shows how it is difficult to get an accurate estimator of the ill-posed problem.
The estimation accuracy of the proposed method is better than that of the basic method
in the range where log10 ζ is less than 1.5. This result shows that the proposed method
is effective to increase the estimation accuracy even without noise. As ζ gets larger, the
graph of the proposed method approaches that of the RN method. This is because the real
world distribution estimated with the proposed method where ζ = ∞ equals the risk neutral
distribution. The estimation accuracy of the Tikhonov method is worse than that of the
basic method. The regularization term of the Tikhonov method introduces the bias because
it is not formulated with the prior information appropriately. The estimation accuracy of
the perfect method is the highest, as we expected. The graph of the perfect method between
log10 ζ = −6 and log10 ζ = −2 is distorted by numerical error because the objective value of
the optimization problem is very small.

We check the two cases with noise (σ = 1% and σ = 5%). The estimation accuracy of
the basic method is worse than that of the RN method because of the ill-posed problem.
The KL divergence of the Tikhonov method and that of the proposed method are U-shaped
in the graph. This indicates that introducing the regularization term is effective to estimate
the real world distribution accurately, but the value of ζ needs to be selected appropriately.
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Table 3: Base case: Common logarithm of KL divergences (log10DKL) for each selection
criteria of regularization parameters

Volatility Selection RN RW
of noise criteria of ζ Basic Proposed Tikhonov

min hK(ζ) −3.18 (−2.23) −2.07 (−0.89)
σ = 1% min hA(ζ) −2.07 −0.81 −1.72 (−4.65) −0.91 (−5.55)

min KL −3.65 (−2.97) −2.55 (−2.23)
min hK(ζ) −2.57 (−2.39) −2.03 (−0.97)

σ = 5% min hA(ζ) −2.11 −0.76 −1.92 (−2.97) −0.97 (−3.98)
min KL −2.68 (−1.98) −2.33 (−2.05)

∗ The common logarithm of ζ(log10 ζ) selected by each criteria is in the parenthesis.

The estimation accuracy of the proposed method is better than that of the Tikhonov method
because the regularization term of the proposed method is formulated involving the prior
information more appropriately.

We next examine the effectiveness of the selection function of ζ. Table 3 shows the
common logarithm of KL divergence (log10 DKL) for each selection criteria of ζ.

The value of “min hK(ζ)” is calculated by our selection criteria of ζ (Equation (26)) and
the value of “min hA(ζ)” is calculated by the selection criteria proposed by Audrino et al. [1]
(Equation(18)). The values of “min KL” are derived minimizing KL divergence17. We find
the optimal value of ζ using the golden section search method in the range from log10 ζ = −8
to log10 ζ = 2. The estimation accuracies of the real world distribution estimated using
our proposed method and the Tikhonov method are dependent on the effectiveness of the
regularization term of the prior information and the selection criteria of ζ. We can evaluate
the effectiveness of the regularization term by comparing the KL divergence of “min KL”
of the methods introducing the regularization term with that of the RN method because
the value of “min KL” is not dependent on the selection criteria of ζ. As shown in Table 3,
the KL divergence of “min KL” is smaller than that of the RN method, and we find that
the regularization term can be effective if we select the appropriate criteria of ζ18. Next, we
evaluate the selection criteria.

The selection function hK(ζ) gives more appropriate ζ than hA(ζ) in both the proposed
method and the Tikhonov method. The result indicates that it is effective to select ζ based
on the normalized value of the residual term and the normalized value of the regularization
term. We can derive a more accurate real world distribution by only utilizing the combina-
tion of the proposed method and selection function hK(ζ) rather than the RN method.

We have the following three findings obtained in the base analysis: (1) the proposed
method and the Tikhonov method are effective to improve the estimation accuracy, (2) we
can obtain a more accurate solution by the proposed method than the Tikhonov method,
and (3) we can select an appropriate regularization parameter by minimizing the function
hK(ζ) in the proposed method. We check the robustness of these findings in Appendix A.

17The parameter ζ for the value of “min KL” is the best because the KL divergence is evaluated as a
selection criteria.
18If the KL divergence of “min KL” is larger than that of the RN method, we need to formulate the
appropriate regularization term regardless of the selection criteria.
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Figure 8: Effect of the prior information: KL divergences with respect to the regularization
parameters

Table 4: Effect of the prior information: Common logarithm of minimum KL divergence
(log10 DKL)

σ = 1% σ = 5%
RN −2.07 −2.11
RW: None (= Basic method) −0.81 −0.76
RW: PI 1 −2.35 −2.11
RW: PI 2 −1.77 −1.09
RW: PI 1 and PI 2 (= Proposed method) −3.65 −2.68

4.4.3. Effect of the prior information

This section analyzes the contribution of the prior information to the estimation accuracy.
In particular, we compare the estimation accuracy among five formulations: four methods
without the Tikhonov method shown in Table 1 and the RN method. Figure 8 shows KL
divergences with respect to ζ in the setting of the base case.

In both the case of σ = 1% and 5%, the graph of “PI 1” approaches the risk neutral
distribution. The KL divergence of “PI 1” is less than that of RN method around log10 ζ =
−3.5 and the KL divergence of “PI 2” is less than that of RN method around log10 ζ = −2.
We must note that the sensitivities of the solutions of the three formulations (“PI 1”, “PI 2”,
and “PI 1 and PI 2”) are different because the variables are included in the regularization
terms of “PI 1” and “PI 2.” Therefore we evaluate the estimation accuracy by the minimum
KL divergence as shown in Table 4.

The formulations can be ranked in the estimation accuracy as “PI 1 and PI 2”, “PI 2”,
“PI 1”, “RN”, and “None”. This result shows that both “PI 1” and “PI 2” contribute to the
improvement of estimation accuracy and the proposed method can estimate more accurate
solutions by the combination of “PI 1” and “PI 2.”

4.4.4. Effect of insufficient data

We have analyzed the estimation accuracy with m = 31, where m is the number of option
maturities traded in the market. In practice, the number of option maturities is less than
31. For example, the number of S&P500 option maturities traded monthly in the CBOE

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Estimating FL Distribution with the RRT 101

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-8 -6 -4 -2 0 2

K
L

 d
iv

er
g

en
ce

 (
lo

g
1

0
)

Regularization parameter  (log10)

RN

RW: m=31

RW: m=21

RW: m=11

RW: m=7

(a) σ = 1%

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

-8 -6 -4 -2 0 2

K
L

 d
iv

er
g

en
ce

 (
lo

g
1

0
)

Regularization parameter  (log10)

RN

RW: m=31

RW: m=21

RW: m=11

RW: m=7

(b) σ = 5%

Figure 9: Effect of insufficient data: KL divergences with respect to the regularization
parameters

Table 5: Effect of insufficient data: Common logarithm of KL divergences (log10 DKL) for
each selection criteria of regularization parameters

Volatility Selection RN RW
of noise criteria of ζ m = 31 m = 21 m = 11 m = 7

min hK(ζ) −3.18 −3.32 −3.16 −2.67
σ = 1% min hA(ζ) −2.07 −1.72 −1.14 −0.79 −0.18

min KL −3.65 −3.57 −3.24 −3.13
min hK(ζ) −2.57 −2.07 −1.23 −0.88

σ = 5% min hA(ζ) −2.11 −1.92 −1.24 −0.56 0.00
min KL −2.68 −2.63 −2.42 −2.40

is twelve. The number of Nikkei 225 options in the Osaka Exchange is nine. In addition,
the number m becomes smaller because long-term options are likely to have low liquidity.
We conduct an analysis for the case where the number of maturities (equations) m is less
than the number of states (estimated variables) n. Specifically, we estimate the real world
distribution where n = 31 and there are four kinds of the numbers of column of SH (m =
7, 11, 21, 31) by the proposed method and calculate the KL divergences. Figure 9 shows KL
divergences with respect to the regularization parameters.

Usually, it is difficult to get an accurate estimator because the solution is not determined
uniquely when the number of equations m is less than that of estimated parameters n.
Figure 9 shows that the estimation accuracy decreases as m decreases. However, the KL
divergence of the proposed method where m = 7 is less than that of the RN method around
log10 ζ = −3.5 for σ = 1% and log10 ζ = −2 for σ = 5%. This is because the prior
information included in the regularization term offsets the insufficient information. In other
words, the necessary information to estimate the real world distribution is almost included
in the state price matrix of seven maturities.

In addition, we evaluate the estimation accuracy with respect to the selection of ζ. Table
5 shows the KL divergence for each selection criteria.

In the case of σ = 1%, the KL divergence of the proposed method with hK(ζ) is less
than that of the RN method even if m = 7. On the other hand, the KL divergence of hA(ζ)
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increases by the risk adjustment because hA(ζ) cannot select an appropriate ζ. In the case
of σ = 5%, the KL divergence of the proposed method with hK(ζ) is not less than that of
the RN method except for m = 31 which has a sufficient number of equations. However, it is
expected that the accurate solution is obtained by setting more appropriate selection criteria
because the minimum KL divergence is less than the KL divergence of the RN method.

4.4.5. Robustness check

The proposed method can be used to derive the real world distribution under two sets of
prior information (PI 1 and PI 2). Therefore, it is expected that the estimation accuracy
decreases in the case in which the hypothetical data does not reflect the prior information
used in the proposed method. We check the robustness using such hypothetical data.

We explain how we provide the hypothetical data which does not reflect the prior in-
formation of the proposed method. First, PI 1 is the information that the real world
distribution becomes equal to the risk neutral distribution when ζ = ∞. In other word, PI
1 assumes the representative investor is risk neutral (γ = 0) . As risk aversion increases, the
difference between the risk neutral distribution and the real world distribution gets larger.
We set a larger risk aversion parameter γ as 10 to check robustness.

Next, PI 2 is the information that the risk neutral distribution of the current state is
close to the risk neutral distributions of the other states. A typical example that is different
from this information is to set a local volatility, which is the case in which the volatilities of
the distributions are largely different in each state. We set the hypothetical data assuming
that the real world distributions of each state f i(i = 1, . . . , n) follow discretized log-normal
distributions which have different volatilities LN(µi, σ

2
i )(i = 1, . . . , n). In this case, if the

real world probability has a local volatility then the risk neutral probability also has a
local volatility. It is a well-known stylized fact that volatilities calculated using the Black
Scholes formula have different values for each strike price, which is called volatility smile.
Therefore, we can generate the hypothetical data with a local volatility by setting the
parameter σi(i = 1, . . . , n) based on volatilities implied in market data. We set each mean
parameter µi(i = 1, . . . , n) assuming the risk premium is proportional to volatility. We
explain the method specifically.

To check robustness with a high local volatility setting, we generate the hypothetical
data based on the implied volatilities on the date when Skew Index (SI), which is the index
of the skewness of the S&P500 risk neutral distribution calculated by the Chicago Board
Options Exchange (CBOE), takes the highest value. We make the list of dates 30 days
before S&P500 option maturities (the third Friday in every month) from Jan 4, 2000 to
Jan 12, 2004. Then, we select the date when the highest SI value is shown in the list. The
selected date is Jan 22, 2014 and the SI value is 138.92. We calculate implied volatilities
from the OTM option with 30-day maturity on Jan 22, 2014. We get an implied volatility
σi(i = 1, . . . , n) of each state by interpolating with a cubic spline. The implied volatilities
are extrapolated with the largest available value because option prices with more than +10%
return are not available. Figure 10 shows the implied volatilities σi which is related with
the return ri. The volatility is set at a range that is at most five times.

We assume the risk premium (µi − rf ) is proportional to volatility σi as

µi − rf = kσi (i = 1, . . . , n), (30)

where rf is a risk free rate and k is a proportionality coefficient. We calculate k

k =
µ̄− r̄f

σ̄
= 0.02087 (31)
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Figure 10: Implied volatility σi calculated from OTM option on Jan 22, 2014.

Table 6: Hypothetical real world probability matrix FH with a local volatility (Values that
are lower than 10−2 are replaced into blanks)
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where µ̄, r̄f , and σ̄ are the average of monthly returns of the S&P500, the average of
one-month LIBOR, and the average of the CBOE Volatility Index (VIX), respectively. The
average is calculated using the monthly data from Jan, 1990 to Dec, 2014. Next, we calculate
µi from Equation (30) where rf is the one-month LIBOR on Jan 22, 2014. A matrix FH

is generated by discretizing the log-normal distribution, and it is shown in Table 6. We
conduct the analysis for the three new cases shown in Table 7. We show the results for the
three cases.

• Case A

In case A, the pricing kernel matrix ΦH where γ = 10 and the real world probability
matrix FH generated based on historical data are used as the hypothetical data for the
analysis. Table 8 shows the KL divergences for the three types of selection criteria of ζ.
The estimation accuracy of the combination of the Tikhonov method and the selection
function hA(ζ) is inferior to that of the RN method. On the other hand, the estimation
accuracy of the combination of the proposed method and the selection function hK(ζ) is
superior to that of the RN method. In case A, the three findings obtained from the base
case are observed.
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104 T. Kiriu & N. Hibiki

Table 7: Robustness check: Setting of the hypothetical data
Real world probability matrix FH

Table 2 Table 6
Pricing kernel γ = 3 Base case Case B
matrix ΦH γ = 10 Case A Case C

• Case B

We utilize the hypothetical real world probability from the matrix generated with a local
volatility in case B, instead of the matrix generated based on historical data. The pricing
kernel matrix is the same as that of the base case. Table 9 shows the KL divergences for
the three selection criteria of ζ. The combination of the proposed method and the selection
function hK(ζ) can estimate a more accurate solution than the others in most cases, but the
estimation accuracy of this combination is worse than that of the RN method for σ = 5%.
However, it is expected that a more accurate solution can be derived by improving the
selection function because the minimum KL divergence of the proposed method is lower
than the KL divergence of the RN method.

• Case C

In case C, we use the matrix ΦH where γ = 10 and the matrix FH showed in Table 6
as hypothetical data. Table 10 shows the KL divergences for the three selection criteria of
ζ. The combination of the proposed method and the selection function hK(ζ) gives a more
accurate solution than the RN method and the combination of the Tikhonov method and
the selection function hA(ζ).

Why can the proposed method give an accurate estimator under the hypothetical data,
regardless of the inappropriate prior information of the proposed method? This is because
the first term of the objective function (19) weighs more heavily than the second term asso-
ciated with the prior information if the proposed method cannot use the appropriate prior
information to derive the solution stably. Therefore, we can derive the accurate estimator.
Even in this case, it is important to involve the appropriate regularization term consid-
ering the characteristics of the Recovery Theorem because the estimation accuracy of the
proposed method is superior to that of the Tikhonov method.

We cannot fully show the robustness of the results because of the limited hypothetical
datasets. However, we obtain almost the same results as the base analysis even if we use the
hypothetical data which does not reflect the prior information of the proposed method. It
is expected that we will get similar results in other cases. The further analysis is our future
work.

5. Conclusion

The Recovery Theorem of Ross [21] enables us to estimate the real world distribution from
the risk neutral distribution. However, it is not easy to derive an appropriate estimator be-
cause there is an ill-posed problem in the estimation process. We proposed a new method to
derive the appropriate estimator by formulating the regularization term involving the prior
information. The estimated real world distribution of the proposed method approaches
the risk neutral distribution by increasing the regularization parameter, and therefore the
solution can be stable. It is important to interpret the relationship between the regulariza-
tion parameter and the estimator clearly from a practical perspective when we utilize the
estimation method.
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Table 8: Case A: Common logarithm of KL divergences (log10 DKL) for each selection
criteria of regularization parameters

Volatility Selection RN RW
of noise criteria of ζ Basic Proposed Tikhonov

min hK(ζ) −1.35 (−1.46) −0.65 (−0.14)
σ = 1% min hA(ζ) −0.95 −0.81 −1.55 (−5.06) −0.81 (−7.39)

min KL −1.98 (−4.47) −1.52 (−4.88)
min hK(ζ) −1.38 (−1.72) −0.71 (−0.38)

σ = 5% min hA(ζ) −0.96 −0.76 −0.97 (−4.14) −0.78 (−5.32)
min KL −1.53 (−3.06) −1.04 (−3.39)

∗ The common logarithm of ζ(log10 ζ) selected by each criteria is in the parenthesis.

Table 9: Case B: Common logarithm of KL divergences (log10 DKL) for each selection
criteria of regularization parameters

Volatility Selection RN RW
of noise criteria of ζ Basic Proposed Tikhonov

min hK(ζ) −2.50 (−3.06) −1.78 (−0.97)
σ = 1% min hA(ζ) −2.45 −0.20 −0.26 (−5.73) −0.21 (−6.89)

min KL −4.13 (−0.48) −2.47 (−3.73)
min hK(ζ) −0.93 (−3.19) −1.72 (−1.15)

σ = 5% min hA(ζ) −2.49 −0.19 −0.30 (−4.39) −0.19 (−8.50)
min KL −2.90 (−0.38) −2.07 (−2.52)

∗ The common logarithm of ζ(log10 ζ) selected by each criteria is in the parenthesis.

Table 10: Case C: Common logarithm of KL divergences (log 10DKL) for each selection
criteria of regularization parameters

Volatility Selection RN RW
of noise criteria of ζ Basic Proposed Tikhonov

min hK(ζ) −2.53 (−1.98) −1.32 (−0.41)
σ = 1% min hA(ζ) −1.38 −0.19 −0.26 (−5.39) −0.20 (−7.45)

min KL −2.54 (−1.82) −1.32 (−0.38)
min hK(ζ) −1.89 (−2.13) −1.36 (−0.48)

σ = 5% min hA(ζ) −1.42 −0.19 −0.24 (−4.14) −0.19 (−11.96)
min KL −2.30 (−1.25) −1.36 (−0.48)

∗ The common logarithm of ζ(log10 ζ) selected by each criteria is in the parenthesis.
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We compared the estimation accuracy of the proposed method with that of the Tikhonov
method in our numerical analysis. From the result, we found the following four points:
(1) The divergence of the distribution estimated by the method of Ross [21] from true
distribution becomes larger than that of the risk neutral distribution due to the numerical
instabilities.
(2) Stabilizing the solution by introducing a regularization term increases the estimation
accuracy.
(3) The proposed method can estimate a real world distribution more accurately than the
Tikhonov method.
(4) Our criteria for selecting a regularization parameter offers the solution whose divergence
from the true distribution is smaller than that of the risk neutral distribution in most cases.

Flint and Mare [11] implemented our proposed method based on the working paper
version of this study. They estimate the real world distribution with our proposed method
from South African stock futures options and examine the investment performance of a
simple investment strategy of Audrino et al. [1]. They show that the investment performance
of the real world distribution estimated with our proposed method is superior to that of the
risk neutral distribution. However, they do not conduct the statistical test.

Our future work is to estimate the real world distribution from the market option price,
and examine the investment performance and the empirical effectiveness of the proposed
method by statistical test. Zdorovenin and Pézier [25] and Kiriu and Hibiki [14] derive
the real world distribution with risk adjustment which uses historical data and compare
the investment performance of the real world distribution with that of the risk neutral
distribution. Forward looking risk adjustment using the Recovery Theorem will enhance
the investment performance of backward looking risk adjustment using historical data.
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