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Abstract Multimodular functions, primarily used in the literature of queueing theory, discrete-event systems, and
operations research, constitute a fundamental function class in discrete convex analysis. The objective of this paper
is to clarify the properties of multimodular functions with respect to fundamental operations such as permutation and
scaling of variables, projection (partial minimization) and convolution. It is shown, in particular, that the class of
multimodular functions is stable under projection under a certain natural condition on the variables to be minimized,
and the convolution of two multimodular functions is not necessarily multimodular, even in the special case of the
convolution of a multimodular function with a separable convex function.
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1. Introduction
Multimodular functions, due to Hajek [6], have been used as a fundamental tool in the literature
of queueing theory, discrete-event systems, and operations research [1–3, 5, 8, 9, 20–23]. In con-
nection to discrete convex analysis [4, 13, 14, 18], multimodularity can be regarded as a variant of
L\-convexity in the sense that a function f : Zn → R ∪ {+∞} is multimodular if and only if it can
be represented as f (x) = g(x1, x1 + x2, . . . , x1 + · · · + xn) for some L\-convex function g [15].

Various operations can be defined for discrete functions f : Zn → R ∪ {+∞}. With changes
of variables we can define operations such as an origin shift f (x) 7→ f (x + b), a sign inversion of
variables f (x) 7→ f (−x), a permutation of variables f (x) 7→ f (xσ(1), xσ(2), . . . , xσ(n)), and a scaling
of variables f (x) 7→ f (sx) with a positive integer s. With arithmetic or numerical operations
on function values we can define nonnegative multiplication of function values f (x) 7→ a f (x)
with a ≥ 0, addition of a linear function f (x) 7→ f (x) +

∑n
i=1 cixi with c ∈ Rn, projection∗ (partial

minimization) f (x) 7→ infz f (y, z), sum f1 + f2 of two functions f1 and f2, convolution ( f1� f2)(x) =

inf{ f1(y) + f2(z) | x = y + z, y, z ∈ Zn} of two functions f1 and f2, etc.
Stability of discrete convexity under these operations has been investigated for many function

classes in discrete convex analysis, such as L\-convex functions, M\-convex functions, and inte-
grally convex functions [7, 10–12, 14, 19]. For multimodular functions, however, no systematic
study has been made, though there are results and observations scattered in the literature.

The objective of this paper is to investigate fundamental operations for multimodular functions
with particular interest in their connection to those for L\-convex functions. By compiling known
and new results we shall arrive at a complete comparison of various kinds of discrete convexity
with respect to fundamental operations, as presented in Table 1 at the end of the paper.

This paper is organized as follows. Section 2 is a review of relevant results on multimodular
functions. Section 3 deals with operations defined by changes of variables and Section 4 treats
operations defined by arithmetic or numerical operations on functions values, such as restriction,

∗Here x = (y, z) up to a permutation of components. See (4.8) in Section 4.3 for the precise meaning of the notation.
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projection, and convolution. In Section 5 we conclude the paper with a table to compare the major
classes of discrete convex functions.

2. Multimodular Functions
We consider functions defined on integer lattice points, f : Zn → R, where R = R ∪ {+∞} and the
function may possibly take +∞. The effective domain of f means the set of x with f (x) < +∞ and
is denoted by dom f = {x ∈ Zn | f (x) < +∞}.

A function f : Zn → R is said to be submodular if it satisfies

f (x) + f (y) ≥ f (x ∨ y) + f (x ∧ y)

for all x, y ∈ Zn, where x∨y and x∧y denote, respectively, the vectors of componentwise maximum
and minimum of x and y, i.e.,

(x ∨ y)i = max(xi, yi), (x ∧ y)i = min(xi, yi) (i = 1, 2, . . . , n).

Let ei denote the ith unit vector for i = 1, 2, . . . , n, and F ⊆ Zn be the set of vectors defined by

F = {−e1, e1 − e2, e2 − e3, . . . , en−1 − en, en}. (2.1)

A finite-valued function f : Zn → R is said to be multimodular if it satisfies

f (z + d) + f (z + d′) ≥ f (z) + f (z + d + d′) (2.2)

for all z ∈ dom f and all distinct d, d′ ∈ F [1, 6]. It is known [6, Proposition 2.2] that f : Zn → R
is multimodular if and only if the function f̃ : Zn+1 → R defined by

f̃ (x0, x) = f (x1 − x0, x2 − x1, . . . , xn − xn−1) (x0 ∈ Z, x ∈ Zn) (2.3)

is submodular in n + 1 variables. This characterization enables us to define multimodularity for
a function that may take the infinite value +∞. That is, we say that a function f : Zn → R with
dom f , ∅ is multimodular if the function f̃ : Zn+1 → R associated with f by (2.3) is submodular.

A function g : Zn → R with dom g , ∅ is said to be L\-convex† if it has the property called
“discrete midpoint convexity,” i.e., if it satisfies

g(p) + g(q) ≥ g
(⌈ p + q

2

⌉)
+ g

(⌊ p + q
2

⌋)
(2.4)

for all p, q ∈ Zn, where, for z ∈ R in general, dze denotes the smallest integer not smaller than z
(rounding-up to the nearest integer) and bzc the largest integer not larger than z (rounding-down to
the nearest integer), and this operation is extended to a vector by componentwise applications. It is
known [14] that g : Zn → R with dom g , ∅ is L\-convex if and only if the function g̃ : Zn+1 → R
defined by

g̃(p0, p) = g(p − p01) (p0 ∈ Z, p ∈ Zn) (2.5)

is submodular in n+1 variables, where 1 = (1, 1, . . . , 1). A function h(q0, q1, . . . , qn) with dom h ,
∅ is called L-convex if it is submodular on Zn+1 and there exists r ∈ R such that

h(q + 1) = h(q) + r (2.6)

for all q = (q0, q1, . . . , qn) ∈ Zn+1. If h is L-convex, the function h(0, q1, . . . , qn) is L\-convex,
and any L\-convex function arises in this way. The function g̃ in (2.5) derived from an L\-convex
function g is an L-convex function, and we have g(p) = g̃(0, p).

Multimodularity and L\-convexity have the following close relationship.
†“L\-convex” should be read “ell natural convex.”
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Theorem 1 ([15, 17]). A function f : Zn → R is multimodular if and only if the function g : Zn →

R defined by
g(p) = f (p1, p2 − p1, p3 − p2, . . . , pn − pn−1) (p ∈ Zn) (2.7)

is L\-convex.

Proof. By definition, the multimodularity of f is equivalent to the submodularity of f̃ in (2.3).
Since f̃ satisfies (2.6) for r = 0, the submodularity of f̃ is equivalent to the L-convexity of f̃ . On
the other hand, since f̃ (p0, p) = g(p − p01), the L-convexity of f̃ is equivalent to the L\-convexity
of g (cf., (2.5)). �

Note that the relation (2.7) between f and g can be rewritten as

f (x) = g(x1, x1 + x2, x1 + x2 + x3, . . . , x1 + · · · + xn) (x ∈ Zn). (2.8)

Using a bidiagonal matrix D = (di j | 1 ≤ i, j ≤ n) defined by

dii = 1 (i = 1, 2, . . . , n), di+1,i = −1 (i = 1, 2, . . . , n − 1), (2.9)

we can express (2.7) and (2.8) more compactly as g(p) = f (Dp) and f (x) = g(D−1x), respectively.
The matrix D is unimodular, and its inverse D−1 is an integer matrix with (D−1)i j = 1 for i ≥ j and
(D−1)i j = 0 for i < j. For n = 4, for example, we have

D =


1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1

, D−1 =


1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

.
Remark 2.1. The indicator function of a set S ⊆ Zn is the function δS : Zn → {0,+∞} defined

by δS (x) =

{
0 (x ∈ S ),
+∞ (x < S ). A set S is called an L\-convex set if its indicator function δS is L\-

convex. Similarly, let us call a set S a multimodular set if its indicator function δS is multimodular.
A multimodular set S can be represented as S = {Dp | p ∈ T } for some L\-convex set T , where
T is uniquely determined from S as T = {D−1x | x ∈ S }. It follows from (2.7) that the effective
domain of a multimodular function is a multimodular set.
Remark 2.2. For functions in two variables, multimodularity is the same as M\-convexity. That is,
a function f : Z2 → R is multimodular if and only if it is M\-convex. This fact follows easily from
the definition or from Theorem 1 and the relation between L\-convex and M\-convex functions for
n = 2. See [14] for the definition of M\-convex functions.

A function f : Zn → R in x = (x1, x2, . . . , xn) ∈ Zn is called separable (discrete) convex if it
can be represented as f (x) = ϕ1(x1) + ϕ2(x2) + · · · + ϕn(xn) with univariate functions ϕi : Z → R
satisfying ϕi(t − 1) + ϕi(t + 1) ≥ 2ϕi(t) for all t ∈ Z.
Proposition 2. A separable convex function is multimodular.

Proof. For f (x) =
∑n

i=1 ϕi(xi) the function g in (2.7) is given as g(p) = ϕ1(p1) +
∑n

i=2 ϕi(pi − pi−1).
It is known [14, 18] that such function is L\-convex. �

A quadratic function admits a simple characterization of multimodularity in terms of its coef-
ficient matrix.
Proposition 3. A quadratic function f (x) = x>Ax is multimodular if and only if

ai j − ai, j+1 − ai+1, j + ai+1, j+1 ≤ 0 (0 ≤ i < j ≤ n), (2.10)

where A = (ai j | i, j = 1, 2, . . . , n) and ai j = 0 if i = 0 or j = n + 1.
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Proof. The inequality (2.2) for d = ei− ei+1 and d′ = e j− e j+1, where e0 = en+1 = 0 by convention,
is equivalent to (ei − ei+1)>A(e j − e j+1) ≤ 0. This is further equivalent to (2.10). �

Remark 2.3. Here is an alternative proof of Proposition 3 via L\-convexity. Let L denote the set
of all n × n symmetric matrices B = (bi j) such that bi j ≤ 0 for all i , j and bii ≥

∑
j,i |bi j| for

all i. It is known [14] that g(p) = p>Bp is L\-convex if and only if B belongs to L. Then, by
Theorem 1, f (x) = x>Ax is multimodular if and only if D>AD belongs to L. This latter condition
is equivalent to (2.10).

The following nice properties of multimodular functions are worth mentioning, though we do
not use them in this paper.
• An integer point x ∈ dom f is a (global) minimizer of a multimodular function f if and only

if it is a local minimizer in the sense that f (x) ≤ f (x ± d) for all d ∈ T , where T is the
set of vectors of the form ei1 − ei2 + · · · + (−1)k−1eik for some increasing sequence of indices
i1 < i2 < · · · < ik [15, Theorem 3.1].

• A multimodular function f can be extended to a convex function in a specific manner [1,
Theorem 2.1]. Furthermore, a multimodular function is integrally convex [17, Section 14.6];
see [14] for the definition of integrally convex functions.

• A discrete separation theorem holds for multimodular functions [15, Theorem 4.1]. Let f :
Zn → R ∪ {+∞} and g : Zn → R ∪ {−∞} be functions such that f and −g are multimodular,
and assume that f (x0) and g(x0) are finite for some x0 ∈ Z

n. If f (x) ≥ g(x) for all x ∈ Zn,
there exist α∗ ∈ R and p∗ ∈ Rn such that f (x) ≥ α∗ + 〈p∗, x〉 ≥ g(x) for all x ∈ Zn, where 〈·, ·〉
denotes the standard inner product of vectors. Moreover, if f and g are integer-valued, there
exist integer-valued α∗ ∈ Z and p∗ ∈ Zn.

3. Operations via Change of Variables
In this section we consider multimodularity of functions induced by changes of variables such as
an origin shift, a sign inversion of variables, a permutation of variables, and a scaling of variables.
We consistently adopt the proof strategy to translate the operations for multimodular functions to
those for L\-convex functions, so that we can better understand the connection between multimod-
ularity and L\-convexity. In the proofs we use notations f for a given multimodular function, f̃
for the function resulting from the operation, and

g(p) = f (p1, p2 − p1, p3 − p2, . . . , pn − pn−1) = f (Dp), (3.1)

g̃(p) = f̃ (p1, p2 − p1, p3 − p2, . . . , pn − pn−1) = f̃ (Dp), (3.2)

which imply

f (x) = g(x1, x1 + x2, x1 + x2 + x3, . . . , x1 + · · · + xn) = g(D−1x), (3.3)

f̃ (x) = g̃(x1, x1 + x2, x1 + x2 + x3, . . . , x1 + · · · + xn) = g̃(D−1x). (3.4)

We start with an origin shift and a sign inversion of variables.
Proposition 4. For a multimodular function f and an integer vector b, the function f̃ (x) = f (x+b)
is multimodular.

Proof. By (3.3) and (3.4), we can translate f̃ (x) = f (x + b) to g̃(p) = g(p + c) with c = (b1, b1 +

b2, b1+b2+b3, . . . , b1+· · ·+bn), where g is L\-convex. Then g̃ is also L\-convex, since L\-convexity
is stable under an origin shift. �

Proposition 5. For a multimodular function f , the function f̃ (x) = f (−x) is multimodular.
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Proof. By (3.3) and (3.4), we can translate f̃ (x) = f (−x) to g̃(p) = g(−p), where g is L\-convex.
Then g̃ is also L\-convex, since L\-convexity is stable under a sign inversion of variables. �

It is known that reversing the ordering of variables preserves multimodularity [6, Remarks
(1)]. It is emphasized that this is not obvious since the definition of multimodularity depends on
the ordering of variables.
Proposition 6 ([6]). For a multimodular function f , the function f̃ defined by f̃ (x1, x2, . . . , xn)
= f (xn, . . . , x2, x1) is multimodular.

Proof. We give an alternative proof via L\-convexity in accordance with our strategy. Let R =

(ri j) denote the permutation matrix representing the reversal of the ordering, i.e., ri,n+1−i = 1 for
i = 1, 2, . . . , n and other entries being zero. Then we have f̃ (x) = f (Rx). By (3.3) and (3.4),
we can translate f̃ (x) = f (Rx) to g̃(D−1x) = g(D−1Rx), that is, g̃(p) = g(D−1RDp). A direct
calculation shows that the matrix T = (ti j) = D−1RD is given by: tin = 1 (i = 1, 2, . . . , n),
ti,n−i = −1 (i = 1, 2, . . . , n − 1), and ti j = 0 for other (i, j). For n = 4, for example, we have

T = D−1RD =


0 0 −1 1
0 −1 0 1
−1 0 0 1

0 0 0 1

. Then we obtain‡

g̃(p) = g(−(pn−1, pn−2, . . . , p1, 0) + pn1). (3.5)

The L\-convexity of g̃ can be seen as follows. Define h : Zn+1 → R by

h(p0, p1, p2, . . . , pn) = g(−(pn−1, pn−2, . . . , p1, p0) + pn1)

and grev : Zn → R by

grev(p0, p1, . . . , pn−2, pn−1) = g(−pn−1,−pn−2, . . . ,−p1,−p0).

The function h is L-convex, since grev is L\-convex and the function derived from grev by (2.5)
coincides with h. Then the relation g̃(p) = h(0, p1, p2, . . . , pn) in (3.5) means that g̃ is obtained
from an L-convex function by restriction. Therefore, g̃ is L\-convex. �

Not every permutation of variables preserves multimodularity.

Example 3.1. The quadratic function f (x) = x>Ax with A =

 1 1 0
1 2 1
0 1 1

 is multimodular, whereas

f̃ (x1, x2, x3) = f (x2, x1, x3) arising from a transposition is not multimodular. Indeed we have

f̃ (x) = x>Ãx for Ã =

 2 1 1
1 1 0
1 0 1

, for which the condition (2.10) fails for (i, j) = (1, 3). Re-

ferring to Remark 2.3 we also note that B = D>AD =

 1 0 −1
0 1 0
−1 0 1

 ∈ L and B̃ = D>ÃD = 1 −1 1
−1 2 −1
1 −1 1

 < L. A cyclic permutation of variables f (x3, x1, x2) is not multimodular, either,

since it coincides with x>Ãx.
A scaling of variables preserves multimodularity.

‡It is somewhat surprising that the order reversal of variables corresponds to the transformation (3.5) for L\-convex
functions.
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Proposition 7. For a multimodular function f and a positive integer s, the function f̃ (x) = f (sx)
is multimodular.

Proof. By (3.3) and (3.4), we can translate f̃ (x) = f (sx) to g̃(p) = g(sp), where g is L\-convex.
Then g̃ is also L\-convex, since L\-convexity is stable under a scaling of variables [14]. �

4. Operations Relating to Function Values
In this section we consider multimodularity of functions resulting from operations such as non-
negative multiplication of function values, addition of a linear function, projection (partial mini-
mization), sum of two functions, and convolution of two functions. We continue with the proof
strategy of translating the operations for multimodular functions to those for L\-convex functions.
4.1. Multiplication and addition
We start with simple operations, for which the following statements are obvious.
Proposition 8 ([1]). Let f , f1, f2 be multimodular functions.
(1) For any a ≥ 0, f̃ (x) = a f (x) is multimodular.
(2) For any c ∈ Rn, f̃ (x) = f (x) +

∑n
i=1 cixi is multimodular.

(3) For any separable convex function ϕ(x), f̃ (x) = f (x) + ϕ(x) is multimodular.
(4) Sum f̃ (x) = f1(x) + f2(x) is multimodular.
4.2. Restriction
Let N = {1, 2, . . . , n}. For a function f : ZN → R and a subset U ⊆ N, the restriction of f to U is
a function fU : ZU → R defined by§

fU(y) = f (y, 0N\U) (y ∈ ZU), (4.1)

where 0N\U denotes the zero vector in ZN\U . The notation (y, 0N\U) means the vector whose ith
component is equal to yi for i ∈ U and to 0 for i ∈ N \ U; for example, if N = {1, 2, 3} and
U = {1, 3}, (y, 0N\U) means (y1, 0, y3).

The restriction of a multimodular function is known to be multimodular [1, Lemma 2.3] (see
also [2, Lemma 3]).
Proposition 9 ([1]). For a multimodular function f and any subset U, the restriction fU is multi-
modular, provided that dom fU , ∅.

Proof. We give an alternative proof in accordance with our strategy. It suffices to consider the case
where N \ U = {k} for some k ∈ N. Define f̃ (x1, . . . , xk−1, xk+1, . . . , xn) = f (x1, . . . , xk−1, 0, xk+1,
. . . , xn). Then f̃ is multimodular if and only if the inequality (2.2) holds for f for all z ∈ Zn and
all distinct elements d, d′ of

F̃ = F \ {ek−1 − ek, ek − ek+1} ∪ {ek−1 − ek+1},

where e0 = en+1 = 0. We use notation ψ(x) = (x1, x1 + x2, x1 + x2 + x3, . . . , x1 + · · · + xn) for the
transformation x 7→ p in (2.8), i.e., f (x) = g(ψ(x)). If k = 1, we have

ψ(−e2) = (0,−1, . . . ,−1) = e1 − 1,
ψ(ei − ei+1) = ei (i ∈ {2, . . . , n})

for the elements of F̃ , and therefore, f̃ is multimodular if and only if

g(p + ei) + g(p + e j) ≥ g(p) + g(p + ei + e j), (4.2)

g(p + ei) + g(p + e1 − 1) ≥ g(p) + g(p + ei + e1 − 1), (4.3)

§For any z ∈ ZN\U we may consider a function f (y, z) in y ∈ ZU . For simplicity we choose z = 0N\U .
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where i, j ∈ {2, . . . , n} and i , j. If 2 ≤ k ≤ n, we have

ψ(−e1) = (−1,−1, . . . ,−1) = −1,
ψ(ei − ei+1) = ei (i ∈ {1, . . . , k − 2} ∪ {k + 1, . . . , n}),

ψ(ek−1 − ek+1) = ek−1 + ek

for the elements of F̃ , and therefore, f̃ is multimodular if and only if

g(p + ei) + g(p + e j) ≥ g(p) + g(p + ei + e j), (4.4)

g(p + ei) + g(p + ek−1 + ek) ≥ g(p) + g(p + ei + ek−1 + ek), (4.5)

g(p + ei) + g(p − 1) ≥ g(p) + g(p + ei − 1), (4.6)

g(p + ek−1 + ek) + g(p − 1) ≥ g(p) + g(p + ek−1 + ek − 1), (4.7)

where i, j ∈ {1, . . . , k−2}∪ {k + 1, . . . , n} and i , j. We finally observe that inequalities (4.2)–(4.7)
hold by the discrete midpoint convexity (2.4) of g. �

4.3. Projection
For a function f : ZN → R and a subset U ⊆ N, the projection of f to U means a function
f U : ZU → R ∪ {−∞,+∞} defined by

f U(y) = inf{ f (y, z) | z ∈ ZN\U} (y ∈ ZU), (4.8)

where the notation (y, z) means the vector whose ith component is equal to yi for i ∈ U and to zi

for i ∈ N \ U; for example, if N = {1, 2, 3, 4} and U = {2, 3}, (y, z) = (z1, y2, y3, z4). We assume
f U > −∞. The projection is sometimes called partial minimization.

A subset U of N = {1, 2, . . . , n} is said to be an interval if it consists of consecutive numbers.
The projection of a multimodular function to an interval is multimodular.
Proposition 10. For a multimodular function f and an interval U, the projection f U is multimod-
ular.

Proof. We first consider the case of U = N \ {n}. By (4.8) and (2.8) we obtain

f U(x1, x2, . . . , xn−1)
= inf

z∈Z
f (x1, x2, . . . , xn−1, z)

= inf
z∈Z

g(x1, x1 + x2, . . . , x1 + · · · + xn−1, x1 + · · · + xn−1 + z)

= gU(x1, x1 + x2, . . . , x1 + · · · + xn−1),

where gU denotes the projection of g to U. Here gU is L\-convex, since the projection of an
L\-convex function is known [14, Theorem 7.11] to be L\-convex. Therefore, f U is multimodular.

The case of U = N \ {1} can be reduced to the above case by Proposition 6, which allows us to
reverse the ordering of variables. For a general interval U, we repeat eliminating variables from
both ends of {1, 2, . . . , n}. �

The projection of a multimodular function to an arbitrary subset U is not necessarily multi-
modular.
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Example 4.1. The quadratic function f (x) = x>Ax with A =


3 2 1 0
2 3 2 1
1 2 2 1
0 1 1 1

 is multimodular,

whereas its projection f U to U = {1, 2, 4} is not. Indeed we have f U(y) = y>Ãy for Ã =

1
2

 5 2 −1
2 2 0
−1 0 1

, where Ã = (ãi j | i, j = 1, 2, 4) is obtained from A by the usual sweep-out op-

eration: ãi j = ai j − ai3a3 j/a33 (i, j ∈ {1, 2, 4}). The matrix Ã violates the condition (2.10) for

(i, j) = (1, 2). Referring to Remark 2.3 we also note that B = D>4 AD4 =


2 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 1

 ∈ L
and B̃ = D>3 ÃD3 =

1
2

 3 1 −1
1 3 −1
−1 −1 1

 < L, where D4 and D3 are 4 × 4 and 3 × 3 matrices defined

as in (2.9).
4.4. Convolution
The (infimal) convolution of two functions f1, f2 : Zn → R is defined by

( f1� f2)(x) = inf{ f1(y) + f2(z) | x = y + z, y, z ∈ Zn} (x ∈ Zn), (4.9)

where it is assumed that the infimum is bounded from below (i.e., , −∞) for every x ∈ Zn. The
Minkowski sum of two sets S 1, S 2 ⊆ Z

n is defined by

S 1 + S 2 = {y + z | y ∈ S 1, z ∈ S 2}. (4.10)

The indicator function of the Minkowski sum coincides with the convolution of the respective
indicator functions, i.e., δS 1+S 2 = δS 1� δS 1 .

Example 4.2 below shows the following facts. Recall that a multimodular set means a set
whose indicator function is multimodular (Remark 2.1) and that a separable convex function is
multimodular (Proposition 2).
• The Minkowski sum of a multimodular set and an integer interval (box) is not necessarily a

multimodular set.
• The convolution f�ϕ of a multimodular function f and a separable convex function ϕ is not

necessarily a multimodular function.
• The convolution f1� f2 of two multimodular functions f1 and f2 is not necessarily a multimod-

ular function.
Example 4.2. Let S 1 = {(0, 0, 0), (1, 0,−1)} and S 2 = {(0, 0, 0), (0, 1, 0)}, where S 2 is an integer
interval. Both S 1 and S 2 are multimodular, but their Minkowski sum S 1+S 2 = {(0, 0, 0), (1, 0,−1),
(0, 1, 0), (1, 1,−1)} is not multimodular. We can check this directly or via transformation to Ti =

{D−1x | x ∈ S i} for i = 1, 2. We have T1 = {(0, 0, 0), (1, 1, 0)} and T2 = {(0, 0, 0), (0, 1, 1)},
which are easily seen to be L\-convex. But their Minkowski sum T1 + T2 = {(0, 0, 0), (0, 1, 1),
(1, 1, 0), (1, 2, 1)} is not L\-convex, since for p = (0, 1, 1) and q = (1, 1, 0) in T1 + T2, we have
d(p + q)/2e = (1, 1, 1) < T1 + T2 and b(p + q)/2c = (0, 1, 0) < T1 + T2. Since T1 + T2 = {D−1x | x ∈
S 1 + S 2}, this means that S 1 + S 2 is not multimodular. It it mentioned that this example is based
on the example for L\-convex sets given in [14, Note 5.11] and [19, Example 3.11].

5. Concluding Remarks
Multimodular functions have been used as a fundamental tool to analyze recurrence relations in
the literature of queueing theory, discrete-event systems, and operations research. In some analy-
sis, propagation or stability of multimodularity through recurrence formulas plays a critical role.
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Table 1: Fundamental operations on discrete convex functions

Discrete Variables Restric- Projec- Addition Convolution Reference
convexity Permut. Scaling tion tion f + ϕ f1 + f2 f�ϕ f1� f2

Separable conv Y Y Y Y Y Y Y Y
Integrally conv Y N Y Y Y N Y N [10, 11, 19]
L\-convex Y Y Y Y Y Y Y N [14]
L-convex Y Y N Y Y Y Y N [14]
M\-convex Y N Y Y Y N Y Y [14]
M-convex Y N Y N Y N Y Y [14]

Y Y Y [1]
Multimodular N Y: Prop.7 alt. proof N N N this paper

Y*:Prop.6 [6]
alt. proof Y*:Prop.10 this paper

Globally d.m.c. Y Y Y Y Y Y N N [12]
Locally d.m.c. Y Y Y Y Y Y N N [12]
M-conv (jump) Y N Y Y Y N Y Y [7, 16]
d.m.c.: discrete midpoint convex, ϕ: separable convex
Y: Discrete convexity (of that kind) is preserved, N: Not preserved
Y*: Discrete convexity (of that kind) is preserved in some cases

A recurrence formula consists of various kinds of operations, some of which preserve multimod-
ularity and others not. The projection operation (partial minimization) is closely related to the
Bellman equation in dynamic programming, and the assumption of U being an interval (consecu-
tive variables) in Proposition 10 is quite natural in this interpretation. The reversal of the ordering
of variables in Proposition 6 corresponds to the reversal of “time” in recurrence relations. It is
hoped that the results of this paper will find applications in concrete problems in operations re-
search.

The known facts about fundamental operations on discrete convex functions, including those
obtained in this paper, are summarized in Table 1.
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