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Abstract In revenue management, there are models which aim to maximize revenue by controlling policy
for uncertain demands throughout a booking horizon. The models are called dynamic models. One of
the applications of the dynamic models is reservation system which offers available seats for customers’
requests. Recently, the system has allowed us to choose our booking seat position. However, the dynamic
models in revenue management have not been included customers’ selection behavior for seating position.
This paper proposes choice-based seating position model with undistinguished multi-lines that is a dynamic
model considered with the customers’ selection behavior for seating positions. Approximate solutions for
this model are calculated by Choice-based Deterministic Linear Programming (CDLP) and decomposition
approximation which are used in choice-based network revenue management models. This paper suggests
that CDLP is more effective than decomposition approximation for the choice-based seating position model,
even through some reports in revenue management suggested that decomposition approximation could derive
higher revenue than CDLP in their models.

Keywords: Decision making, network revenue management, linear programming, seat-
ing position, choice behavior, multinomial logit choice model

1. Introduction

At facilities which have some features; fixed capacity and large fixed cost, the managers
decide to accept or deny requests for perishable products. These scenes can be seen in several
industries, for example, airline, hotel, rental car, opera, theater, and etc. The decision-
making has been dealt with in revenue management (RM) [14]. In RM, there are mainly
three kind of decision-makings, which are structural decisions, price decisions and quantity
decisions. (See section 1.1 in [14].) To make the quantity decisions, there are dynamic
models. The dynamic models are to find optimal policies under an assumption which is
that requests of different segments arrive simultaneously throughout booking horizon. Lee
and Hersh [8] presented single-leg models and its properties such as monotonicity. They
assumed that booking requests arrive according to Poisson process, and also suggested how
to discretize a booking horizon to approximate the arriving process. Subramanian et al. [13]
included cancellation and overbooking in Lee and Hersh’s models. El-Haber and El-Taha [5]
extended the Subramanian et al.’s model to one with two types of seats, which means they
connected the model with network RM (NRM).

NRM is a field of RM to simultaneously deal with multiple kinds of capacities. For
example, a reservation system needs to handle multiple kinds of seats at the same time if
the system offers transit tickets. (See section 3.1 in [14] for details.) For NRM, Chang et
al. [4] reported recent applications and techniques.

When the transit tickets are offered, a customer often select buying the transit ticket or
an alternative action which is for example to buy another ticket to go to he/her destination
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directly, or not to purchase any tickets. This customer’s choice has already been considered
in RM. Talluri and van Ryzin [14] suggested a single-leg model with customer’s behavior, and
showed some properties of the model. Gallego et al. [7] presented an RM model with flexible
products and customers’ behavior. They also suggested approximation method to calculate
solutions by using linear programming, which is called choice-based deterministic linear
programming method (CDLP). Zhang and Cooper [16] proposed a model for parallel flights
with customers’ behavior. Liu and van Ryzin [9] showed a basic NRMmodel with customers’
behavior and they suggested decomposition approximation for their model. They presented
that the decomposition approximation could make higher revenue than CDLP. Bront et
al. [3] studied for Liu and van Ryzin’s model. They revealed some structural properties
and slightly enhanced the method. Recently, Sierag et al. [12] included overbooking and
cancellation into the choice-based NRM model. Topics or models with customer’s behavior
in RM are summarized in [11] as overview.

In these RM models, state of reservation system is expressed as the number of booked
capacities (or unbooked capacities). However, actual capacities, usually meaning seats, are
often arranged in rows. For cases of theater or stadium, Talluri and van Ryzin [14] pointed
out that there is a problem of isolated unbooked seats block. This means that groups or
couples would not be willing to reserve seats if there are only separated seats, since they
want to sit together. Ogasawara [10] focused on this problem and considered a dynamic
model with seats placed on a single line. In [10], the system decides how to allocate positions
to arriving groups. It implies that customers’ choice behavior is not considered in the model.
If customers can choose their booking seat positions as they want, then the behavior can
generate undesirable state in which there are many isolated small unbooked seat blocks,
as shown in Figure 1. In Figure 1, shaded cells and unshaded cells correspond to booked
seats and unbooked seats, respectively. Many people do not apparently want to select any
seat positions when they look this state to make reservations. Hence, we need to avert the
undesirable state as much as possible to achieve expected maximum revenue.

Figure 1: Isolated seats which are placed on a single line

In this paper, we propose a new dynamic model which is with customers’ choice behavior
for seating positions on multiple lines where the lines are not distinguished each other, and
one seat links to one fare class. We call this model choice-based seating position model
with undistinguished multi-lines. The situation can be seen in opera or Kabuki. For this
model, it is hard to find optimal solutions if the number of lines or the number of seats
of the longest line becomes large. However, if we apply Multinomial logit (MNL) choice
model to customers’ behavior, we can efficiently find approximate solutions in CDLP and
decomposition approximation. In regard to exact optimal solutions, a range of searching for
the solution in decision space can be reduced although the curse of dimensionality cannot be
prevented. In numerical examples conducted in this paper, expected revenue derived from
CDLP can be larger than one derived from decomposition approximation, which is different
result from existing researches [3, 9]. If we take account of distinguished multi-lines, it is
hard to compare approximate solutions to an exact solution because its state space becomes
enormously larger than this our model’s one. In addition, considering distinguished multi-
lines gives rise to some variations of customers’ choice behavior for seating positions on
different lines and makes a model more complex. In this paper, we focus seating positions
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and suggest a model with customers’ choice behavior that depends on a position relative to
other booked seating positions.

The formulation for choice-based seating position model with undistinguished multi-
lines is shown in section 2. In section 3, we present how to applying the approximation
methods and MNL choice model to the choice-based seating position model. In section 4,
we estimate solutions which are calculated by the approximation methods, by using some
numerical examples.

2. Formulation

We consider a facility with multiple seat lines such as opera or Kabuki. Assume that
these lines do not distinguished each other. In addition, a fare class links to a seat, and
arrivals of requests are independent in different fare classes. From these assumptions, we
can independently deal with the seats at each fare class and regard the numbers of different
size of adjacent vacant seats as state of the system, using approach of the formulation in
[10]. Therefore, we can consider the problem with only one fare class. In this paper, we
treat cases with only one fare class. Let r be revenue which is generated from selling a seat
of the fare class. Figure 2 shows the procedure of modifying a case with multiple lines and
two fare classes as an example.

Figure 2: Changing multiple lines and two fare classes into multiple undistinguished lines
with a single fare class

Booking horizon is sufficiently discretized into t = 1, · · · , T so that no more than one
customer’s request arrives at a time period. The time t indicates remaining time to the
terminal time t = 0. Cancellation and overbooking are ignored in this paper. Let λ be
arrival rate of the requests. States of the facility are shown by the numbers of adjacent
vacant seats as we have already mentioned. We call a vacant seat block a segment. If the
segment have n seats, then we call this the segment of size n. The left side and right side of
segments are not distinguished. This assumption makes some undistinguished positions in
a segment, which is shown in Figure 3 as an example. The positions connected by arrows
show seats which are undistinguished each other in a segment of size 5.

Figure 3: Undistinguished positions in a segment of size 5

Let m be the number of size of the longest segment in the facility. c = (c1, · · · , cm)T
stands for an initial state of the facility where T means transpose, and ci, i = 1, · · · ,m
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indicates the initial number of segments of size i. c is a state of the facility in a begging
time T on the booking horizon. State space is defined as

X =

{
(x1, · · · , xm)

T |0 ≤ xi ≤
m∑
k=1

ck⌊
k + 1

i+ 1
⌋, xi ∈ Z+, i = 1, · · · ,m

}
where ⌊k+1

i+1
⌋ means the number of segments of size i which is generated from a segment of

size k. Z+ stands for the set of non-negative integer numbers. For example, one segment of
size 3 produces ⌊3+1

1+1
⌋ = 2 segments of size 1, as the following Figure 4.

Figure 4: Separating a segment of size 3

In this model, if an arriving customer decides to book a seat, then he/she needs to decide
which segment and which position to choose from available seats. Choices that a system of
the facility can offer for customers at a state x ∈ X are defined as below.

Ω(x) =

{
(a, b)|xa > 0, b ∈ Z+, 0 < b ≤ a+ 1

2
, a = 1, · · · ,m

}
, (xi)i=1,··· ,m = x ∈ X

where a and b indicate the size of segment and an index of a seating position at the segment
of size a, respectively. The empty set ∅ ⊆ Ω(x), x ∈ X means not to offer any seating
positions for arriving requests. In Figure 5, the elements of Ω(x′), x′ = (0, 0, 0, 1, 1)T are
shown as an example.

Figure 5: Elements of Ω(x′), x′ = (0, 0, 0, 1, 1)T

For each x ∈ X, we call Ω(x) a possible choice set. The system of the facility decides a
subset of the possible choice set S ⊆ Ω(x), x ∈ X on a beginning time point of each time
duration for arriving customers. The subset S is called offer set. An arriving customer
chooses his/her booking position from an offer set which is decided by the system of the
facility to maximize expected revenue over booking horizon.

Customers’ behavior in this model is discretely defined, which can also be seen in
[3, 9, 14]. Arriving customers probabilistically choose their seating positions. Let P(a,b)(S) be
a probability that an arriving customer selects the position (a, b) ∈ S when S ⊆ Ω(x), x ∈ X
is offered. Set P0(S) = 1 −

∑
(a,b)∈S P(a,b)(S), S ⊆ Ω(x), x ∈ X where P0(S) shows a

probability of no-purchase when S ⊆ Ω(x), x ∈ X is offered.
Then, we consider changes of the numbers of segments if an arriving customer chooses

(a, b) ∈ S ⊆ Ω(x), x ∈ X. When the customer chooses the segment of size a and its index b,
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the change of state is A(a,b) = eb−1+ea−b−ea where ei is m-dimensional and i-th unit column
vector for each i = 1, · · · ,m, and e0 indicates zero vector. It means that the segment of
size a is split into segments of size b− 1 and a− b by the customer’s choice. In addition, we
define the matrix A = (A(a,b))(a,b)∈Ω where

Ω =

{
(a, b)|a = 1, · · · ,m, b ∈ Z+, 0 < b ≤ a+ 1

2

}
.

Ω means all possible offer sets that the system can decide for arriving customers over booking
horizon. For instance, given Ω3 = {(3, 1), (3, 2)} and Ω4 = {(4, 1), (4, 2)}, matrices A3 and
A4 generated from Ω3 and Ω4, respectively, are

A3 = (A(3,1), A(3,2)) =

 0 2
1 0
−1 −1

 and A4 = (A(4,1), A(4,2)) =


0 1
0 1
1 0
−1 −1

 .

Using dynamic programming, let Ut(x) be the maximum expected revenue which the
facility can obtain by optimally operating from t to 0, given the state x in time t.

Ut(x) = max
S⊆Ω(x)

{
λ

∑
(a,b)∈S

P(a,b)(S)(r + Ut−1(x+ A(a,b)))

+ (λP0(S) + (1− λ))Ut−1(x)

}
, t = 1, · · · , T, x ∈ X. (2.1)

Boundary conditions are U0(x) = 0, UT+1(x) = 0, x ∈ X, Ut(0) = 0 and Ut(x) = 0, x /∈
X, t = 1, · · · , T . (2.1) is rewritten by P0(S) = 1 −

∑
(a,b)∈S P(a,b)(S) as the following equa-

tions.

Ut(x) = max
S⊆Ω(x)

{
λ

∑
(a,b)∈S

P(a,b)(S)(r −∆(a,b)Ut−1(x))

}
+ Ut−1(x),

t = 1, · · · , T, x ∈ X (2.2)

where ∆(a,b)Ut(x) = Ut(x) − Ut(x + A(a,b)). ∆(a,b)Ut(x) means opportunity cost of the seat
(a, b) at the state x in the time t.

In this paper, |K| stands for the number of elements of the set K where the number of
elements is finite.

We show optimal policies which are calculated from a modest numerical example. Let
N = 30, c = (0, 0, 1, 2), r = 10 and λ = 0.3. We assume that arrival customers have
preference weights v(a,b) for seating positions (a, b). Let v(1,1) = 0.5, v(2,1) = 1.5, v(3,1) =
2.0, v(3,2) = 3.0, v(4,1) = 2.5, v(4,2) = 3.5 and v0 = 1.0 where v0 is a preference weight
for no-choice. The customers probabilistically select their seating positions in accordance
with ratios of the preference weights. In other words, customers’ choices depend on a
multinomial logit choice model. (The model is mentioned in 3.3.) Probabilities that a
requests selects a seating position from an offer set S ′ = {(3, 1), (4, 1)} are P(3,1)(S

′) =
2.0

2.0+2.5+1.0
, P(4,1)(S

′) = 2.5
2.0+2.5+1.0

and P0(S
′) = 2.0

2.0+2.5+1.0
in this manner. Optimal offer sets

for states (0, 0, 1, 2), (0, 0, 1, 2), (1, 1, 1, 1), (1, 1, 2, 0) which are obtained from the numerical
example are shown in Table 1.
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Table 1: Optimal offer sets for states (0, 0, 1, 2), (1, 1, 1, 1), (1, 1, 2, 0)
n \ x (0, 0, 1, 2) (1, 1, 1, 1) (1, 1, 2, 0)
1 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2)}
2 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2)}
3 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2)}
4 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2)}
5 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2)}
6 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2)}
7 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1)} {(1, 1), (2, 1), (3, 1), (3, 2)}
8 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1)} {(1, 1), (2, 1), (3, 1), (3, 2)}
9 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1)} {(1, 1), (2, 1), (3, 1), (3, 2)}
10 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1)} {(1, 1), (2, 1), (3, 1), (3, 2)}
11 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1)} {(1, 1), (2, 1), (3, 1), (3, 2)}
12 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (3, 2), (4, 1)} {(1, 1), (2, 1), (3, 1), (3, 2)}
13 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1), (3, 2)}
14 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
15 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
16 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
17 {(3, 1), (3, 2), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
18 {(3, 1), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
19 {(3, 1), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
20 {(3, 1), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
21 {(3, 1), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
22 {(3, 1), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
23 {(3, 1), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
24 {(3, 1), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
25 {(3, 1), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
26 {(3, 1), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
27 {(3, 1), (4, 1), (4, 2)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
28 {(3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
29 {(3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}
30 {(3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1), (4, 1)} {(1, 1), (2, 1), (3, 1)}

In addition, we consider a sample path of state transition to show a control using this
optimal offer sets. Suppose that a first request arrives in n = 27 and choices a position (4, 2)
from the optimal offer set {(3, 1), (4, 1), (4, 2)}, noting c = (0, 0, 1, 2). Then, the initial state
(0, 0, 1, 2) transfers to (1, 1, 1, 1). In n = 22, we postulate that a request arrives and choices
(4, 1) from the optimal offer set {(1, 1), (2, 1), (3, 1), (4, 1)}. This choice transfers state from
(1, 1, 1, 1) to (1, 1, 2, 0). Figure 6 shows this control and path.

Figure 6: A sample path from n = 30 to n = 22

Then, we consider another case in which a system does not control seating positions for
the earlier sample path, where what the system does not control seating positions means
that all available seats are opened at all times. We call this control FULL-OPEN. (It is used
again in section 4.) Under this control, an offer set for n = 27 is {(3, 1), (3, 2), (4, 1), (4, 2)}
in the earlier sample path. If the arriving request selects (4, 2) from the offer set, then
an offer set is {(1, 1), (2, 1), (3, 1), (4, 1), (4, 2)} in n = 22. This difference of the offer sets
in n = 22 between the optimal control and FULL-OPEN can make difference choice and
difference path of state transition.
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3. Approximation Methods

It is obviously difficult to compute the expected maximum revenue in (2.2) by the curse of
dimensionality if m and the numbers of initial segments ci, i = 1, · · · ,m enlarge. Gallego
et al. [7] suggested Choice-based Deterministic Linear Programming (CDLP) as an approx-
imation methods in NRM with customer’s choice behavior. Further, Liu and van Ryzin [9]
suggested decomposition approximation.

In this section, we apply the CDLP and decomposition approximation to our model.

3.1. Choice-based deterministic linear programming

Let the numbers of segments (meaning capacity) be continuous, and arrival rates be deter-
ministic number.

We set
R(S) =

∑
(a,b)∈S

rP(a,b)(S), S ⊆ Ω(x), x ∈ X,

which is the expected revenue if S is offered. We define P (S) = (P(a,b)(S))
T
(a,b)∈Ω. If

P(3,1)(S
′) = 0.25 and P(3,2)(S

′) = 0.5 are given for Ω3 = {(3, 1), (3, 2)} where S ′ = {(3, 1),
(3, 2)}, then P (S ′) = (P(3,1)(S

′), P(3,2)(S
′))T = (0.25, 0.5)T . In addition, let Q(S) be the

expected changing segment if offer set is S. Since the segment is continuous,

Q(S) = P (S)TAT

where Q(S) = (Q1(S), · · · , Qm(S))
T , and Qi(S) means the expected changing number of

the segment of size i = 1, · · · ,m if S is offered.
If any subsets are generated from Ω, then impossible combinations of seating positions

in offer sets on actual transition from a given initial state c would be created. Therefore,
we make an assumption for the initial state c in this paper as below.
Assumption 3.1. On transition from a given initial state c over time horizon, there exists
the states x+ = (x1, · · · , xm)

T ∈ X such that xi > 0, i = 1, · · · ,m.
We do not consider not to move to the states x+ by deficiency of time because we

identify that T is sufficiently large. We can naturally see whether c satisfies Assumption 3.1
if we trace all transitions of states. However, we can confirm whether c satisfies a sufficient
condition for the assumption by Algorithm 3.1. The algorithm uses a simple fact which is
that a segment β is increased by one at most if a segment α(> β) is consumed. The order
of the algorithm is O(m2). In Algorithm 3.1, suppose that m > 1.

Algorithm 3.1 An algorithm to confirm whether c satisfies Assumption 3.1.
1: Input c
2: flag ← False
3: for i = 1 to m− 1 do
4: if there exists j such that cj ̸= 0, i < j and ci = 0, then
5: j∗ ← min{j}
6: cj∗ ← cj∗ − 1
7: end if
8: end for
9: if cm ̸= 0 then
10: flag ← True
11: end if
12: Output flag
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Let t(S) be the total number of time periods in which S is offered. Then, we allow t(S)
to be continuous, which means that we can use the set S for some fraction of a time period.
Note that the sequence to offer S is arbitrary.

Then, we obtain the maximum expected revenue UCDLP by the method of CDLP.

UCDLP = max
∑
S⊆Ω

λR(S)t(S) (3.1)

s.t. 0 ≤ c+
∑
S⊆Ω

λQ(S)t(S)∑
S⊆Ω

t(S) ≤ T

t(S) ≥ 0,∀S ⊆ Ω.

The first constraint equation in (3.1) indicates that elements of state ci, i = 1, · · · ,m do
not become negative. The second constraint equation means that the total time allocating
to all offer sets is not above T .

The dual problem of (3.1) is the following

min πT c+ Tσ (3.2)

s.t. − λπTQ(S) + σ ≥ λR(S),∀S ⊆ Ω

π ≥ 0, σ ≥ 0.

π and σ are dual variables corresponding to the first and second constraint equations in
(3.1), where π = (π1, · · · , πm)

T . From sensitivity analysis (referring to [2]) for (3.2), we can
see that π and σ mean an estimate of the marginal value of capacity on each segment and
an estimate of the marginal value of time, respectively.

Similar to Liu and van Ryzin [9], we state that UCDLP is an upper bound for the
maximum expected revenue obtained from c and T . Define µ as control policy which maps
states to control actions (offer sets). Sµ(t|Ft) is an action in time t under the policy µ where
Ft indicates the history of the system up to time t. To simplify notations, we omit Ft in the
following sections. N(Sµ(t)) denotes a |Ω|-dimensional random vector which is the number
of position purchased in time t under the policy µ. N(a,b)(Sµ(t)) = 1, (a, b) ∈ Ω means a
sale of the position (a, b) and N(a,b)(Sµ(t)) = 0, (a, b) ∈ Ω means no sale of the the position

(a, b). M denotes the class of all admissible policies. Noting that
∑T

t=1 AN(Sµ(t)) is the
changing quantities of the segments from T to 1,

0 ≤ c+
T∑
t=1

AN(Sµ(t)) (a.s.)

is satisfied.
From these notations, UT (c) is denoted as the form;

U∗ = max
µ∈M

E

[
r

T∑
t=1

eTN(Sµ(t))

]
(3.3)

s.t. 0 ≤ c+
T∑
t=1

AN(Sµ(t)) (a.s.)

Sµ(t) ⊆ Ω, t = 1, · · · , T

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Choice-Based Seating Position Model 45

where e is a |Ω|−dimensional column vector of which all elements are 1. We can obtain the
following proposition from the similar way in [9].

Proposition 3.1. U∗ ≤ UCDLP .

Proof. Let Sµ∗(t), t = 1, · · ·T be optimal controls. 0 ≤ c +
∑T

t=1AN(Sµ∗(t)) since µ∗ is
admissible policy. Then, set

tµ∗(S) = E

[
T∑
t=1

1Sµ∗ (t)(S)

]

and tµ∗(S) is the expected total time in which S has been offered under the policy µ∗, where
1Sµ∗ (t)(S), S ∈ Ω is the indicator function. From Wald’s equation (see p.521 in [6]),

T∑
t=1

E
[
N(a,b)(Sµ∗(t))

]
=

∑
S⊆Ω

λP(a,b)(S)tµ∗(S)

and 0 ≤ c+
∑

S⊆Ω λAP (S)tµ∗(S) are obtained. In addition, U∗ =
∑T

t=1 re
TE [N(Sµ∗(t))] =∑

S⊆Ω λreTP (S)tµ∗(S). From definitions of Q(S) and R(S), we can find that tµ∗(S) is a

feasible solution for the problem (3.1). Hence, U∗ ≤ UCDLP is shown.

We apply column generation (specifically cutting plane method seen in [2]) to (3.1),
referring to [7, 9]. Let Ŝ ⊆ Ω. The reduced CDLP for the limited subset Ŝ is

UCDLP (Ŝ) = max
∑
S∈Ŝ

λR(S)t(S) (3.4)

s.t. −
∑
S∈Ŝ

λQ(S)t(S) ≤ c

∑
S∈Ŝ

t(S) ≤ T

t(S) ≥ 0,∀S ∈ Ŝ

where π and σ are the optimal solutions of the dual problem for (3.4). These dual variables
π and σ are corresponding to the first and second constraint equations in (3.4), respectively.
We solve the following sub-problem to produce whether the dual solution is feasible for
(3.1), or not.

max
S

λ(R(S) + πTQ(S))− σ. (3.5)

If the optimal value of (3.5) is non-positive, then the dual solution is feasible and an
optimal solution for (3.1). If the optimal value of (3.5) is positive, then we include the
solution S∗ to Ŝ and recalculate (3.4).
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3.2. Decomposition approximation method

The solutions given by CDLP are times to allocate to each offer set. It means that a sequence
of offering the each offer set through booking time is arbitrary. Hence, we cannot identify
which offer set to apply for states and times even though we can see how much time to
allocate to each offer set. To resolve this problem of CDLP, Liu and van Ryzin [9] suggested
decomposition approximation for choice-based NRM models. In the rest of this paper, we
apply a decomposition approximation improved by Bront et al. [3] to our model.

In the decomposition approximation, we decompose (2.2) in each segment by using a
marginal value which is given as the dual solution π = (π1, · · · , πm)

T , that is,

Ut(x) ≈ Û i
t (xi) +

∑
l ̸=i

πlxl, t = 1, · · · , T, i = 1, · · · ,m, x = (x1, · · · , xm)
T ∈ X. (3.6)

Phase 1: calculate one-dimensional dynamic programming

We calculate the one-dimensional dynamic programming Û i
t (xi), t = 1, · · · , T, i = 1, . . . ,m,

x = (x1, · · · , xm)
T ∈ X, (a, b) ∈ S ⊆ Ω(x).

From (3.6),

∆(a,b)Ut(x) = Ut(x)− Ut(x+ A(a,b)) ≈ Û i
t (xi)− Û i

t (xi + eTi A(a,b))− (πT − πie
T
i )A(a,b),

(3.7)

t = 1, · · · , T, i = 1, · · · ,m, x ∈ X, (a, b) ∈ S ⊆ Ω(x)

is obtained. Using (3.6) and (3.7),

Û i
t (xi) = max

S∈Si(xi)

λ
∑

(a,b)∈S

P(a,b)(S)(r + (πT − πie
T
i )A(a,b) −∆(a,b)Û

i
t−1(xi))

+ Û i
t−1(xi)

(3.8)

is produced from (2.2) where Sj(xj) = {S|S ⊆ Ω(x), xi = xj, x ∈ X}. Sj(xj) is an
decision space if the value of the i-th element of the state is xj. Boundary conditions are

Û i
0(xi) = 0, Û i

T+1(xi) = 0, 0 ≤ xi ≤
∑m

k=1 ck⌊
k+1
i+1
⌋, i = 1, · · · ,m and Û i

t (xi) = 0, xi <

0,
∑m

k=1 ck⌊
k+1
i+1
⌋ < xi, i = 1, · · · ,m, t = 1, · · · , T .

Phase 2: find offer sets

We approximately calculate the deflection vector ∆U i
t (x) = Ut(x) − Ut(x − ei) for each

i = 1, · · · ,m, t = 1, · · · , T , and x ∈ X by using Û i
t (xi) in Phase 1. From the deflection

vectors, we find offer sets for each time t = 1, · · · , T and state x ∈ X.
We consider a heuristic parameter 0 ≤ β ≤ 1 and calculate

∆U i
t (x) ≈ ∆U

i

t(x) = β∆Û i
t (xi) + (1− β)πi, i = 1, · · · ,m, t = 1, · · · , T, x ∈ X (3.9)

where ∆Û i
t (xi) = Û i

t (xi) − Û i
t (xi − 1) and ∆Û i

t (0) = 0. Using ∆Û i
t (x), for each time

t = 1, · · · , T and state x ∈ X, solve

max
S⊆Ω(x)

λ
∑

(a,b)∈S

P(a,b)(S)(r −∆U t−1(x)A(a,b))

 (3.10)

where ∆U t(x) = (∆U
1

t (x), · · · ,∆U
m

t (x)). Thus, offer sets for each time and state can be
obtained by the decomposition approximation.
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3.3. Applying MNL choice model to customers’ behavior

Remark that these approximation methods work for the curse of dimensionality. Specifically,
the approach of CDLP is to resolve it by sacrificing sequences of offer sets, and the approach
of decomposition approximation is to reduce it by decomposing state space. However, these
methods do not resolve enlarging size of possible offer set. The number of seats of a fare class
in stadium, opera, Kabuki and etc. is actually very large. The dimension m is derived from
the number of seats at the longest line. Since the number of possible offer set is considerably
effected by the dimension, it is obvious that the number of all subsets of Ω is exponentially
increased. In the approximation methods, this problem appears in calculating (3.5), (3.8)
and (3.10).

We show to able to resolve this problem under an assumption which is that customers’
behavior depends on Multinomial Logit (MNL) choice model, which can be also seen in
[7, 9]. This assumption means that customers have preferences (weights) for each position,
and select a position by their preferences. Then, let y = (y(a,b))(a,b)∈Ω be a binary vector
where

y(a,b) =

{
1 (a, b) is available,

0 (a, b) is non-available.

For example, if seating positions (3, 1), (3, 2) and (4, 1) are available for Ω′ = {(3, 1), (3, 2),
(4, 1), (4, 2)}, then a binary vector y′ for the situation is y′ = (y(3,1), y(3,2), y(4,1), y(4,2)) =
(1, 1, 1, 0).

Using y, we define

P(a,b)(y) =
v(a,b)y(a,b)∑

(α,β)∈Ω v(α,β)y(α,β) + v0
(3.11)

as a probability that a customer chooses the position (a, b) ∈ Ω, where v(a,b)(≥ 0) and
v0(> 0) are preferences of purchasing the position (a, b) ∈ Ω and a preference of no-purchase,
respectively. Applying the MNL choice model to (2.2), (3.5) and (3.10), we obtain

Ut(x) = max
y∈Y (x)

λ
∑

(a,b)∈Ω(r −∆(a,b)Ut−1(x))v(a,b)y(a,b)∑
(a,b)∈Ω v(a,b)y(a,b) + v0

+ Ut−1(x),

t = 1, · · · , T, x ∈ X, (3.12)

λ max
y∈{0,1}|Ω|

∑
(a,b)∈Ω(r + πTA(a,b))v(a,b)y(a,b)∑

(a,b)∈Ω v(a,b)y(a,b) + v0
− σ (3.13)

and

max
y∈Y (x)

{
λ
∑

(a,b)∈Ω(r −∆(a,b)Ût−1(x))v(a,b)y(a,b)∑
(a,b)∈Ω v(a,b)y(a,b) + v0

}
, x ∈ X, (3.14)

respectively, where

Y (x) =
{
(y(a,b))(a,b)∈Ω|y(a,b) ∈ {0, 1Ω(x)(a, b)}, (a, b) ∈ Ω

}
, x ∈ X. (3.15)

We cite Proposition 6 in [9] as the following Proposition 3.2 which is arranged for the
model of this paper.
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Proposition 3.2 (Liu and van Ryzin [9]). Consider a problem

max
y∈{0,1}|Ω|

∑
(a,b)∈Ω ξ(a,b)v(a,b)y(a,b)∑
(a,b)∈Ω v(a,b)y(a,b) + v0

. (3.16)

When ξ(a,b), (a, b) ∈ Ω are ranked in a decreasing order, let ξ[i] be the i-th value, that is,

ξ[1] ≥ · · · ≥ ξ[i] ≥ · · · ≥ ξ[|Ω|].

Then, there is a critical value k∗, 1 ≤ k∗ ≤ |Ω| such that

y∗(a,b) =

{
1 ξ(a,b) ≥ ξ[k∗],

0 ξ(a,b) < ξ[k∗]

where y∗ = (y∗(a,b))(a,b)∈Ω is an optimal solution for the above problem (3.16).

We show Proposition 3.3 which is easily obtained from Proposition 3.2.

Proposition 3.3. Given a state x ∈ X, consider the problem

max
y∈Y (x)

∑
(a,b)∈Ω ξ(a,b)v(a,b)y(a,b)∑
(a,b)∈Ω v(a,b)y(a,b) + v0

. (3.17)

When ξ(a,b), (a, b) ∈ Ω(x) are ranked in a decreasing order, let ξ[i] be the i-th value, that is,

ξ[1] ≥ · · · ≥ ξ[i] ≥ · · · ≥ ξ[|Ω(x)|].

Then, there is a critical value k∗, 1 ≤ k∗ ≤ |Ω| such that

y∗(a,b) =

{
1 ξ(a,b) ≥ ξ[k∗], 1Ω(x)(a, b) = 1

0 otherwise

where y∗ = (y∗(a,b))(a,b)∈Ω is an optimal solution for the above problem (3.17).

Proof. Consider the problem

max
y∈Y ′(x)

∑
(a,b)∈Ω(x) ξ(a,b)v(a,b)y(a,b)∑
(a,b)∈Ω(x) v(a,b)y(a,b) + v0

(3.18)

where

Y ′(x) =
{
(y(a,b))(a,b)∈Ω(x)|y(a,b) ∈ {0, 1}, (a, b) ∈ Ω(x)

}
, x ∈ X. (3.19)

It is obvious that the problem (3.17) is the same as the problem (3.18) because terms of
(a, b) such that 1Ω(x)(a, b) = 0 is zero in (3.17).

Therefore, Proposition 3.3 is obtained by applying Proposition 3.2 to the problem (3.18).

From Proposition 3.2, we can solve (3.13) by calculating |Ω| patterns at most. This
application for sub-problem of CDLP is similar to a result in [9]. To solve (3.12) and (3.14),
we can use Proposition 3.3.
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4. Numerical Examples

We estimate the each approximation method by Monte Carlo simulation. In regard to
time, arrival rate and revenue, we set T = 100, λ = 0.3 and r = 10. We set five cases
for initial states, which are c = (0, 0, k, k), k = 3, 4, 5, 6, 7. Let customers’ preferences be
v(1,1) = 0.5, v(2,1) = 1.5, v(3,1) = 2.0, v(3,2) = 3.0, v(4,1) = 2.5 and v(4,2) = 3.5. In regard to a
preference of no-purchase which indicates a flow of paths, we set four cases v0 = 1, 2, 3 and
4. Configurations of the approximation methods and policies are suggested as below.

DP: DP means that using offer sets which are obtained by (3.12).
CDLP-LX: Using solutions obtained by CDLP, we allocate offer sets with positive allo-

cating time to each occurred state in backward lexicographical order. The backward
lexicographical order means that we allocate offer sets to each occurred state in back-
ward order when we regard the offer sets as character strings and sort the strings in
lexicographical order, where positions in each offer set have been sorted in lexicographi-
cal order. For example, when there are offer sets {(1, 1), (3, 1)} and {(2, 1), (3, 1), (3, 2)}
with positive allocating time, we select {(2, 1), (3, 1), (3, 2)} under this rule.

CDLP-RND: Using solutions obtained by CDLP, we randomly choose an offer set from
offer sets with positive allocating time.

DCOMP-0, DCOMP-0.5, DCOMP-1: DCOMP-0, DCOMP-0.5 and DCOMP-1 corre-
spond to use offer sets which are computed by the decomposition approximation with
β = 0, β = 0.5 and β = 1, respectively.

FULL-OPEN: This indicates that we always open all unbooked seats.

We trace paths of state from n = N to n = 0 by 20000 times under the each above policy,
and we calculate averages of total revenue obtained for each history and the policy. The
results are shown in Table 2 where the numbers in the cells indicate percents of averages
obtained by the configurations without FULL-OPEN to averages obtained by FULL-OPEN.
Remark that FULL-OPEN actually does not control offer set for seating position.

It is natural that DP is the highest method than others. In several cases, higher revenue
than FULL-OPEN is generated by CDLP in which the curse of dimensionality and increment
of search range in decision space are resolved. Furthermore, we cannot find what one of the
two configurations for CDLP; LX and RND is the better one. On the other hand, DCOMP
does not derive higher revenue than FULL-OPEN in all input data-set and all patterns
of the heuristic parameter. From these computations, we can suggest that decomposition
approximation may not be effective one for this model. This result for DCOMP cannot be
seen in [3, 9] in which they suggested that DCOMP substantially generated higher revenue
than CDLP.

Note that there exists no difference among the all configurations if v0 = 0. The reason
is that it is optimal to accept all requests if all arriving customers always book any posi-
tions, since revenue obtained from each customer is the same in this model. Therefore, the
difference is generated from customers’ behavior, that is, we can obtain higher revenue by
controlling choices of seating position for arriving customers even though fares for all seats
are the same.
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Table 2: The calculated percents for each configuration
DP CDLP DCOMP

v0 LX RND 0 0.5 1
(0,0,3,3) 1 111.99 64.93 79.79 87.63 94.87 93.75

2 116.66 89.27 90.71 91.27 92.37 93.96
3 115.89 96.34 99.02 93.54 93.44 91.69
4 114.51 100.98 95.94 98.20 93.75 89.67

(0,0,4,4) 1 113.61 102.12 100.71 85.15 92.52 86.67
2 113.73 104.01 100.41 97.10 91.34 83.49
3 111.56 100.08 95.49 95.20 92.73 83.80
4 109.13 98.93 95.27 97.12 93.70 85.09

(0,0,5,5) 1 110.53 103.54 100.76 97.37 87.40 85.82
2 108.87 101.55 98.27 95.45 87.41 78.86
3 106.99 95.35 98.35 93.34 90.38 79.21
4 105.69 97.26 99.04 96.05 92.03 79.58

(0,0,6,6) 1 106.72 101.15 101.34 96.83 84.37 82.10
2 105.30 97.65 99.22 93.79 84.18 74.67
3 104.29 102.58 102.58 99.90 77.06 68.05
4 103.67 100.41 100.12 99.95 79.88 67.07

(0,0,7,7) 1 103.56 100.93 101.07 95.64 81.53 79.34
2 103.38 101.65 101.37 99.95 73.86 69.18
3 102.77 99.39 99.60 99.99 74.28 64.67
4 102.01 96.87 97.07 99.98 76.86 63.79

5. Conclusion and Future Issues

We presented choice-based seating position model with undistinguished multi-lines which
deals with customers who choose their booking position or do not purchase seats on their
preferences. If customers’ behavior depends on MNL choice model, we can efficiently cal-
culate offer sets by Propositions 3.2 and 3.3. For the model by dynamic programming, we
can reduce searching in decision space and obtain the maximum expected revenue although
the curse of dimensionality is not resolved. For CDLP method, we can efficiently solve
its sub-problem even if the input parameters, m, ci, i = 1, · · · ,m and T enlarge. Further,
it is suggested that CDLP might be effective approximation methods for the choice-based
seating position model since there are some cases in which offer sets obtained by CDLP
can generate higher revenue than FULL-OPEN. On the other hand, in the decomposition
approximation method, a part of procedures for finding approximate solutions cannot be
effectively reduced. In addition, the decomposition approximation did not work well in our
all numerical examples. We can guess that this unsuccessful might be caused by the strong
relationship among segments in state space of this model, unlike other RM models.

For the choice-based seating position model that has been stated in this paper, some
extensions can be considered. For instance, it is to take account of multiple customer’s
segments with different preferences (e.g. membership or non-membership who has different
enthusiasm for services provided by facilities). Other extension is to include multiple fare
classes and distinguished multiple lines. These future issues come from a physical feature
of seats which is that the seats are placed in rows.
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