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Abstract Variable selection is the process of finding variables relevant to a given dataset in model con-
struction. One of the techniques for variable selection is exponentially evaluating many models with a
goodness-of-fit (GOF) measure, for example, Akaike information criterion (AIC). The model with the low-
est GOF value is considered as the best model. We proposed a mixed integer nonlinear programming
approach to AIC minimization for linear regression and showed that the approach outperformed existing
approaches in terms of computational time [13]. In this study, we apply the approach in [13] to AIC
minimization for logistic regression and explain that a few of the techniques developed previously [13], for
example, relaxation and a branching rule, can be used for the AIC minimization. The proposed approach
requires solving relaxation problems, which are unconstrained convex problems. We apply an iterative
method with an effective initial guess to solve these problems. We implement the proposed approach via
SCIP, which is a noncommercial optimization software and a branch-and-bound framework. We compare
the proposed approach with a piecewise linear approximation approach developed by Sato and others [16].
The results of computational experiments show that the proposed approach finds the model with the lowest
AIC value if the number of candidates for variables is 45 or lower.

Keywords: Optimization, mixed integer nonlinear programming, SCIP optimization
suite, Akaike information criterion, logistic regression, variable selection

1. Introduction

1.1. Variable selection in logistic regression

Finding the best statistical model for a given dataset is one of the most important problems
in statistical applications (e.g., linear and logistic regression). This problem is called variable
selection, and solving it leads to the following benefits: improvement in the prediction
performance of a statistical model, development of faster and more cost-effective models
in terms of computation, and better understanding of the essence of the statistical model
behind a given dataset. See [11] for more details.

To evaluate statistical models comprised of selected variables, a few goodness-of-fit
(GOF) measures, such as the Akaike information criterion (AIC) [2] and Bayesian infor-
mation criterion (BIC) [17], are often employed. The goal of AIC-based variable selection
is to find a model with the lowest AIC value among all the models. Because the number
of all models is exponentially large, computation of all models is impractical. Instead of
evaluating all models, stepwise methods are often applied. These methods are local search
algorithms and procedures for finding statistical models with low AIC values. However,
they may miss the model with the lowest AIC value.

Various approaches have been proposed for variable selection in logistic regression. ℓ1-
penalized logistic regression [14] is often employed because it provides sparse models and
performs well even on large-scale instances. However, the models provided by this approach
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are not necessarily the best in terms of GOF measures. Sato and others formulated a mixed
integer linear programming problem by employing a piecewise linear approximation to min-
imize GOF measures [16]. Although this approach might not arrive at the best statistical
model, the results of their computational experiments indicated that this approach outper-
formed the stepwise methods. Bertsimas and King [6] proposed a mixed integer nonlinear
programming (MINLP) approach to constructing models with the desired properties, for ex-
ample, predictive power, interpretability, and sparsity. In addition, they proposed a tailored
methodology using outer approximation techniques and dynamic constraint generation to
solve the MINLP problem. The risk score problem [20] was optimized for feature selection,
integer coefficient, and operational constraints. This problem was formulated as a MINLP
problem that can be solved by using the cutting plane algorithm proposed in [20].

1.2. Mixed integer nonlinear programming

An MINLP can deal with integer variables and nonlinear functions and is one of the
most flexible modeling paradigms from the viewpoint of formulation. However, this flex-
ibility leads to numerical difficulties associated with the handling of nonlinear functions
and challenges pertaining to optimization in the context of integrality. Nonetheless, many
researchers and practitioners have shown interest in solving MINLP problems. Several
methods have been proposed for solving MINLP problems, for example, branch-and-bound
(B&B) algorithm, branch-and-cut algorithm, outer approximation, and Benders decompo-
sition. See [5, 21] for details about MINLP.

The availability and maturity of software for solving MINLP problems have increased
significantly in the past 20 years. A number of open sources and commercial MINLP solvers
are listed in [9]. A customized MINLP solver for a specific application occasionally achieves
good computational performance [8, 10]. Herein, we solve an MINLP problem for variable
selection and implement a few techniques for the problem by customizing the SCIP Opti-
mization Suite [18]. This software toolbox comprises several parts, such as SCIP [1, 21] and
UG [19]. SCIP is open source software, and it provides a B&B framework for solving mixed
integer linear programming and MINLP problems. Additional plugins, such as branch-
ing rules, relaxation handlers, and primal heuristics, allow for an efficient solution process.
UG provides a parallel extension of SCIP to employ multi-threaded parallel computation.
These software applications have been developed by the Optimization Department at the
Zuse Institute Berlin and its collaborators.

1.3. Contributions and structure of the present paper

In the present study, we apply an MINLP approach to AIC-based variable selection in
logistic regression. In [13], we proposed the MINLP approach for minimizing AIC in the
context of linear regression. The MINLP approach executes a B&B algorithm and requires
that a relaxation problem is solved at each B&B node. When the MINLP approach is
applied to AIC minimization for logistic regression, the relaxation problem becomes an
unconstrained convex problem that can be solved by applying an iterative method, for
example, the steepest descent method and Newton’s method. To reduce the computational
time for solving the relaxation problem, we develop an effective procedure to construct an
initial guess for the iterative method.

We proposed a few techniques pertaining to the B&B algorithm in [13], for example,
relaxation, a branching rule, and heuristics based on stepwise methods. These techniques
can be applied to AIC minimization for logistic regression, and they perform well in terms of
computational time. We implement these techniques by customizing SCIP [1, 21], which is
a mathematical optimization software and a B&B framework. The results of computational
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Variable Selection in Logistic Regression 17

experiments show that the proposed approach finds the model with the lowest AIC value if
the number of candidates for variables is 45 or lower.

In addition, we explain that the proposed MINLP approach can be used for ℓ0-penalized
variable selection, that is

min
β∈Rp

f(β) + λ∥β∥0. (1.1)

Here, λ is a positive constant, and ∥β∥0 is the ℓ0-norm of β, that is, the count of the
nonzero elements in β. The function f represents a discrepancy between a given dataset
and a statistical model. The proposed MINLP approach can be applied to the problem (1.1)
if the proposed relaxation problem can be solved at each B&B node.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce AIC
minimization for logistic regression and formulate it as an MINLP problem. In Section 3,
we show that the techniques proposed in [13] can be applied to the formulated problem.
In Section 4.1, we develop the procedure for constructing the initial guess of the iterative
method. In Section 4.2, we briefly explain a piecewise linear approximation approach [16] for
logistic regression to compare the proposed approach with the said approach. In Section 4.3,
we report numerical experiments conducted using the proposed approach, piecewise linear
approximation approach, and stepwise methods. In Section 4.4, we examine which of the
proposed techniques is effective and how our heuristics method and branching rule influence
changes in upper and lower bounds of the optimal value. In Section 5, we explain how the
proposed MINLP approach can be applied to ℓ0-penalized variable selection.

2. AIC Minimization for Logistic Regression

In this section, we formulate AIC minimization for logistic regression as a MINLP problem.
First, we define a logistic regression model and AIC. Logistic regression is a fundamental
statistical tool, and it estimates the probability of a binary response from a given dataset
(xi1, . . . , xip, yi) ∈ Rp×{0, 1} with xi1 = 1 (i = 1, . . . , n). We regard yi as a class label of the
ith data for all i = 1, . . . , n. Logistic regression determines coefficient parameters β1, . . . , βp

of the following logistic regression model which determines the probability of y = 1 for an
input x = (x1, . . . , xp)

T ∈ Rp,

P (y = 1 | x) =
exp

(∑p
j=1 βjxj

)
1 + exp

(∑p
j=1 βjxj

) .
Here x1, . . . , xp and y are explanatory variables and a response variable, respectively. The
probability of y = 0 is obtained by simple calculation,

P (y = 0 | x) = 1− P (y = 1 | x) = 1

1 + exp
(∑p

j=1 βjxj

) .
Therefore, the probability of y ∈ {0, 1} can be written as

P (y | x) =
exp

(
y
∑p

j=1 βjxj

)
1 + exp

(∑p
j=1 βjxj

) .
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18 K. Kimura

In logistic regression, the coefficient parameters β1, . . . , βp can be determined by maximum
likelihood estimation. In fact, the log-likelihood function ℓ is defined as

ℓ(β) =
n∑

i=1

logP (yi | xi) = −
n∑

i=1

(
log
(
1 + exp

(
βTxi

))
− yiβ

Txi
)
,

where β = (β1, . . . , βp)
T and xi = (xi1, . . . , xip)

T for i = 1, . . . , n.
The AIC [2] is one of GOF measures, and it can evaluate logistic regression models. Let

{1, . . . , p} be a set of indices of given explanatory variables and S a subset of {1, . . . , p}.
For any subset S ⊆ {1, . . . , p}, the AIC value of the logistic regression model with the jth
explanatory variables (j ∈ S) can be computed as follows:

AIC(S) = 2min
βj

{
n∑

i=1

(
log
(
1 + exp

(
βTxi

))
− yiβ

Txi
)
:
βj = 0 (j ∈ {1, . . . , p} \ S)
β ∈ Rp

}
(2.1)

+ 2∥β∗∥0,

where β∗ is an optimal solution of the minimization problem in (2.1), and ∥β∗∥0 is the
ℓ0-norm of β∗, that is, the count of the nonzero elements in β∗. The objective function
of the minimization in (2.1) is convex because its Hessian matrix is positive semidefinite.
The minimization in (2.1) is solved for any subset S ⊆ {1, . . . , p} by applying a gradient
algorithm, for instance, the steepest descent method and Newton’s method.

In AIC-based variable selection, the logistic regression model with the lowest AIC value
is selected as the best model. It is practically difficult to compute the AIC value (2.1) for all
models because the number of models is 2p. Hence, we apply an efficient MINLP approach
to finding the best model. The minimization of AIC(S) over S ⊆ {1, . . . , p} is formulated
as the following MINLP problem:

min
β,z

2
n∑

i=1

(
log
(
1 + exp

(
βTxi

))
− yiβ

Txi
)
+ 2

p∑
j=1

zj (2.2)

s.t. zj = 0⇒ βj = 0 (j = 1, . . . , p), (2.3)

βj ∈ R, zj ∈ {0, 1} (j = 1, . . . , p). (2.4)

The constraints (2.3) represent indicator constraints, that is, βj has to be zero if zj is zero.

3. Solving the MINLP Problem (2.2)–(2.4)

In [13], we formulated AIC minimization for linear regression as an MINLP problem and
proposed a B&B algorithm purpose-built for this problem. The algorithm consists of com-
ponents related to effective relaxation, handling of data structure, a heuristic method, and
a branching rule. In this section, we explain how these components are applicable to AIC
minimization for logistic regression. In Section 5, we describe how they are applicable to
ℓ0-penalized variable selection (1.1).

The first term of the objective function (2.2) is denoted by f(β), that is,

f(β) := 2
n∑

i=1

(
log
(
1 + exp

(
βTxi

))
− yiβ

Txi
)
. (3.1)
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We develop a method based on a B&B algorithm [1, 21] to solve the problem (2.2)–(2.4).
The B&B algorithm splits repeatedly a set of feasible solutions into two sets by branching
and constructs a B&B tree of the node corresponding to the split set. At each node, the
algorithm computes a lower bound of the optimal value of a subproblem by relaxation. In
Section 3.1, we describe the relaxation to compute the lower bounds efficiently. Moreover,
we show that a feasible solution of the subproblem can be obtained easily from an optimal
solution of the proposed relaxation problem. In Sections 3.2 and 3.3, we describe a few
techniques to improve the numerical performance.

3.1. Relaxation to compute lower bounds

We explain how relaxation proposed in [13] can be applied to the problem (2.2)–(2.4).
Branching fixes a binary variable zj of the problem (2.2)–(2.4) to zero or one and generates
two nodes repeatedly. For any node, we define the sets Z0, Z1, and Z as follows:

Z1 = {j ∈ {1, . . . , p} : zj is already fixed to 1},
Z0 = {j ∈ {1, . . . , p} : zj is already fixed to 0},
Z = {j ∈ {1, . . . , p} : zj is not fixed}.

Then, the subproblem of the problem (2.2)–(2.4) can be expressed as follows:

min
β,z

f(β) + 2

p∑
j=1

zj (3.2)

s.t. βj ∈ R, zj = 1 (j ∈ Z1), βj = zj = 0 (j ∈ Z0), (3.3)

zj = 0⇒ βj = 0, βj ∈ R, zj ∈ {0, 1} (j ∈ Z). (3.4)

We denote the subproblem (3.2)–(3.4) by Q(Z1, Z0, Z) because the subproblem can be spec-
ified uniquely by using Z1, Z0, and Z. By relaxing the integrality of the variables zj, we
obtain the following standard relaxation problem of Q(Z1, Z0, Z):

min
β,z

f(β) + 2

p∑
j=1

zj (3.5)

s.t. βj ∈ R, zj = 1 (j ∈ Z1), βj = zj = 0 (j ∈ Z0), (3.6)

zj = 0⇒ βj = 0, βj ∈ R, 0 ≤ zj ≤ 1 (j ∈ Z). (3.7)

The optimal value of the problem (3.5)–(3.7) is the lower bound of the optimal value of
Q(Z1, Z0, Z). Instead of solving (3.5)–(3.7), we consider the following problem:

min
β

f(β) + 2#(Z1) s.t. βj = 0 (j ∈ Z0), βj ∈ R (Z1 ∪ Z), (3.8)

where #(Z1) stands for the number of elements in the set Z1. This problem is arrived at
by eliminating the indicator constraints and the variables zj from the problem (3.5)–(3.7).
Notably, the optimal value of the problem (3.8) is the lower bound of the optimal value of
Q(Z1, Z0, Z). In fact, the optimal value of (3.8) is smaller than or equal to the optimal value
of (3.5)–(3.7) because any feasible solution (β, z) of (3.5)–(3.7) is also feasible for (3.8) and
satisfies the following inequality:

f(β) + 2

p∑
j=1

zj = f(β) + 2

(∑
j∈Z

zj +#(Z1)

)
≥ f(β) + 2#(Z1).
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Hence, we employ (3.8) as a relaxation problem of the subproblem Q(Z1, Z0, Z) to compute a
lower bound of the optimal value of Q(Z1, Z0, Z). We denote the relaxation problem (3.8) by
R(Z1, Z0, Z), which is an unconstrained convex problem. We can solve R(Z1, Z0, Z) under
the practical assumption of logistic regression analysis. See Section 5 and Appendix A for
details. In the numerical experiments conducted herein, we obtain an optimal solution of
R(Z1, Z0, Z) by applying Newton’s method.

We show the following lemma that implies the optimal value of R(Z1, Z0, Z) is identical
to the optimal value of the standard relaxation problem (3.5)–(3.7).
Lemma 3.1. Let θ∗ be the optimal value of R(Z1, Z0, Z). Then, the optimal value of (3.5)–
(3.7) is θ∗.

Proof. Let β∗ be an optimal solution of R(Z1, Z0, Z). We construct a sequence {(βN , zN)}∞N
as follows:

βN = β∗ and zNj =


1 if j ∈ Z1,

1/N if j ∈ Z,

0 otherwise,

(j = 1, . . . , p)

for all N ≥ 1. (βN , zN) is feasible for (3.5)–(3.7) for all N ≥ 1. It is sufficient to prove
that the objective value θN of (3.5)–(3.7) at (βN , zN) converges to the optimal value θ∗ of
R(Z1, Z0, Z) as N approaches infinity. Because we have θ∗ = f(β∗) + 2#(Z1) and

θ∗ ≤ θN = f(β∗) + 2#(Z1) +
2

N
#(Z) = θ∗ +

2

N
#(Z),

θN converges to θ∗ as N approaches to infinity. This implies that the optimal value of
R(Z1, Z0, Z) is identical to the optimal value of (3.5)–(3.7).

We can easily solve the relaxation problem of the subproblem obtained by fixing zj
to 1. By fixing the variable zk, two subproblems Q(Z1 ∪ {k}, Z0, Z\{k}) and Q(Z1, Z0 ∪
{k}, Z\{k}) are generated fromQ(Z1, Z0, Z). The relaxation problemR(Z1∪{k}, Z0, Z\{k})
can then be formulated as follows:

min
β

f(β) + 2#(Z1 ∪ {k}) s.t. βj = 0 (j ∈ Z0), βj ∈ R (Z1 ∪ Z).

Therefore, the optimal value of the relaxation problem R(Z1∪{k}, Z0, Z\{k}) for any k ∈ Z
is θ∗ + 2, where θ∗ is the optimal value of the relaxation problem R(Z1, Z0, Z).

We explain a procedure to generate a feasible solution of the subproblem Q(Z1, Z0, Z)

from an optimal solution of R(Z1, Z0, Z). Let β̂ = (β̂1, . . . , β̂p)
T
be the optimal solution of

R(Z1, Z0, Z). We define ẑ = (ẑ1, . . . , ẑp) by ẑj = 1 if β̂j ̸= 0, otherwise ẑj = 0. Clearly,

(β̂, ẑ) is feasible for Q(Z1, Z0, Z).

3.2. Effective handling of data structure

Standard statistical textbooks often assume that datasets have linear independence; how-
ever, as it is some datasets in the UCI Machine Learning Repository [4], for example, bumps
and stat-G, have linear dependence. Given that we apply Newton’s method to the relax-
ation problem (3.8), it is necessary to solve linear systems. If a given dataset has linear
dependence, the linear systems may have infinitely many solutions. In other words, the
function f(β) is not strongly convex. Hence, we explain the processing of linear dependence
in logistic regression and use the idea of the processing proposed in [13].

First, we explain the following proposition, which involves techniques for solving (2.2)–
(2.4).
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Proposition 3.2. Let S be a nonempty subset of {1, . . . , p}. We assume that for any s ∈ S

and β̃ = (β̃1, . . . , β̃p)
T ∈ Rp, there exists β̂ ∈ Rp such that

β̂j = β̃j (j ∈ {1, . . . , p}\S), β̂s = 0 and f(β̃) = f(β̂),

where the function f is defined in (3.1). Then, the following properties are satisfied:

1. If S ⊆ Z1, the subproblem Q(Z1, Z0, Z) is pruned in the B&B tree, that is, the optimal
value of Q(Z1, Z0, Z) is larger than the optimal value of (2.2)–(2.4).

2. If Z ∩ S ̸= ∅ and S ⊆ Z1 ∪ Z, the optimal value of the relaxation problem R(Z1, Z0, Z)
is equal to the optimal value of the relaxation problem R(Z1, Z0 ∪ {k}, Z\{k}) for any
k ∈ Z ∩ S.

We prove Proposition 3.2 at the end of this subsection.

Remark. The first property of Proposition 3.2 implies that we can reduce the number
of generated B&B nodes. The second property of Proposition 3.2 implies that we can
reduce the computational cost of solving the relaxation problem. In fact, we can remove a
continuous variable βk (k ∈ Z ∪ S) from the relaxation problem, where the set S satisfies
the assumption in Proposition 3.2. We apply this removal repeatedly. Therefore, we can
efficiently solve (2.2)–(2.4) by using the properties of Proposition 3.2.

Next, we show that f defined in (3.1) satisfies the assumption in Proposition 3.2 if
a given dataset has linear dependence. To explain this, we define linear dependence in
datasets. For a given dataset (xi1, . . . , xip, yi) ∈ Rp × {0, 1} with xi1 = 1 (i = 1, . . . , n), we
define the following vectors:

xj =

 x1j
...

xnj

 ∈ Rn for j = 1, . . . , p.

If these vectors x1, . . . , xp ∈ Rn are linearly dependent, we say that the dataset has linearly
dependent variables. Lemmas 3.3 and 3.4 show that linear dependence in a given dataset
corresponds to the assumption in Proposition 3.2. Hence, we can reduce the computational
cost by applying Proposition 3.2.

Lemma 3.3. If a given dataset has linearly dependent variables, there exists a nonempty
set S ⊆ {1, . . . , p} such that∑

j∈S

αjxj = 0 and αj ̸= 0 for all j ∈ S. (3.9)

Proof. If a given dataset has linearly dependent variables, there exists α (̸= 0) ∈ Rp such
that

∑p
j=1 αjxj = 0. Then, the subset S is defined by {j ∈ {1, . . . , p} : αj ̸= 0}. It is readily

apparent that S is nonempty.

Lemma 3.4. If a given dataset has linearly dependent variables, there exists a nonempty
set S ⊆ {1, . . . , p} such that the S and f defined in (3.1) satisfy the assumption in Propo-
sition 3.2.

Proof. Let β̃ be (β̃1, . . . , β̃p)
T ∈ Rp and Ip a set {1, . . . , p}. From Lemma 3.3, there exists a

nonempty set S ⊆ {1, . . . , p} such that (3.9). We consider the two cases: (i) #(S) = 1 and
(ii) #(S) > 1.
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(i). If S contains a single element (i.e., S = {s}), xs = 0. We define β̂ = (β̂1, . . . , β̂p)
T
∈ Rp

as follows:

β̂j =

{
β̃j, (j ∈ Ip\{s})
0, (j = s)

for all j = 1, . . . , p. Because β̃Txi = β̂Txi, f(β̃) = f(β̂) is satisfied.
(ii). For any s ∈ S, there exist α′

j ̸= 0 (j ∈ S\{s}) such that

xis =
∑

j∈S\{s}

α′
jxij

for all i = 1, . . . , n. β̃Txi (i = 1, 2, . . . , n) can be written as follows:

β̃Txi =
∑

j∈Ip\{s}

β̃jxij + β̃sxis

=
∑

j∈Ip\{s}

β̃jxij + β̃s

∑
j∈S\{s}

α′
jxij

=
∑

j∈Ip\S

β̃jxij +
∑

j∈S\{s}

(β̃j + β̃sα
′
j)xij.

Here, we define β̂ = (β̂1, . . . , β̂p)
T
∈ Rp as follows:

β̂j =


β̃j, (j ∈ Ip\S)
β̃j + β̃sα

′
j, (j ∈ S\{s})

0, (j = s)

for all j = 1, . . . , p. Because β̃Txi = β̂Txi, f(β̃) = f(β̂) is satisfied.

As described at the start of this subsection, the linear system appearing in Newton’s
method may have infinitely many solutions if a relaxation problem R(Z1, Z0, Z) has sets
of linearly dependent vectors. Therefore, we transform R(Z1, Z0, Z) to eliminate such sets.
To this end, we use the second property of Proposition 3.2. We describe the nonempty set
S ⊆ {1, . . . , p} of Lemma 3.3 as a linearly dependent set. Given any relaxation problem
R(Z1, Z0, Z) and a linearly dependent set S ⊆ Z1 ∪ Z with Z ∩ S ̸= ∅, we select an index
k ∈ Z ∩ S and solve R(Z1, Z0 ∪ {k}, Z \ {k}) instead of R(Z1, Z0, Z). Because R(Z1, Z0 ∪
{k}, Z \ {k}) does not contain the vector xk ∈ Rn, it is regarded as a problem without
the linearly dependent set S. Hence, application of the second property of Proposition 3.2
corresponds to removal of the linearly dependent set from R(Z1, Z0, Z).

To apply Proposition 3.2 at each B&B node, we must find linearly dependent sets. In
Algorithm 1, we describe a process proposed in [13] to find a collection C(Z,Z1) of the linearly
dependent sets. This process ensures that Proposition 3.2 is available for any nonempty set
S ∈ C(Z,Z1). We state that the linear system (3.10) has a unique solution because the
matrix (xk)k∈S has full column rank. To save computational costs, we find C({1, . . . , p}, ∅)
in advance and reuse it. If the intersection of all linearly dependent sets of a given dataset
is ∅, then it is sufficient to find C({1, . . . , p}, ∅). In fact, it contains all linearly dependent
sets in the given dataset. Otherwise, the linear system may yield infinitely many solutions
with Newton’s method even after application of the second property of Proposition 3.2 with
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Algorithm 1: An algorithm to find a collection of linearly dependent sets

Input: vectors xj (j ∈ Z ∪ Z1)
Output: A collection C(Z,Z1) of linearly dependent sets
C(Z,Z1)←− ∅, S ←− ∅;
for j ∈ Z ∪ Z1 do

if the vectors {xk : k ∈ S ∪ {j}} are linearly independent then
S ←− S ∪ {j};

else
Solve the following linear system:∑

k∈S

αkxk = xj (3.10)

S ′ ←− {k ∈ S : αk ̸= 0} ∪ {j}, C(Z,Z1)←− C(Z,Z1) ∪ {S ′};
end

end
return C(Z,Z1)

C({1, . . . , p}, ∅) to R(Z1, Z0, Z). In this case, we alternate between executing Algorithm 1
and applying the second property.

Finally, we prove Proposition 3.2 as follows:

Proof. (First property of Proposition 3.2). Let mQ be the optimal value of Q(Z1, Z0, Z) and
mP the optimal value of the problem (2.2)–(2.4). It is sufficient to prove that mQ > mP . An
optimal solution of Q(Z1, Z0, Z) is denoted by (β̃, z̃) ∈ Rp×Rp. Considering the assumption
of this proposition, for s ∈ S, there exists β̂ ∈ Rp such that

β̂j = β̃j (j ∈ {1, . . . , p}\S), β̂s = 0 and f(β̃) = f(β̂).

We define ẑ = (ẑ1, . . . , ẑp)
T ∈ {0, 1}p as follows:

ẑj =

{
z̃j, (if j ̸= s)

0, (if j = s)

for all j = 1, . . . , p. Because z̃s is one and (β̂, ẑ) is feasible for (2.2)–(2.4),

mQ = f(β̃) + 2

p∑
j=1

z̃j > f(β̂) + 2

p∑
j=1

ẑj ≥ mP .

(Second property of Proposition 3.2). Let mR be the optimal value of the relaxation problem
R(Z1, Z0, Z) and mRk

the optimal value of the relaxation problem R(Z1, Z0 ∪ {k}, Z\{k})
for k ∈ Z ∩ S. mR and mRk

are computed as follows:

mR = min
β
{f(β) + 2#(Z1) : β ∈ Rp, βj = 0 (j ∈ Z0)},

mRk
= min

β
{f(β) + 2#(Z1) : β ∈ Rp, βj = 0 (j ∈ Z0 ∪ {k})}.

Because an optimal solution of the relaxation problem R(Z1, Z0∪{k}, Z\{k}) is feasible for
the relaxation problem R(Z1, Z0, Z), mRk

≥ mR is satisfied. Let β̃ be an optimal solution of
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the relaxation problem R(Z1, Z0, Z). Considering the assumption of this proposition, there
exists β̂ ∈ Rp such that

β̂j = β̃j (j ∈ {1, . . . , p}\S), β̂k = 0 and f(β̃) = f(β̂).

Because β̂ is feasible for the relaxation problem R(Z1, Z0,∪{k}, Z\{k}), mR ≥ mRk
is

satisfied. Hence mR = mRk
.

3.3. The other techniques to improve computational performance

By customizing SCIP [1, 21], we realize the relaxation problem (3.8) and Proposition 3.2.
In addition, we employ a heuristic method and a branching rule, which are described in our
paper [13]. In this section, we briefly introduce these techniques and explain how they can
be applied to AIC minimization in logistic regression (i.e., (2.2)–(2.4)).

To prune B&B nodes from a B&B tree, it is necessary to find a good feasible solution
early. SCIP contains many heuristic methods for finding feasible solutions of MINLP prob-
lems [21]. However, these methods do not always find feasible solutions of (2.2)–(2.4). Our
heuristic method is based on stepwise methods with forward selection and backward elimi-
nation. In each step, the stepwise methods decide whether to add an explanatory variable to
the statistical model or to remove it. This process is repeated until no further improvement
is possible. These stepwise methods are implemented in statistical software, for example,
R [15]. Although these methods are considered local search algorithms, they often find good
statistical models within a short time. We extend the capability of the stepwise methods
to find feasible solutions of any subproblem Q(Z1, Z0, Z). As a result, we expect that our
heuristic methods will find good feasible solutions early. We describe the heuristic method
for (2.2)–(2.4) in Algorithm 2. For any subset S ⊆ {1, . . . , p} with Z1 ⊆ S ⊆ Z1 ∪ Z, we

define the value θ̄S and the vector z̄S = (z̄S1 , . . . , z̄
S
p )

T ∈ {0, 1}p as follows:

θ̄S := min
β
{f(β) : βj = 0 (j ∈ {1, . . . , p} \ S), β ∈ Rp}+ 2#(S), (3.11)

z̄Sj :=

{
1 if j ∈ S

0 if j ∈ {1, . . . , p} \ S
for all j = 1, . . . , p, (3.12)

where #(S) denotes the number of elements in S. The vector β̄S ∈ Rp denotes an optimal
solution of the minimization problem in (3.11). We use (β̄Z1 , z̄Z1) and (β̄Z1∪Z , z̄Z1∪Z) as the
initial solutions (β1, z1) and (β2, z2), respectively, in our implementation. In Section 4, we
show that our heuristic method improves computational performance.

A branching rule selects a branching variable at each node. Because branching is one of
the cores of the B&B algorithm, it is important for solving MINLP problems to find good
strategies. See [1, Section 5] for details about branching rules. We employ most frequent
branching, which was proposed in [13]. This branching rule is based on two tendencies: some
explanatory variables are often employed in good statistical models and are adopted in the
best statistical model. By branching variables zk, which correspond to such explanatory
variables, good feasible solutions might be eliminated from the generated subproblem (3.2)–
(3.4) with zk = 0. Hence, we expect that the subproblem is pruned as early as possible. We
describe the branching rule in Algorithm 3. In Section 4, we compare this rule numerically
with inference branching implemented in SCIP and observe that most frequent branching is
more effective than inference branching for the benchmark datasets.
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Algorithm 2: Our heuristics based on the stepwise methods

Input: A subproblem Q(Z1, Z0, Z) and two initial feasible solutions (β1, z1) and
(β2, z2) of Q(Z1, Z0, Z)

Output: A feasible solution (β, z) of Q(Z1, Z0, Z)
S ←− {j ∈ {1, . . . , p} : z1j = 1}, vf ←−∞;

/* the stepwise method with forward selection */

while θ̄S < vf do
vf ←− θ̄S, (βf , zf )←− (β̄S, z̄S);

Find J = argmin
j∈Z\S

{θ̄S∪{j} : z̄S∪{j} is feasible for Q(Z1, Z0, Z)};

if J = ∅ then break;
Select j ∈ J and S ←− S ∪ {j};

end
S ←− {j ∈ {1, . . . , p} : z2j = 1}, vb ←−∞;

/* the stepwise method with backward elimination */

while θ̄S < vb do
vb ←− θ̄S, (βb, zb)←− (β̄S, z̄S);

Find J = argmin
j∈Z∩S

{θ̄S\{j} : z̄S\{j} is feasible for Q(Z1, Z0, Z)};

if J = ∅ then break;
Select j ∈ J and S ←− S \ {j};

end
if vf < vb then return (βf , zf );
else return (βb, zb);

Algorithm 3: Most frequent branching

Input: A positive integer N , a set Z of indices of unfixed variables, and the current
pool of feasible solutions of (2.2)–(2.4)

Output: A branching variable zk (k ∈ Z)
Choose the top N feasible solutions (β1, z1), . . . , (βN , zN) from the pool;
/* Here (βi, zi) is a feasible solution with the ith lowest objective

value in the pool. */

for j ∈ Z do

Compute score value sj :=
N∑
i=1

zij;

end
return zk with sk = max

j∈Z
{sj}

4. Numerical Experiments

4.1. A developed solver for the problem (2.2)–(2.4)

We discussed the techniques that can be used in conjunction with the B&B algorithm to
efficiently solve the problem (2.2)–(2.4) in Section 3. We implement these techniques by
customizing SCIP [1, 21], which provides a framework of the B&B algorithm. Moreover, we
execute multi-threaded parallel computation via UG [19], which provides a parallel extension
of SCIP.
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At each B&B node, the solver developed herein computes the optimal value of the
proposed relaxation problem R(Z1, Z0, Z)

min
β

2
n∑

i=1

(
log
(
1 + exp

(
βTxi

))
− yiβ

Txi
)
+ 2#(Z1) s.t. βj = 0 (j ∈ Z0), βj ∈ R (Z1 ∪ Z),

by applying Newton’s method. This method is iterative, and it requires an initial feasi-
ble solution of the relaxation problem. The developed solver constructs the initial feasi-
ble solution from an optimal solution of the relaxation problem of the parent node. To
explain this procedure, we focus on two relaxation problems R(Z1 ∪ {k}, Z0, Z\{k}) and
R(Z1, Z0 ∪ {k}, Z\{k}), which are obtained by fixing the variable zk. Then, the relaxation
problem of the parent node is R(Z1, Z0, Z). Let θ

∗ be the optimal value of R(Z1, Z0, Z) and
β∗ = (β∗

1 , . . . , β
∗
p)

T ∈ Rp the optimal solution of R(Z1, Z0, Z). In Section 3.1, we showed
that the optimal value of R(Z1 ∪ {k}, Z0, Z\{k}) is θ∗ + 2. The initial feasible solution

β0 = (β0
1 , . . . , β

0
p)

T ∈ Rp of the other relaxation problem R(Z1, Z0 ∪ {k}, Z\{k}) can be
constructed as follows:

β0
j =

{
0 if j = k,

β∗
j otherwise,

for all j = 1, . . . , p. Because β∗ is feasible for R(Z1, Z0, Z), β
0 is feasible for R(Z1, Z0 ∪

{k}, Z\{k}). In Section 4.4, we show that this procedure reduces computational time.

4.2. A piecewise linear approximation approach [16]

Sato and others proposed an approach to variable selection for logistic regression analy-
sis [16]. Their approach employs a piecewise linear approximation and a mixed integer
linear programming problem. The greatest advantage of their approach is that commer-
cial optimization software (e.g., CPLEX [12]) can be used to solve the mixed integer linear
programming problem. Their approach can be applied to AIC minimization for logistic
regression (i.e., the problem (2.2)–(2.4)). In Section 4.3, we compare the developed solver
with their piecewise linear approximation approach.

We briefly explain the piecewise linear approximation approach to solving the problem
(2.2)–(2.4). For a given dataset (xi1, . . . , xip, yi) ∈ Rp × {0, 1} with xi1 = 1 (i = 1, . . . , n),
we define sets I1 and I2 as follows:

I1 = {i ∈ {1, . . . , n} : yi = 1} and I0 = {i ∈ {1, . . . , n} : yi = 0}.

The function F (β, z) denotes the objective function (2.2), and it can be rewritten as follows:

F (β, z) := 2
n∑

i=1

(
log
(
1 + exp

(
βTxi

))
− yiβ

Txi
)
+ 2

p∑
j=1

zj

= 2
∑
i∈I1

(
log
(
1 + exp

(
βTxi

))
− βTxi

)
+ 2

∑
i∈I0

log
(
1 + exp

(
βTxi

))
+ 2

p∑
j=1

zj

= 2
∑
i∈I1

log
(
1 + exp

(
−βTxi

))
+ 2

∑
i∈I0

log
(
1 + exp

(
βTxi

))
+ 2

p∑
j=1

zj.

We define the function g(v) as g(v) := log (1 + exp (−v)) and rewrite it as

F (β, z) = 2
∑
i∈I1

g(βTxi) + 2
∑
i∈I0

g(−βTxi) + 2

p∑
j=1

zj.
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By introducing extra variables ti(i = 1, . . . , n), the problem (2.2)–(2.4) can be reformulated
as follows:

min
β,z

2
n∑

i=1

ti + 2

p∑
j=1

zj (4.1)

s.t. ti ≥ g(βTxi) (i ∈ I1), ti ≥ g(−βTxi) (i ∈ I0), (4.2)

zj = 0⇒ βj = 0, βj ∈ R, zj ∈ {0, 1} (j = 1, . . . , p). (4.3)

Given any set of points V = {v1, . . . , vK}, we can construct a relaxation problem of (4.1)–
(4.3) by using the convexity of g

min
β,z

2
n∑

i=1

ti + 2

p∑
j=1

zj (4.4)

s.t. ti ≥ g′(vk)(β
Txi − vk) + g(vk) (i ∈ I1; vk ∈ V ), (4.5)

ti ≥ −g′(vk)(βTxi + vk) + g(vk) (i ∈ I0; vk ∈ V ), (4.6)

zj = 0⇒ βj = 0, βj ∈ R, zj ∈ {0, 1} (j = 1, . . . , p). (4.7)

The problem (4.4)–(4.7) is a mixed integer linear programming problem, and it can be solved
by using standard optimization software. The optimal value θ̄ of (4.4)–(4.7) is a lower bound
of the optimal value θ∗ of (2.2)–(2.4). Let (β̄, z̄, t̄) be an optimal solution of (4.4)–(4.7). We
can construct the logistic regression model from the set of the selected explanatory variables
S̄ = {j ∈ {1, . . . , p} : z̄j = 1}. Then, the AIC value of the constructed model is AIC(S̄).
Hence, we obtain the following inequality:

θ̄ ≤ θ∗ ≤ AIC(S̄).

If AIC(S̄)− θ̄ is small, the constructed model is guaranteed to be of good quality.
In the numerical experiments, we employ the following two sets as V ,

V1 = {0,±0.89,±1.90,±3.55,±∞},
V2 = {0,±0.44,±0.89,±1.37,±1.90,±2.63,±3.55,±5.16,±∞}.

These sets can be computed by using the greedy algorithm proposed in [16].

4.3. Comparison with the piecewise linear approximation approach and step-
wise methods

In this subsection, we show numerical experiments∗ pertaining to AIC minimization for
logistic regression and compare the developed solver with the piecewise linear approximation
approach and the stepwise methods. We use benchmark datasets from the UCI Machine
Learning Repository [4] and standardize the datasets to have zero mean and unit variance.

Table 1 shows a comparison of the performance of the following methods:

• MINLP:

– refers to the proposed approach implemented in SCIP [1, 21] and UG [19],

– executes the B&B algorithm by using the techniques described in Sections 3 and 4.1,

– uses 16 threads for parallel computation.

∗The specifications of the computer used in the numerical experiments are as follows: CPU: Intel R⃝ Xeon R⃝

CPU E5–2687 @ 3.1GHz; Memory: 128GB; and OS: Ubuntu 16.04.3 LTS
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• SW+:

– refers to the stepwise method starting with no explanatory variables,

– is implemented by C++ and LAPACK [3].

• SW−:

– refers to the stepwise method starting with all explanatory variables,

– is implemented by C++ and LAPACK [3].

• MILP(V ):

– refers to the piecewise linear approximation approach [16] with the point set V ,

– solves the mixed integer linear programming problem (4.4)–(4.7) with CPLEX [12],

– employs the better of the two solutions of the stepwise methods as the initial solu-
tion.

– employs 16 threads for parallel computation.

The columns labeled “n,” “p,” and “k” indicate the number of data points, candidates for
explanatory variables, and selected explanatory variables, respectively. The column labeled
“AIC” indicates the computed AIC value. The AIC values in bold font are the best among
the five values. The column labeled “objMILP” presents the objective value of the computed
solution of the mixed integer linear programming problem (4.4)–(4.7). The column labeled
“Time(sec)” indicates CPU time in seconds to compute the optimal value. “>5000” implies
that the corresponding method could not determine the optimal value within 5000 seconds.
The column labeled “Gap(%)” indicates the optimality gap used in SCIP, and it is defined
as

Gap =
|upper bound− lower bound|

min{|upper bound|, |lower bound|}
× 100.

It can be inferred from Table 1 that MINLP outperforms MILP(V ) in terms of compu-
tational time. In fact, for p ≤ 45, MINLP was faster than both the MILP(V ). Moreover,
MINLP found the lowest AIC values of the five approaches on large-scale instances. How-
ever, for p ≥ 62, even MINLP could not guarantee optimum within 5000 seconds.

4.4. Computational performance of the developed techniques

To examine which of the proposed techniques is effective, we present the computational
performance of the following methods:

• MINLP:

– executes the most frequent branching described in Section 3.3,

– executes the heuristic method described in Section 3.3,

– constructs the initial feasible solution from an optimal solution of the relaxation
problem of the parent node.

– executes the procedure developed in Section 4.1 to construct the initial guess for
Newton’s method.

• MINLPw/o-mfb:

– corresponds to MINLP without the most frequent branching,

– executes the inference branching in SCIP.

• MINLPw/o-heur: corresponds to MINLP without the heuristic method.

• MINLPw/o-guess:

– corresponds to MINLP without the initial guess,

– employs the zero vector as a initial feasible solution.
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Table 1: Comparison of the proposed method with the piecewise linear approximation
approach and the stepwise methods

Name n p Methods AIC objMILP k Time(sec) Gap(%)

bumps 2584 22 MINLP 1097.11 — 9 20.08 0.00
SW+ 1097.37 — 9 0.92 —
SW− 1100.66 — 13 0.54 —
MILP(V1) 1098.12 1060.51 8 41.51 0.00
MILP(V2) 1099.98 1086.43 9 627.36 0.00

breast-P 194 34 MINLP 147.04 — 19 25.76 0.00
SW+ 162.94 — 13 0.24 —
SW− 152.13 — 25 0.25 —
MILP(V1) 147.04 144.56 19 112.40 0.00
MILP(V2) 147.04 146.40 19 279.15 0.00

biodeg 1055 42 MINLP 653.29 — 23 221.54 0.00
SW+ 654.79 — 25 2.01 —
SW− 653.29 — 23 2.25 —
MILP(V1) 653.29 640.75 23 >5000 0.93
MILP(V2) 653.29 649.62 23 >5000 2.39

spectf 267 45 MINLP 168.33 — 15 432.45 0.00
SW+ 172.34 — 10 0.36 —
SW− 169.42 — 17 0.79 —
MILP(V1) 169.34 163.54 14 515.74 0.00
MILP(V2) 169.34 165.53 14 1603.12 0.00

stat-G 1000 62 MINLP 958.15 — 24 >5000 5.54
SW+ 958.15 — 24 3.09 —
SW− 963.70 — 29 2.55 —
MILP(V1) 958.15 944.50 24 >5000 5.21
MILP(V2) 958.15 954.46 24 >5000 5.10

musk 6598 166 MINLP 1706.89 — 115 >5000 16.55
SW+ 1733.56 — 120 292.18 —
SW− 1706.89 — 115 609.44 —
MILP(V1) 1706.89 1663.02 115 >5000 16.68
MILP(V2) 1706.89 1693.28 115 >5000 16.39

madelon 2000 500 MINLP 2502.06 — 105 >5000 20.76
SW+ 2504.02 — 102 316.92 —
SW− 2905.58 — 422 >5000 —
MILP(V1) 2504.02 2471.93 102 >5000 20.20
MILP(V2) 2504.02 2493.70 102 >5000 22.85
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The column labeled “Nodes” in Table 2 indicates the number of generated B&B nodes.
To indicate the effective techniques, we underline the highest values among all the methods
in Table 2. We observe the following from Table 2:

• For p ≤ 45, MINLP, that is, the developed solver incorporating all techniques, was the
fastest among the four methods. This implies that the most frequent branching, the
heuristic method based on the stepwise methods, and the initial guess are effective for
solving (2.2)–(2.4).

• MINLP and MINLPw/o-guess could solve AIC minimization for spectf within 5000 sec-
onds. However, MINLPw/o-mfb and MINLPw/o-heur could not solve the minimization
within 5000 seconds. Hence, the most frequent branching and the heuristic method
based on the stepwise methods are more effective than the initial guess in this instance.

• For p ≥ 62, MINLPw/o-heur were the worst among the four methods in terms of solution
quality. Hence, it is evident from this result that the heuristic method described in
Section 3.3 is an important technique for large-scale instances.

We examine how the heuristic method and the most frequent branching described in
Section 3.3 influence changes in the upper and lower bounds. Figure 1 shows the results
of the upper bounds for biodeg and spectf. The solid and the broken lines correspond
to our solver with and without the heuristic method based on the stepwise methods (i.e.,
MINLP and MINLPw/o-heur), respectively. Our solver with the heuristic method immediately
found good feasible solutions compared to the solver without the heuristic method. Figure 2
shows the results of the lower bounds for biodeg and spectf. The solid and the broken lines
correspond to our solver with and without the most frequent branching (i.e., MINLP and
MINLPw/o-mfb), respectively. Our solver without the most frequent branching appears to
stop increases in the lower bounds halfway. The benefit of using the most frequent branching
can be confirmed from Figure 2.

5. An Extension of Our MINLP Approach

In variable selection based on optimization, an objective function typically consists of two
competing terms (see, e.g., [11]): the goodness-of-fit and the number of explanatory variables.
In this section, we consider the following MINLP formulation for variable selection:

min
β,z

f(β) + λ

p∑
j=1

zj (5.1)

s.t. zj = 0⇒ βj = 0 (j = 1, . . . , p), (5.2)

βj ∈ R, zj ∈ {0, 1} (j = 1, . . . , p), (5.3)

where β = (β1, . . . , βp)
T represents the parameters in a given statistical model, and λ is a

positive constant. The first term f(β) of the objective function (5.1) corresponds to the
goodness-of-fit, for example, a discrepancy between the given dataset and the statistical
model. The second term λ

∑p
j=1 zj operates as a penalty for the number of variables. This

problem (5.1)–(5.3) is considered ℓ0-penalized variable selection. We assume the following
for f(β) in the objective function (5.1):

Assumption 1. For any nonempty subset S ⊆ {1, . . . , p}, we can compute the optimal
value and an optimal solution of the following optimization problem:

min
β∈Rp

f(β) s.t. βj = 0 (j ∈ {1, . . . , p}\S). (5.4)
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Table 2: The computational performance of our developed techniques

Name n p Methods AIC k Time(sec) Nodes Gap(%)

bumps 2584 22 MINLP 1097.11 9 20.08 3.6× 103 0.00
MINLPw/o-mfb 1097.11 9 44.99 2.2× 104 0.00
MINLPw/o-heur 1097.11 9 28.68 2.3× 104 0.00
MINLPw/o-guess 1097.11 9 46.48 4.1× 103 0.00

breast-P 194 34 MINLP 147.04 19 25.76 1.5× 105 0.00
MINLPw/o-mfb 147.04 19 554.07 3.3× 106 0.00
MINLPw/o-heur 147.04 19 31.87 4.6× 105 0.00
MINLPw/o-guess 147.04 19 27.38 1.5× 105 0.00

biodeg 1055 42 MINLP 653.29 23 221.54 1.7× 105 0.00
MINLPw/o-mfb 653.29 23 >5000 8.8× 106 4.53
MINLPw/o-heur 653.29 23 1018.83 2.5× 106 0.00
MINLPw/o-guess 653.29 23 586.45 1.9× 105 0.00

spectf 267 45 MINLP 168.33 15 432.45 1.1× 106 0.00
MINLPw/o-mfb 168.33 15 >5000 1.1× 107 29.89
MINLPw/o-heur 171.80 17 >5000 1.1× 107 34.53
MINLPw/o-guess 168.33 15 574.13 1.5× 105 0.00

stat-G 1000 62 MINLP 958.15 24 >5000 7.7× 106 5.54
MINLPw/o-mfb 958.15 24 >5000 6.5× 106 6.11
MINLPw/o-heur 978.67 30 >5000 5.5× 106 7.61
MINLPw/o-guess 958.15 24 >5000 8.9× 106 4.62

musk 6598 166 MINLP 1706.89 115 >5000 3.5× 104 16.55
MINLPw/o-mfb 1705.01 111 >5000 5.7× 104 16.87
MINLPw/o-heur 1774.54 161 >5000 6.4× 105 20.18
MINLPw/o-guess 1706.89 115 >5000 2.1× 104 17.19

madelon 2000 500 MINLP 2502.06 105 >5000 1.0× 106 20.76
MINLPw/o-mfb 2503.58 105 >5000 1.1× 106 21.15
MINLPw/o-heur 3028.85 455 >5000 2.4× 106 46.70
MINLPw/o-guess 2502.06 105 >5000 8.3× 105 20.76

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



32 K. Kimura

biodeg

 660

 670

 680

 690

 700

 710

 0  100  200  300  400  500

U
p

p
e

r 
b

o
u

n
d

Time (secs)

with the heuristics
without the heuristics

spectf

 170

 175

 180

 185

 190

 195

 200

 205

 210

 0  100  200  300  400  500

U
p

p
e

r 
b

o
u

n
d

Time (secs)

with the heuristics
without the heuristics

Figure 1: The evolution of the upper bounds in the first 500 seconds, for biodeg and spectf

when using our solver with and without our heuristic method
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Figure 2: The evolution of the lower bounds in the first 500 seconds, for biodeg and spectf

when using our solver with and without the most frequent branching

If f is a strongly convex function, the problem (5.4) becomes an unconstrained convex
problem that can be solved by applying a gradient algorithm, for instance, the steepest
descent method and Newton’s method. The AIC minimization for logistic regression (i.e.,
the problem (2.2)–(2.4)) is of the form of the problem (5.1)–(5.3). Assumption 1 holds for the
logistic regression analysis under the practical assumption. In other words, Assumption 1
fails in a certain dataset. See Appendix A for more details.

In Section 3, we defined f(β) as the first term of the objective function (2.2) and discussed
the following techniques for the numerical performance:

(i) the relaxation problem (3.8),

(ii) the two properties of Proposition 3.2,

(iii) the heuristic method described in Algorithm 2,

(iv) the most frequent branching described in Algorithm 3.

These techniques can be applied to the problem (5.1)–(5.3) if the first term f(β) of (5.1)
satisfies Assumption 1. The reasons for this are as follows: (i) and (iii) Assumption 1
implies that we can compute the optimal values of the proposed relaxation problem (3.8)
and the optimization problem (3.11) for the heuristic method; (ii) the two properties can be
applied if the function f and a nonempty subset S ⊆ {1, . . . , p} satisfy the assumption in
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Proposition 3.2; and (iv) the most frequent branching does not depend on the form of the
function f .

6. Conclusion

We applied the MINLP approach to AIC-based variable selection in logistic regression and
showed that the techniques proposed in [13] can be applied to the variable selection. In
addition to these techniques, the developed solver can construct an effective initial guess
to increase computational performance in terms of solving the relaxation problem. In the
numerical experiments, the most frequent branching, the heuristic method based on the
stepwise methods, and the initial guess were effective in terms of computational time. If
the number of candidates of explanatory variables was 45 or lower, our solver could find the
models with the lowest AIC values. Moreover, our solver outperformed the piecewise linear
approximation approach employing high standard optimization software.

We developed a solver for the problem (2.2)–(2.4) by using SCIP and UG, which provide
a flexible framework of a B&B algorithm and parallel computation [18]. For small-scale
and medium-scale instances, our solver showed good computational performance because
of the customization of SCIP and UG for the specific problem. Conversely, for large-scale
instances, there is room for improvement in the numerical performance of our solver. The
computational cost of our heuristic method based on the stepwise methods appears to
be high for large instances. In fact, SW+ and SW− (i.e., the stepwise methods) required
considerably more computational time for solving musk and madelon compared to the small-
scale and medium-scale instances. Hence, further study is to reduce the computational time
of our heuristic method, for example, by applying discrete first order algorithms [7].

In Section 5, we explained that the proposed MINLP approach can be applied to ℓ0-
penalized variable selection. By changing the objective function in (5.1), other information
criteria, for example, the Bayesian information criterion and the Hannan-Quinn information
criterion, can be employed to evaluate logistic regression models. Furthermore, the problem
(5.1)–(5.3) can handle linear regression and basis function regression as well. Considering
these findings, it can be inferred that our solver is flexible in terms of formulation.
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A. When Does Logistic Regression Satisfy Assumption 1?

As mentioned in Section 5, the MINLP formulation (2.2)–(2.4) for logistic regression may
not satisfy Assumption 1. Therefore, here, we provide a necessary and sufficient condition to
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ensure that the MINLP formulation (2.2)–(2.4) for logistic regression satisfies Assumption 1.
First, we introduce notation and symbols. For a dataset (xi, yi) ∈ Rp×{0, 1} (i = 1, . . . , n),
we define the sets I1 and I0 as

I1 = {i ∈ {1, . . . , n} : yi = 1} and I0 = {i ∈ {1, . . . , n} : yi = 0}.

We rewrite the objective function of the minimization (5.4) as

f(β) =
∑
i∈I0

log
(
1 + exp(βTxi)

)
+
∑
i∈I1

log
(
1 + exp(−βTxi)

)
.

For β ∈ Rp, we define the sets J+(β), J−(β), and J0(β) as

J+(β) = {i ∈ {1, . . . , n} : βTxi > 0}, J−(β) = {i ∈ {1, . . . , n} : βTxi < 0} and
J0(β) = {i ∈ {1, . . . , n} : βTxi = 0}.

Then, we have J•(γβ) = J•(β) for γ > 0 and • ∈ {+,−, 0}. For any γ > 0 and β ∈ Rp, we
have

f(γβ) =
∑
i∈I0

log
(
1 + exp(γβTxi)

)
+
∑
i∈I1

log
(
1 + exp(−γβTxi)

)
=

∑
i∈I0∩J+(β)

log
(
1 + exp(γβTxi)

)
+

∑
i∈I0∩J−(β)

log
(
1 + exp(γβTxi)

)
+

∑
i∈I1∩J+(β)

log
(
1 + exp(−γβTxi)

)
+

∑
i∈I1∩J−(β)

log
(
1 + exp(−γβTxi)

)
+#(J0(β)) log(2). (A.1)

It follows from the following theorem that Assumption 1 holds when the necessary and
sufficient condition in the theorem holds.
Theorem A.1. The minimization (5.4) has an optimal solutions for any nonempty subset
S ⊆ {1, . . . , p} if and only if for any β ∈ Rp \ {0}, I0 ∩ J+(β) or I1 ∩ J−(β) is nonempty.

Proof. For simplicity, we fix S = {1, . . . , p} for (5.4). First, we prove the if part. We fix
β ∈ Rp so that ∥β∥ = 1. Then, by taking γ →∞, each term in (A.1) satisfies∑

i∈I0∩J+(β)

log
(
1 + exp(γβTxi)

)
→ +∞,

∑
i∈I0∩J−(β)

log
(
1 + exp(γβTxi)

)
→ 0,

∑
i∈I1∩J+(β)

log
(
1 + exp(−γβTxi)

)
→ 0,

∑
i∈I1∩J−(β)

log
(
1 + exp(−γβTxi)

)
→ +∞.

Because we have assumed that I0∩J+(β) or I1∩J−(β) is nonempty, there exists M > 0 such
that the objective function f(β) takes sufficiently large values for all β so that ∥β∥ > M .
Hence, the minimum solution of (5.4) is in the circle ∥β∥ ≤ M . Therefore, (5.4) has an
optimal solution.

Next, we prove the only-if part. We assume that there exists β ∈ Rp \ {0} such that
both I0 ∩ J+(β) and I1 ∩ J−(β) are empty. It is sufficient to prove that (5.4) has a finite
optimal value but no optimal solutions. It follows from the definition of f(β) that f(β) >
#(J0(β)) log(2) for all β ∈ Rp \ {0}. In addition, from the proof of the if-part, by taking
γ →∞, we have g(γβ)→ #(J0(β)) log(2). This is the desired result.
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