Journal of the Operations Research Society of Japan (© The Operations Research Society of Japan
Vol. 62, No. 1, January 2019, pp. 1-14

DP-BASED ALGORITHM AND FPTAS FOR THE KNAPSACK SHARING
AND RELATED PROBLEMS

Seiji Kataoka Takeo Yamada
National Defense Academy National Defense Academy, Emeritus

(Received February 6, 2018; Revised September 18, 2018)

Abstract In the knapsack sharing problem (KSP), formulated previously, we considered a game-theoretic
situation in which two or more players (agents) compete for their share of capacity in a knapsack with
their respective sets of items. As an extension of this problem, we formulate the extended knapsack sharing
problem (XKSP). This is actually a family of KSP-like problems, and we present a dynamic programming-
based (DP-based), pseudo-polynomial time algorithm to solve XKSP to optimality in a unified way. XKSP
is shown to be NP-hard, but due to the existence of this pseudo-polynomial time algorithm, it is only
weakly ANP-hard. Next, we develop an algorithm to solve the problem approximately in polynomial time
by decomposing it into a series of subproblems. Furthermore, we introduce a scaling factor into the DP
computation to obtain a fully polynomial time approxzimation scheme (FPTAS) for XKSP with two agents.
Extension to the case of more than two agents is discussed, together with a non-DP-based PTAS.

Keywords: Combinatorial optimization, knapsack sharing problem, DP-based algo-
rithm, approximation, FPTAS/PTAS

1. Introduction

In this article, we address a game-theoretic situation in which K players (or agents)
compete for their share of capacity in a knapsack with their respective sets of items.
Ne = {1,2,...,n;} denotes the index set of items belonging to agent k, and the weight
and profit of item j € Nj are denoted wy; and py;, respectively. The aim is to pack the
knapsack with these items within the capacity limit C' in a way that is satisfactory for all
agents as a whole. Let x; € {0,1} be a decision variable that takes the value 1 if item
Jj € Ny is accepted and 0 otherwise. Thus, (zy;) is a ‘solution’ and z;, := ZjENk DkjTkj
is the total profit for agent k£ with respect to this solution. (Throughout the paper, :=
denotes definition, i.e., the notation on the left-hand side is defined by the right-hand side.)
Except in Subsection 4.5, we limit the number of agents to K = 2, mainly for the sake of
notational simplicity. We introduce the objective function of the form ¢(z1, z5) as a social
welfare function that integrates individual preferences into an overall utility for all agents.
Mathematically, ¢(-,-) : R — R, is a continuous function satisfying the (rather mild) as-
sumptions given in Section 2. Thus, we are concerned with the following extended knapsack
sharing problem.

XKSP : Maximize gb(z P1T1j, Z P2jT25) (1.1)
JEN1 JEN2

subject to Z w1y %15 + Z wajra; < C, (1.2)
JjEN JENS

T S {O, 1}, j € Nk, k= 1, 2. (13)

2 S Kataoka & T. Yamada

This type of problem arises frequently when distributing a fixed amount of resources
(money, manpower, time, etc.) over two or more agents with respective plans of projects.
Each project requires a cost (wy;), and in return yields a profit (py;) to the agent involved.
For example, consider a newly married couple planning for their honeymoon. They are
packing a suitcase with their respective items. Here, 2z; and 2z, are, respectively, their
individual degrees of satisfaction with their packed items, and the overall degree of happiness
for the couple is given by ¢(z1, 22).

The knapsack sharing problem (KSP), originally formulated in [17, 18], is a special case
of XKSP with ¢(z1,22) = min{zy, 20}, where the objective is to maximize the minimum
profits of two agents. Heuristic and exact algorithms have been given for KSP in these
and subsequent papers [1, 7]. Depending on the form of the welfare function ¢(z1, 29), other
special cases of XKSP include the following.

- Multiplicative knapsack sharing problem (MKSP): With ¢(z1,29) = 2122, to maximize
(X jen, P115) - (X jen, P2iT2)),

- Quadratic knapsack sharing problem (QKSP): With ¢(21, z2) = (21)*+(22)?, to maximize
(3 en, Prizns)? + (O en, P2it2;)*-

In this study, we are concerned with XKSP in general. In Section 2, we prove that XKSP
is N"P-hard [6], and in Section 3, we present a dynamic programming (DP)-based pseudo-
polynomial time algorithm to solve XKSP to optimality in a unified way. The existence of
such an algorithm implies that XKSP is only weakly NP-hard.

Since solving N'P-hard problems exactly in polynomial time in input data is believed to
be essentially impossible unless P = NP, attempts have been made to solve these problems
approximately in polynomial time under the PTAS (polynomial time approximation scheme)
or FPTAS (fully polynomial time approximation scheme) [15,16]. Various combinatorial
optimization problems have been examined from this viewpoint. For example, Ibarra and
Kim [8] developed an FPTAS for the knapsack problem [11,14], and the time and space
complexity of their algorithm were improved by Lawler [12] and subsequent researchers
9, 13]. FPTASs have also been given for the subset-sum problem [8, 10, 12] and its extensions
[3-5].

Previously, approximation algorithms have been explored for the KSP mainly from a
computational point of view [7, 18]. However, PTAS/FPTAS results have not been reported,
i.e., from a theoretical viewpoint, these algorithms do not guarantee precision or polynomial
run-time. In Section 4 of this paper, we present an FPTAS for XKSP with two agents
(K = 2). To construct such an FPTAS, we decompose XKSP into a series of subproblems
and transform each of the subproblems into a two-dimensional optimization problem. Then,
we apply scaling to compute the weight functions (introduced in Subsection 3.1) for these
problems, and use the results to derive an FPTAS for XKSP. In the last part of Section 4,
the FPTAS constructed for K = 2 is extended to the case of more than two agents; and
the developed algorithm gives an FPTAS for the problem with an externally given, fixed
K(>2).

Section 5 concludes the paper, with perspectives on future research on this topic. In the
Appendix, we give a non-DP-based PTAS for a limited case of the KSP with K = 2.

2. Assumptions and N'P-hardness
We make the following assumptions throughout the paper, unless otherwise stated.

Assumptions:

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

FPTASfor the Knapsack Sharing Problem 3

Ay. Problem data ng, wyj, prj, and C are all positive integers.
A,. Wi < C for allj S Nk,k =1,2.

Ag. minjeNl {wlj} -+ minjeNQ{ng} S C.

Ay. Nj is numbered in non-increasing order of py;, i.e.,

Pkl = Pk2 =+ 2 Dinyr k= 1,2.
As. ¢(z1, 22) is coordinate-wise non-decreasing, i.e., for all (z1,22) € R2
2 < 2 = d(21, 22) < G2, 2) and 25 < 25 = ¢(z1,25) < P21, 23)-

A6. ¢<O, ZQ) = ¢(21,0) = 0, VZ]C S R+,k’ =]_, 2.
Az. ¢(21, 22) can be computed in O(1) time.
As. ¢(z1, z2) is a super-homogeneous function of degree r, (r > 1), i.e.,

d(Az1, Aza) > N'¢(21, 22), for all A > 0 and (21, 20) € R2.

We introduce A, and Az to eliminate trivial cases. Without a loss of generality, we
assume Ay for the simplicity of subsequent descriptions of the algorithms. As and Ag are
natural requirements for a social welfare function. Furthermore, we need A; and Ag to
derive FPTAS for XKSP in later sections.

KSP has been shown to be N'P-hard [18], as a generalization of the standard knapsack
problem. Here we prove XKSP to be N'P-hard for an arbitrary welfare function ¢(z1, 22)
satisfying the assumption As.

Theorem 2.1. XKSP is N'P-hard.

Proof: Corresponding to a knapsack problem (KP) consisting of n items, with p; and w;
representing the profit and weight of item j, respectively, and C indicating the knapsack
capacity, consider an instance of XKSP where agent 1 has n items, agent 2 has only one
item, and the capacity is C'+ 1. In this case, the items of agent 1 are all inherited from
the KP, i.e., we have p;; = p; and w;; = w; for item j, while for agent 2 we set py; = M
and wy; = 1, where M > 0 is some fixed number. In this instance, the item of agent 2
must be accepted, and thus the profit of agent 2 is M. Hence, the aim of the XKSP is to
maximize ¢(7, pijr1;, M) subject to 7 w1y < C. Due to the assumption As, this
is equivalent to the classic knapsack problem, which is known to be N'P-hard [14].]

3. DP-based Algorithm to Solve XKSP

In this section, we present a DP-based algorithm to solve small instances of XKSP to
optimality. To construct such an algorithm, we transform the original problem to a two-
dimensional optimization problem by introducing a weight function, as discussed below.

3.1. Weight function
Let Uy, be an upper bound of ZjeNk DkjThj, €8,
JENK
For an arbitrary z, € [0, Uy]in:, we introduce the following inverse knapsack problem, where
[a, b];n: denotes the set of integers within interval [a, b].

IKPy(z) : Minimize Z Wi Thej
JEN
subject to Z PkiThk; > 2k, Trj € {0,1}, j € Ny
JENK

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

4 S Kataoka & T. Yamada

The optimal objective value for this problem is denoted wj(zx), and for the case in which
the problem is infeasible, we set wj(z;,) := 0o. Seen as a function of 2y, wi(z) : [0, UpJins —
R, U {oo} is referred to as the weight function of agent k. This can be computed by the
following DP [2] algorithm. We define

n nk
Wi (i, z,) := min{ Z W T | Z PeiTh; > 2k, Tj €{0,1}, jef{i+1,...,n}} (3.2)

Jj=i+1 Jj=i+1

This gives the minimum weight for agent k£ when the total profit is not less than z; and the
first ¢ items are not considered.

Following the DP principle of optimality, we derive the following recurrence relation.
Starting with

_J oo,z >0,
Wi(nk, zx) = { 0, 2z =0, (3.3)
do the following (for each zj € [0, Ugin¢) from i = ny, — 1 down to i = 0.
,) min{wg + Wi(i + 1, 20 — pra), Wi+ 1, 20) } 2k > Py

Wili, 2) = { Wi(i+ 1, %), a<p, OY

. 1,z > prioand wy + Wi (4 1, 26 — pri) > Wi+ 1, 2),
(i 2) = { 0, otherwise. (3.5)
The weight function for Ny is given as wf(zx) := Wi(0, z¢). It is known that wj(:) is a

non-decreasing, right-continuous step function of z; > 0 [11, 14].
3.2. Pseudo-polynomial time algorithm for XKSP

Once weight functions wj(z;) are obtained for k = 1, 2, we introduce the following problem.

XKSP': Maximize (21, 22)
subject to wi(z1) + wi(z2) < C,
VS [07 Uk]inb k= 172

Let (z7,23) denote an optimal solution to XKSP’ with the objective value z* := ¢(z7, 23),
and let ¢} = (:pzj) be an optimal solution to I K Py(z}), k = 1,2. We set w} := wi(z}) (=
ZjeNk wg;x%;). Then, by definition

wi +wy < C. (3.6)

Additionally, by (z{,x3) we denote an optimal solution to XKSP, and we set wj :=
D ien, WhiThys Zh = D ien, PriThj, and 2° = ¢(27, 23). Again, we obtain

w] + ws < C| (3.7)

and the following establishes the equivalence of XKSP and XKSP'.

Theorem 3.1. Any optimal solution of XKSP is optimal for XKSP' and vice versa, i.e.,
(i) 2° = z*,

(ii) (21,29) is an optimal solution to XKSP" with x5, feasible for I K Py(zy),

(iii) (a3, x3) is optimal to XKSP.

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

FPTASfor the Knapsack Sharing Problem 5

Proof: (Proof of z° < z*) Since x5 is a feasible solution to I K Py(z5), we have wi(z;) < wq.
From (3.7), wi(2}) +w3(25) < C, which implies that (27, z5) is a feasible solution of XKSP'.
Thus, z° = ¢(27, 29) < z*.
(Proof of 2° > z*) From (3.6), (x],x}) is a feasible solution to XKSP. This implies that
2° 2 P(Xien, P1iT1) D jen, P2jT5;). Furthermore, from the constraint of 1K Py(z}), we have
> ien, PkjTy; = #;. From this inequality and assumption As, we obtain ¢(}_ .y, P1j27;,
> jen, P2jas;) = @(21, 25) = z*. Thus, (i) is proved.

So far, we have proved

J— *
2% = ¢(21, 23) E :plﬂlg? E :p2]x2] P(27,23) = 2%,

JEN1 JEN2

which completes the proof of (ii) and (iii), as well. O
Thus, XKSP is solved by the DP-based algorithm Solve XKSP_DP shown overleaf, which
actually solves XKSP’.

3.3. Complexity

Given Uy, (k = 1,2) by equation (3.1), the computational complexity of the algorithm
Solve_XKSP_DP is O(n,U; + nyUs) for Step 1 to compute Wy (i, zx), k = 1,2, and thanks to
the assumption A7, O(U,Us) to find the optimal (z7,23) in Step 2. In total, the algorithm
runs in pseudo-polynomial O(n, Uy +noUsy + Uy Ug) time. The memory requirement to keep
Wi(i, z) for i = 1,...,ny and 2, € [0, Up]ine is O(n1U; + noUs). This memory space is also
sufficient for computing 7 and x5 in Step 3. Due to the existence of this pseudo-polynomial
time algorithm, XKSP is only weakly A'P-hard [6].

4. FPTAS for the Problem XKSP

The DP-based algorithm described in the previous section solves XKSP to optimality in
pseudo-polynomial time. In this section, we explore an approximation algorithm that runs
in polynomial time in the size of the input data. For the optimal objective value z* of XKSP
and an arbitrary € € [0, 1], an algorithm is said to be a (1 —¢)-factor approzimation algorithm
if its output z satisfies 27 > (1 —¢)z* for any instance of XKSP. If this algorithm runs, for a
fixed €, in polynomial time in the size of the input data, this is said to be a polynomial time
approzimation scheme (PTAS). In addition, if the running time is polynomial with respect
to 1/e as well, this is said to be a fully polynomial time approximation scheme (FPTAS)
[15,16].

4.1. Subproblem

To construct such an approximation scheme for XKSP, we decompose the problem into
subproblems Pliy, is] (i1 € Ni,i2 € Ny) by fixing the first iy — 1 of xy;’s to 0 and wy;, to 1
for k=1,2, ie.,

Pliy,i5) : Maximize ¢(Z pT, Z Pa;ja;)
JEN1 JEN2
subject to (1.2), (1.3),
T =0 = Ty = 0,2, = 15 k=12, (4.1)

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

6 S Kataoka & T. Yamada

Algorithm Solve XKSP_DP

Input: Item data {ny, (wy;,pr;),7 =1,...,n} for k = 1,2, and the capacity C.
Output: Optimal solution (a3, %) and the corresponding objective value z*.
// Step 0. Preparation: Compute Uy, (k= 1,2) by equation (3.1).
// Step 1. Solve I K Py(z) to obtain the weight functions wj(zx),k =1, 2.
// Initialization: i = ny
for k=1to2do
for 2, =0 to Uy do
Initialize Wi (ny, zx) by equation (3.3).
endfor
endfor
// Backward recursion.
for k=1to2do
for i = n;, — 1 down to 0 do
for z, = 0 to U, do
Compute Wy (i, z) and x (i, z,) by equations (3.4) and (3.5), resp.
endfor
endfor
for 2, = 0 to Uy do
U)]:(Zk) — Wk(O, Zk).

endfor
endfor
// Step 2. Find the optimal solution (27, 25) of XKSP"'.
set 2% = 2] = 25 = —o0.

for z; = 0 to U; do
for z, = 0 to U, do
if wi(z1) + w3(22) > C continue.
if ¢(21,22) > 2" do
25— @(21, 22), 27 < 21,25 < 29
endif
endfor
endfor
// Step 3. Retrieve the optimal solution and output.
x}, x5 < solutions of K Py(z7) and K Py(z35).
Output the optimal (a3, x3) with the objective value z*, and stop.

N

J

Clearly, XKSP is solved by solving all of these subproblems. Corresponding to these
subproblems, we introduce the following inverse knapsack problem for agent k with the first

ir — 1 variables fixed to 0, and the i,-th to 1.

I K Py(2x|ix) : Minimize Z Wi Tk
JENK
subject to Z PkjTj > 2k, Tgj € {0, 1},] S Nk,
JEN
Tp1 =+ = Tpip—1 = 0,2, = 1.

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

FPTASfor the Knapsack Sharing Problem 7

wi(2x|ix) denotes the optimal objective value of this problem. If this problem is infeasible,
we set wi(zg|ix) = oo.
Then, as in Theorem 3.1, P[iy,is) can be rewritten as

P'[i1,15] : Maximize (21, 22)
subject to wi(z1]i1) + wi(zlia) < C|
ZE € [07 Uk[zk]]mta k=]-7 27

where Uylix] is an upper bound of ZjeNk Prj%rj under T = -+ = X1 = 0,24, = L.
With this constraint and assumption A4, we obtain the following:

Uk[lk] = (nk — ik + 1)pkik' (43)

Thus, Pliq,is] is solved by solving P'[iy, is]. Let (27[i1, 2], 25[i1,42]) be an optimal solution
to P'li1, i), and @j[iy, ia] = (73;[i1,72]) denotes an optimal solution to I K Py (2;[i1, ia]|ix).
Here, we note

Prin < 2411, 2] < Uglig], (4.4)

which follows directly from assumption A, and xy;, = 1 for this subproblem.
4.2. Scaling of K Py(zlix)
For an arbitrary e € [0, 1], let

be the scaling factor to divide the range [0, Uy[ix]] of z[i1, s into

Vk[lk] = L(nk — i+ 1)2/€J (46)

sub-intervals of width Hy[ix]. We introduce the scaling of profits

qrjlix] = [prj/ Hyl[ix]] (4.7)
and the scaled subproblem
Q[’il, Zg] . Maximize ¢(Hl[21] Z qu[il]xlj, HQ[@Q] Z q2j [ig]ﬂ?gj)
JEN1 JEN2
subject to (1.2),(1.3), (4.1).

Further, we introduce the inverse problem for z;, € [0, Vi [ix]]ins as

ITKQp(zk|ix) : Minimize Z Wi Tk
JENK
subject to Z qkj[ik]xkj > 2k, Tgj € {0, 1},] € Nk,
JEN
(4.2).

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

8 S Kataoka & T. Yamada

Let w,t(zkm) be the optimal objective value for this problem. This can be computed,
analogously to the weight function wj(z;) introduced in Section 3, by the DP recursion
procedure. Then, again as in Theorem 3.1, Q[i1, i2] can be rewritten as

Q'[i1,35] : Maximize ¢(Hi[ir]z1, Halis]22)
subject to w!(z|i) + wh(zliz) < C,
2K € [0, Vk[lkﬂmt, k= l, 2.

By (z1[i1, 2], 23[i1,42]), we denote an optimal solution to this problem, and @![i1,is] =
(ij [i1,15]) is an optimal solution to TKQy(zL[i1, is]|ix). Again, (a![iy, is], @b[i1, is]) gives an
optimal solution to Q[iy, is).

4.3. Approximation algorithm for XKSP

The solution (iL']; [il,ig],m;[il,ig]) of Qli1,i2], as obtained above, is a feasible solution to

Pliy,is], which we employ as an approximate solution with the objective value

Z1722 E pljl‘lj i1, 92, E p2]952] i1, 72])

JEN1 JEN>

The following algorithm Solve_ XKSP_Approx, shown overleaf, solves XKSP approximately
by finding the best among all z1[i1,45]’s, i.e., with (i],4}) as a maximizer, we have

2t = 2Tl il) = max{2'[iy, is] | 41 € Ny ia € Ny} (4.8)

The computational complexity of this algorithm is analyzed below. In solving I K Q(z|ix)
to compute wi(z|ix) for zx € [0, Vi[ir]line and i = 1,2,...,ny, the DP algorithm runs in
(ng—ix+1)Vilix] = O((ng,—ix+1)3/€) time. In total, Step 1 needs Doiciion, (M= +1)% /e +
D i<iy<ny (M2 — 2 + 1)*/e = O((n} + n3)/e) time. To find the optimal z'[iy, iy] in Step 2,
again due to the assumption Az, V;[i1]Valia] = O((n1 —i1+1)%(ng — iy +1)?/€?) time suffices.
Thus, searching for the optimal 2" requires Y, _; - >, (1 —i1+1)*(ng—is+1)% /€ =

O(n3n3/e2) time. For Step 3, (ny — i} + D)Vi[il] + (ny — i + 1)Va[il] = O((n? +n3)/e) time
suffices, which is negligible with respect to O((n} +n3)/e€) time for Step 1. In summary, the
total time complexity of this algorithm is O((n] + n3)/e + n3n3/e?).

The space requirement for the DP procedure to solve I K Qy(z|iy) is at most (ng)Vi[1] =
O(n}/e). This space is reusable for iy = 1,2,...,ng, and is sufficient to keep wj(zx|ix) in
memory as well. Thus, for Step 1, we need O((n$ + n3)/¢) space. In Step 2, we note that
21[iy, 9] is used only within the loop of (i1,i5). This means that it may be replaced, e.g., by
24, and 2+ can be used repeatedly for all pairs of (i1,is) € Ny x No. This is true for ZI [i1, 2]
and z5 [zl, io); thus, the memory needed for Step 2 is only O(1). For Step 3, the space used
for Step 1 is again reusable. Therefore, the total space requirement of Solve XKSP_Approx
is O((n? +n3)/e).

4.4. Proof of FPTAS of the approximation algorithm
We prove that Solve XKSP_Approx is an (1 — €)-approximation algorithm for XKSP. First,
we prepare the following.

Lemma 4.1.

Hy[ix) Z Qrjlin]ar;lin, ia] = (1 —€)z[in, 2], k=1,2.
JEN

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

FPTASfor the Knapsack Sharing Problem

Algorithm Solve _XKSP_Approx

/
Input: Item data {ny, (g, Dr;),J

Output: Approximate solution (x
// Step 1. Scale & solve I KQy(z
// Scaling
for K =1to 2 do
for 7, =1 to n; do
Initialize Hy[iy] and V[ix] by equations (4.5) and (4.6), resp.
for j =1 to n; do
Initialize qx;[ix] by equation (4.7).
endfor

?‘ »—t—e—k:

i) to obtain w)] (zxix).

Compute w] (z|ix) by solving I KQy(z|ix) via the DP procedure.
endfor
endfor
// Step 2. Compute the optimal z! and (if,) = arg max{z1[i, i5]}.
set zi :z;:(),zT :ZI :z; = —00.
for iy =1 to n; do
for i =1 to ny do
ZT[i17i2] = ZI[il,ig] = Z;[il,ig] = —0OQ.
for z; = 0 to Vi[i1] do
for z, = 0 to Va[is] do
if wi(z1]i1) + wl(22)iz) > C continue.
if ¢(H,[i1]z1, Holin)ze) > 2[i1, is] do
2V[ir, do) — @(Hlir]z1, Halis]22),
Z“Z.l,lé] = Zl,Z;[il,ig] = Z9.
endif
endfor
endfor
if ZT[il,iQ] > ZT do
iy, i i, 2 2Min,do), 2] < 2l[iy,do), 2 < 21y, da).
1 1,0 2 1,02, %1 1 2 2
endif
endfor
endfor
// Step 3. Retrieve the optimal solution and output.
x!, 2l solutions of TKQ:(z1]il) and TKQ,(=)|il).
T .7

Output the approximate solution (), x}) with the objective value zf, and stop.

-

=1,...,n%} for k = 1,2, and the capacity C.
:Bg) and the corresponding objective value 2.
t

)

Proof:

Hilin] Y awslinlwilin, i) = Helin] Y Lpwy/ Hilin)i [in, io]

JEN} JENE
Hyliy] Z (Prj/ Hilin] — 1)ag;li1, 72
JENK
Z PrjTizliv, io] — Hylig](ng, — i + 1)
JENK

Zilin, i2] — €pri, > (1 — €)25 i1, 42,

v

v

v

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

10 S Kataoka & T. Yamada

where the last inequality follows from the constraint
> prgwiylinyia] > 2ili, io]
JENK
for I K Py(ix|25[i1, i2]) and (4.4). O

Proposition 4.1.
ZT[il,iz] > (1 — TG)Z*[’il,iQ] for all (il,ig) € N1 X NQ.

Proof:
iy, ia] = ¢(Z i, o), Z pajal[iv, ia])
JEN JEN2
> P(Hli] Z Q1j[i1]$];j[i1,i2],ﬂ2[i2] Z Q2j[i1]$$j[i17i2])
JEN JEN2

(from py; > Hylix]qr;lix]) and Assumption Aj)

> G(Hi[ir]z{[ir, ia], Halis] 23[ir, i)

(from Z Qij [kl]xzj [i1, 5] > zl[i1, 5] and Assumption As)

JENE
> ¢(Hli] Z qujlir]xy;[in, ia), Holis] Z Gajin)5;in, i2])
JENT JEN2

(since (2][iy, is], Z3[i1, i) is optimal for Q'[iy, is))
> o((1 —€)27[ir, da), (1 — €)23[i1,2]) (from Lemma 4.1)
> (1 =€) d(z7]i1, 1], 23]i1,12]) (from Assumption Ag)
> (1 —re)z"[iy, is). O

Analogous to (4.8), the optimal objective value z* is the best on out of all 2*[iy, is]’s;
with (i%,4%) as a maximizer, this yields

2 = 2*[if, 5] = max{2*[i1, is]|i1 € Ni,i2 € Na}. (4.9)

Then, we obtain the following.
Theorem 4.1. Solve XKSP_Approx gives an FPTAS for XKSP.

Proof: We already proved that Solve_XKSP_Approx runs in polynomial time of ny, ny and
1/e. This combined with 27 = zf[i] i) > 2T[it, i3] > (1 — re)2*[i%,45] = (1 — re)z*, which
follows from Proposition 4.1, proves Theorem 4.1. O]
4.5. The case of K > 2

Although we focused on the case of two agents (K = 2), most of the results can be extended
to the case of K > 2 agents, provided that K is an externally given, fixed number. XKSP
with K > 2 is solved by solving

XKSP': Maximize &(z1, 22, -+ 2K)
subject to wi(z1) +wi(ze) + - -+ wi(2x) < C,
0<% <U,, k=1,2,... K.

This can be solved in O(nU; +noUs+- - -+ngUk) time to compute weight functions wy(2)
in O(U U, - - - Uk) time to find the optimal (27, 23, ..., 2}) that maximizes ¢(z1, 29, . . ., 2K).

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

FPTASfor the Knapsack Sharing Problem 11

Thus, we have a O(nlUl +noUs+ -+ ngUx + U Uy - - - [_]K) time pseudo-polynomial time
algorithm.

Solve_XKSP_Approx can be extended to the K > 2 case, as well. We decompose the
problem into subproblems P[iy, is, ..., ix], and through (4.5)-(4.7) introduce the scaled sub-
problem Q[iy, iy, . .., ix]. Weight functions w] (z|i;) can be computed in O((n? +nf +--- +
n%)/e) time, and the approximate value z1[iy, iy, . .., ix] is obtained in Uy [i1|Us[ia] - - - Uk[ik]
= O((n3/e)(n3/€) -+ (n3/€)) time. Thus, in total, we have a FPTAS that runs in O((n] +
ny + - +nk)/e +nind---n3. /eX) time. Thus, the algorithm is an FPTAS for XKSP,
provided that K is an externally given, fixed number.

5. Conclusion

In this article, we formulated the XKSP as a family of problems, including KSP, MKSP, and
QKSP. We developed a DP-based algorithm to solve this family of problems to optimality
in a unified way, and proved that this problem is NP-hard in the weak sense. Based on the
DP-based algorithm, we also constructed an algorithm to solve the problem approximately
in polynomial time by decomposing it into a series of subproblems and by introducing scaling
in the DP computation of the subproblems. The algorithm was proven to give an FPTAS
to the XKSP. In most parts of the paper, the algorithm was described for the case of two
agents (K = 2), but it can be extended to the case of K > 2, if K is an externally given,
fixed number. For KSP with K = 2 agents, we shall give a simpler approximation algorithm,
which is proven to be a PTAS, in the Appendix.

To our knowledge, this paper is the first to explore approximation algorithms for KSP
and its extensions from a theoretical FPTAS/PTAS point of view. We highlight the following
prospective future research issues.

- Improving the time/space complexity of Solve XKSP_Approx. This may be possible by
improvements in the FPTAS for KP based on [8,9,12], etc.

- Developing a PTAS for KSP with K > 2, or extending PTAS to XKSP in general, and
at least to the multiplicative/quadratic KSP with K = 2 or more.

- Developing an approximation algorithm that runs in polynomial time of K may be a
worthwhile challenge.

Acknowledgments The authors would like to thank the anonymous referees and the Editor
of this journal for their helpful remarks and suggestions on our manuscript.

Appendix: PTAS for KSP with K = 2

We develop a greedy algorithm for the limited case of KSP with two agents and prove
that it is a PTAS. Throughout the Appendix, assumptions A;-A3 are maintained, while Ay
is replaced with the following.

Ag: Ny is numbered in non-increasing order of the profit per weight, i.e.,

D1/ Wik > Dr2/Wka - - - > Diny, [Weny, k= 1, 2.

We consider a slightly extended problem

KSP(ZH), 2920, 5) . Maximize IIliIl(Zl() + Z P15, 220 + Z pgjl’gj)
JEN1 JEN2
subject to Z w1 + Z wo;Ta; < €, xi; € {0, 1},
JENL JEN2

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

12 S Kataoka & T. Yamada

where 219 and z9 are ‘fixed’ scores given a priori to each group, and KSP(0,0,C) is the
original KSP.
We then introduce the knapsack problem

K Py(zro,¢) : Maximize Zko + Z DkjLhj
JENK
subject to Z Wy Trj < ¢, Tr; € {0,1}.
JENE

By K Pj(zro,), we denote the continuous relaxation of this problem, where 0-1 constraint
x; € {0,1} is replaced with 0 < x;; < 1. The optimal objective value of K Pj(zx0,c)
is denoted Zj(zko,), and wy; = Zlgigj Wi (Prj = 2ko + 21§i§jpki> resp.) is the accu-
mulated weight (value, resp.) of items in Ni. Due to Ag, Zx(z0,c) is a piecewise linear,
concave, and monotonically increasing function of ¢, which is obtained by connecting points

(wk(hpk())a (wklaﬁkl)a (kaaﬁk2)7 ceey (wknmpk’nk)‘
If Z1(z10,€) > 290 and Za(z90,C) > 219, then Zi(2z10,¢) = Za(220,¢ — ¢) has a unique
solution, say ¢, and the corresponding value Z := z(z19,¢). This gives an upper bound

to KSP(z10, 220, C), since this is the optimal objective value for the continuous relaxation
of the problem. Thus, for the optimal objective value 2*(z1g, 220, ¢) of KSP(z10, 220,), we
have

Z*(Zlo, 220, é) S Z.

Let s € N; be the item satisfying w; 1 < ¢ < w;,. Such an item is said to be critical
in N;. Similarly, the critical item ¢ in Ny satisfies wq;_ 1 < C — ¢ < Wy;. Then,

2(210, 220, €) := min(pPy 51, P2,t—1)

gives a lower bound to K SP(z19, 220, ¢), and S(z19, 220, ¢) := {j € Ni|j < s}U{j € No|j < t}
is a feasible solution to this problem. Furthermore, since p1s := p1s-1 + p1s > 2 and
Dot = Pat—1 + P > 2, both of these give upper bounds to K .SP(z1, 290, ¢). We take

2(2 P E) - plsa if ﬁl,s—l S]52,15—17
10, <20, %/ - Dor, otherwise

as the upper bound of K.SP(z1, 220, ¢) to be used hereafter.

For an arbitrary subset £y, C N, (k = 1,2), we write wg(Fy) == >, wiy and py(Fy) =
ZjeFk pr; to simplify the notation, and for a pair of subsets (F, Fy), we introduce the
following to solve KSP (approximately) with F; U F; fixed a priori.

Procedure GREEDY (F, Fb)

- Put cpo := wi(Fy) and zxo := pp(Fy), k=1,2, C' := C — c19 — ¢20.
- With K SP(z1, 220, C"), compute a pair of critical items (s, t), the lower bound

z(F1, Fy) == z(z10, 220, C"), and the corresponding feasible solution
S(Fl, FQ) = S(Zlo, 220, C,)

The running time of this procedure is O(ny + ns).

We now describe a PTAS for KSP. Let € € (0, 1) be a fixed constant and let h := [1/€].
We first try to guess the most profitable set of items from each group and pack the rest
greedily.

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

FPTASfor the Knapsack Sharing Problem 13

Algorithm Approx KSP

for each pair (F}, Fy) satisfying Fj, C Ny, |Fx| < h,k=1,2 do
- Pack F} and Fj5 into the knapsack.
- Remove from Ny \ Fj, all items j satisfying py; > pgi, where
i := argmin{py;|j € F}} is the least profitable item in Fj.
- With the sets of remaining items, run GREEDY (F}, F,) and obtain
the lower bound z(F}, F), together with the feasible solution S(Fi, F3).
endfor
Output the best solution from above, and stop.

N)

Theorem A.1. Approx KSP gives a PTAS for KSP with K = 2.

Proof: (Complexity) There are ,,, Cj, -, Ci < nlt-nl pairs of sets satisfying |Fy| < h, |Fy| < h,
and for each pair (F, Fy) we need O(n; + ny) time. Accordingly, the total time complexity
is O((ny + na)nnb) = O((ny + ny)(niny) /).

(Accuracy) Let (OF, O3) be an optimal solution of the original KSP =

KSP(0,0,C) with the optimal objective value z* := min{p(O7), p(O3)}. Here, for k = 1,2
we set Fj, to the first h most profitable items in Oj if |Of| > h, and we set F}, = Oj otherwise.
Since Fj, C O, KSP is solved by solving K.SP(py(F1),p2(F2),C — wi(F1) — we(F2)), and
thus 2*(p1(F1), p2(Fs), C —wi(Fy) —wq(Fy)) = z*. Let s and t be the critical items obtained
by running GREEDY (F}, F,). Under this setting, we consider the following cases.

(i) If |O7] < h and paz—1 > p(O7).
In this case, O} can be regarded as an optimal solution to K P»(0,C' — w(F})), and we
have p(O3) > pas—1. Thus, we have p(O%) > p(Oy), which implies z* = min{p(Oy),
p(03)} = p(O7). At the same time, z(Fy, Fy) = min{p(F1), pat—1} = p(F1) = p(O7).
We thus conclude z(Fy, Fy) = z*.

(ii) If |03] < h and p1,s-1 = p(F3).
By symmetry, we have z(F;, Fy) = z* as above.

(111) If |Of| Z h and]5175_1 S]527,5_1.
In this case, after running GREEDY (Fy, F3), we have py; > pys for all j € Fy. Then,
if p1s > ez*, we obtain z* > 2(Fy, Fy) = P11 > ZjGFl P1j = Zjepl p1s > hez* > 2%,
which is a contradiction. Accordingly, pis < ez* and from z(zyg, 290, C) = z(F1, F2) +
p1s > 2%, we conclude z(F, Fy) > (1 — €)z*.

(iv) If |F5| > h and py g1 < pas1.
Again, by symmetry to (iii) we have z(F, Fy) > (1 —€)z*.

Thus, in all cases, z(Fy, F») > (1 — €)z* holds, which completes the proof. O

References
[1] T. Belgacem and M. Hifi: Sensitivity analysis of the knapsack sharing problem: Pertur-
bation of the weight of an item. Computers & Operations Research, 35 (2008), 295-308.
[2] R. Bellman: Dynamic Programming (Princeton University Press, Princeton, 1957).

[3] A. Caprara, H. Kellerer, and U. Pferschy: The multiple subset sum problem. SIAM
Journal on Optimization, 11 (2000), 308-319.

[4] A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger: Approximation algorithms for

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

14

[9]

[10]

[15]
[16]

[17]

[18]

S Kataoka & T. Yamada

knapsack problems with cardinality constraints. European Journal of Operational Re-
search, 123 (2000), 333-345.

M. Dawande and J. Kalagnanam: Approximation algorithms for the multiple knapsack
problem with assignment restrictions. Journal of Combinatorial Optimization, 4 (2000),
171-186.

M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory
of NP-Completeness (Freeman and Company, San Francisco, CA, 1979).

M. Hifi, H. M’Halla, and S. Sadfi: An exact algorithm for the knapsack sharing problem.
Computers & Operations Research, 32 (2005), 1311-1324.

O.H. Ibarra and C.E. Kim: Fast approximation algorithms for knapsack problem and
sum of subset problems. Journal of the Association for Computing Machinery, 22
(1975), 463-468.

H. Kellerer and U. Pferschy: A new fully polynomial time approximation scheme for
the knapsack problem. Journal of Combinatorial Optimization, 3 (1999), 59-71.

H. Kellerer, U. Pferschy, R. Mansini, and M.G. Speranza: An efficient fully polynomial
time approximation scheme for the subset-sum problem. Journal of Computer and
Systems Sciences, 66 (2003), 349-370.

H. Kellerer, U. Pferschy, and D. Pisinger: Knapsack Problems (Springer, Berlin, 2004).
E.L. Lawler: Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4 (1979), 339-356.

M.J. Magazine and O. Oguz: A fully polynomial approximation algorithm for the 0-1
knapsack problem. European Journal of Operational Research, 8 (1981), 270-273.

S. Martello and P. Toth: Knapsack Problems: Algorithms and Computer Implementa-
tions (John Wiley and Sons, New York, 1990).

V.V. Vazirani: Approzimation Algorithms (Springer, Berlin, 2001).

D.P. Williamson and D.B. Shmoys: The Design of Approxzimation Algorithms (Cam-
bridge University Press, Cambridge, 2011).

T. Yamada and M. Futakawa: Heuristic and reduction algorithms for the knapsack
sharing problem. Computers & Operations Research, 24 (1997), 961-967.

T. Yamada, M. Futakawa, and S. Kataoka: Some exact algorithms for the knapsack
sharing problem. European Journal of Operational Research, 106 (1998), 177-183.

Seiji Kataoka

Department of Computer Science
National Defense Academy
1-10-20 Hashirimizu, Yokosuka,
Kanagawa 239-8686, Japan
E-mail: seiji@nda.ac. jp

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

