
Journal of the Operations Research Society of Japan c⃝ The Operations Research Society of Japan
Vol. 62, No. 1, January 2019, pp. 1–14

DP-BASED ALGORITHM AND FPTAS FOR THE KNAPSACK SHARING

AND RELATED PROBLEMS

Seiji Kataoka Takeo Yamada
National Defense Academy National Defense Academy, Emeritus

(Received February 6, 2018; Revised September 18, 2018)

Abstract In the knapsack sharing problem (KSP), formulated previously, we considered a game-theoretic
situation in which two or more players (agents) compete for their share of capacity in a knapsack with
their respective sets of items. As an extension of this problem, we formulate the extended knapsack sharing
problem (XKSP). This is actually a family of KSP-like problems, and we present a dynamic programming-
based (DP-based), pseudo-polynomial time algorithm to solve XKSP to optimality in a unified way. XKSP
is shown to be NP-hard, but due to the existence of this pseudo-polynomial time algorithm, it is only
weakly NP-hard. Next, we develop an algorithm to solve the problem approximately in polynomial time
by decomposing it into a series of subproblems. Furthermore, we introduce a scaling factor into the DP
computation to obtain a fully polynomial time approximation scheme (FPTAS) for XKSP with two agents.
Extension to the case of more than two agents is discussed, together with a non-DP-based PTAS.

Keywords: Combinatorial optimization, knapsack sharing problem, DP-based algo-
rithm, approximation, FPTAS/PTAS

1. Introduction

In this article, we address a game-theoretic situation in which K players (or agents)
compete for their share of capacity in a knapsack with their respective sets of items.
Nk = {1, 2, . . . , nk} denotes the index set of items belonging to agent k, and the weight
and profit of item j ∈ Nk are denoted wkj and pkj, respectively. The aim is to pack the
knapsack with these items within the capacity limit C in a way that is satisfactory for all
agents as a whole. Let xkj ∈ {0, 1} be a decision variable that takes the value 1 if item
j ∈ Nk is accepted and 0 otherwise. Thus, (xkj) is a ‘solution’ and zk :=

∑
j∈Nk

pkjxkj

is the total profit for agent k with respect to this solution. (Throughout the paper, :=
denotes definition, i.e., the notation on the left-hand side is defined by the right-hand side.)
Except in Subsection 4.5, we limit the number of agents to K = 2, mainly for the sake of
notational simplicity. We introduce the objective function of the form ϕ(z1, z2) as a social
welfare function that integrates individual preferences into an overall utility for all agents.
Mathematically, ϕ(·, ·) : R2

+ → R+ is a continuous function satisfying the (rather mild) as-
sumptions given in Section 2. Thus, we are concerned with the following extended knapsack
sharing problem.

XKSP : Maximize ϕ(
∑
j∈N1

p1jx1j,
∑
j∈N2

p2jx2j) (1.1)

subject to
∑
j∈N1

w1jx1j +
∑
j∈N2

w2jx2j ≤ C, (1.2)

xkj ∈ {0, 1}, j ∈ Nk, k = 1, 2. (1.3)
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This type of problem arises frequently when distributing a fixed amount of resources
(money, manpower, time, etc.) over two or more agents with respective plans of projects.
Each project requires a cost (wkj), and in return yields a profit (pkj) to the agent involved.
For example, consider a newly married couple planning for their honeymoon. They are
packing a suitcase with their respective items. Here, z1 and z2 are, respectively, their
individual degrees of satisfaction with their packed items, and the overall degree of happiness
for the couple is given by ϕ(z1, z2).

The knapsack sharing problem (KSP), originally formulated in [17, 18], is a special case
of XKSP with ϕ(z1, z2) = min{z1, z2}, where the objective is to maximize the minimum
profits of two agents. Heuristic and exact algorithms have been given for KSP in these
and subsequent papers [1, 7]. Depending on the form of the welfare function ϕ(z1, z2), other
special cases of XKSP include the following.

- Multiplicative knapsack sharing problem (MKSP): With ϕ(z1, z2) = z1z2, to maximize
(
∑

j∈N1
p1jx1j) · (

∑
j∈N2

p2jx2j),

- Quadratic knapsack sharing problem (QKSP): With ϕ(z1, z2) = (z1)
2+(z2)

2, to maximize
(
∑

j∈N1
p1jx1j)

2 + (
∑

j∈N2
p2jx2j)

2.

In this study, we are concerned with XKSP in general. In Section 2, we prove that XKSP
is NP-hard [6], and in Section 3, we present a dynamic programming (DP)-based pseudo-
polynomial time algorithm to solve XKSP to optimality in a unified way. The existence of
such an algorithm implies that XKSP is only weakly NP-hard.

Since solving NP-hard problems exactly in polynomial time in input data is believed to
be essentially impossible unless P = NP , attempts have been made to solve these problems
approximately in polynomial time under the PTAS (polynomial time approximation scheme)
or FPTAS (fully polynomial time approximation scheme) [15, 16]. Various combinatorial
optimization problems have been examined from this viewpoint. For example, Ibarra and
Kim [8] developed an FPTAS for the knapsack problem [11, 14], and the time and space
complexity of their algorithm were improved by Lawler [12] and subsequent researchers
[9, 13]. FPTASs have also been given for the subset-sum problem [8, 10, 12] and its extensions
[3–5].

Previously, approximation algorithms have been explored for the KSP mainly from a
computational point of view [7, 18]. However, PTAS/FPTAS results have not been reported,
i.e., from a theoretical viewpoint, these algorithms do not guarantee precision or polynomial
run-time. In Section 4 of this paper, we present an FPTAS for XKSP with two agents
(K = 2). To construct such an FPTAS, we decompose XKSP into a series of subproblems
and transform each of the subproblems into a two-dimensional optimization problem. Then,
we apply scaling to compute the weight functions (introduced in Subsection 3.1) for these
problems, and use the results to derive an FPTAS for XKSP. In the last part of Section 4,
the FPTAS constructed for K = 2 is extended to the case of more than two agents; and
the developed algorithm gives an FPTAS for the problem with an externally given, fixed
K(> 2).

Section 5 concludes the paper, with perspectives on future research on this topic. In the
Appendix, we give a non-DP-based PTAS for a limited case of the KSP with K = 2.

2. Assumptions and NP-hardness
We make the following assumptions throughout the paper, unless otherwise stated.

Assumptions:
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A1. Problem data nk, wkj, pkj, and C are all positive integers.

A2. wkj ≤ C for all j ∈ Nk, k = 1, 2.

A3. minj∈N1{w1j}+minj∈N2{w2j} ≤ C.

A4. Nk is numbered in non-increasing order of pkj, i.e.,

pk1 ≥ pk2 ≥ · · · ≥ pknk
, k = 1, 2.

A5. ϕ(z1, z2) is coordinate-wise non-decreasing, i.e., for all (z1, z2) ∈ R2
+

z′1 ≤ z′′1 ⇒ ϕ(z′1, z2) ≤ ϕ(z′′1 , z2) and z′2 ≤ z′′2 ⇒ ϕ(z1, z
′
2) ≤ ϕ(z1, z

′′
2 ).

A6. ϕ(0, z2) ≡ ϕ(z1, 0) ≡ 0, ∀zk ∈ R+, k = 1, 2.

A7. ϕ(z1, z2) can be computed in O(1) time.

A8. ϕ(z1, z2) is a super-homogeneous function of degree r, (r ≥ 1), i.e.,

ϕ(λz1, λz2) ≥ λrϕ(z1, z2), for all λ ≥ 0 and (z1, z2) ∈ R2
+.

We introduce A2 and A3 to eliminate trivial cases. Without a loss of generality, we
assume A4 for the simplicity of subsequent descriptions of the algorithms. A5 and A6 are
natural requirements for a social welfare function. Furthermore, we need A7 and A8 to
derive FPTAS for XKSP in later sections.

KSP has been shown to be NP-hard [18], as a generalization of the standard knapsack
problem. Here we prove XKSP to be NP-hard for an arbitrary welfare function ϕ(z1, z2)
satisfying the assumption A5.
Theorem 2.1. XKSP is NP-hard.
Proof: Corresponding to a knapsack problem (KP) consisting of n items, with pj and wj

representing the profit and weight of item j, respectively, and C indicating the knapsack
capacity, consider an instance of XKSP where agent 1 has n items, agent 2 has only one
item, and the capacity is C + 1. In this case, the items of agent 1 are all inherited from
the KP, i.e., we have p1j = pj and w1j = wj for item j, while for agent 2 we set p21 = M
and w21 = 1, where M > 0 is some fixed number. In this instance, the item of agent 2
must be accepted, and thus the profit of agent 2 is M . Hence, the aim of the XKSP is to
maximize ϕ(

∑n
j=1 p1jx1j,M) subject to

∑n
j=1w1jx1j ≤ C. Due to the assumption A5, this

is equivalent to the classic knapsack problem, which is known to be NP-hard [14].

3. DP-based Algorithm to Solve XKSP

In this section, we present a DP-based algorithm to solve small instances of XKSP to
optimality. To construct such an algorithm, we transform the original problem to a two-
dimensional optimization problem by introducing a weight function, as discussed below.

3.1. Weight function

Let Ūk be an upper bound of
∑

j∈Nk
pkjxkj, e.g.,

Ūk :=
∑
j∈Nk

pkj. (3.1)

For an arbitrary zk ∈ [0, Ūk]int, we introduce the following inverse knapsack problem, where
[a, b]int denotes the set of integers within interval [a, b].

IKPk(zk) : Minimize
∑
j∈Nk

wkjxkj

subject to
∑
j∈Nk

pkjxkj ≥ zk, xkj ∈ {0, 1}, j ∈ Nk.
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The optimal objective value for this problem is denoted w⋆
k(zk), and for the case in which

the problem is infeasible, we set w⋆
k(zk) :=∞. Seen as a function of zk, w

⋆
k(zk) : [0, Ūk]int →

R+ ∪ {∞} is referred to as the weight function of agent k. This can be computed by the
following DP [2] algorithm. We define

Wk(i, zk) := min{
nk∑

j=i+1

wkjxkj|
nk∑

j=i+1

pkjxkj ≥ zk, xkj ∈ {0, 1}, j ∈ {i+ 1, . . . , nk}}. (3.2)

This gives the minimum weight for agent k when the total profit is not less than zk and the
first i items are not considered.

Following the DP principle of optimality, we derive the following recurrence relation.
Starting with

Wk(nk, zk) =

{
∞, zk > 0,
0, zk = 0,

(3.3)

do the following (for each zk ∈ [0, Ūk]int) from i = nk − 1 down to i = 0.

Wk(i, zk) =

{
min{wki +Wk(i+ 1, zk − pki),Wk(i+ 1, zk)}, zk ≥ pki,
Wk(i+ 1, zk), zk < pki,

(3.4)

xk(i, zk) =

{
1, zk ≥ pki and wki +Wk(i+ 1, zk − pki) ≥ Wk(i+ 1, zk),
0, otherwise.

(3.5)

The weight function for Nk is given as w⋆
k(zk) := Wk(0, zk). It is known that w⋆

k(·) is a
non-decreasing, right-continuous step function of zk ≥ 0 [11, 14].

3.2. Pseudo-polynomial time algorithm for XKSP

Once weight functions w⋆
k(zk) are obtained for k = 1, 2, we introduce the following problem.

XKSP′ : Maximize ϕ(z1, z2)

subject to w⋆
1(z1) + w⋆

2(z2) ≤ C,

zk ∈ [0, Ūk]int, k = 1, 2.

Let (z⋆1 , z
⋆
2) denote an optimal solution to XKSP′ with the objective value z⋆ := ϕ(z⋆1 , z

⋆
2),

and let x⋆
k = (x⋆

kj) be an optimal solution to IKPk(z
⋆
k), k = 1, 2. We set w⋆

k := w⋆
k(z

⋆
k) (=∑

j∈Nk
wkjx

⋆
kj). Then, by definition

w⋆
1 + w⋆

2 ≤ C. (3.6)

Additionally, by (x◦
1,x

◦
2) we denote an optimal solution to XKSP, and we set w◦

k :=∑
j∈Nk

wkjx
◦
kj, z

◦
k :=

∑
j∈Nk

pkjx
◦
kj, and z◦ := ϕ(z◦1 , z

◦
2). Again, we obtain

w◦
1 + w◦

2 ≤ C, (3.7)

and the following establishes the equivalence of XKSP and XKSP′.

Theorem 3.1. Any optimal solution of XKSP is optimal for XKSP′ and vice versa, i.e.,

(i) z◦ = z⋆,
(ii) (z◦1 , z

◦
2) is an optimal solution to XKSP′ with x◦

k feasible for IKPk(z
◦
k),

(iii) (x⋆
1,x

⋆
2) is optimal to XKSP.
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Proof: (Proof of z◦ ≤ z⋆) Since x◦
k is a feasible solution to IKPk(z

◦
k), we have w

⋆
k(z

◦
k) ≤ w◦

k.
From (3.7), w⋆

1(z
◦
1)+w⋆

2(z
◦
2) ≤ C, which implies that (z◦1 , z

◦
2) is a feasible solution of XKSP′.

Thus, z◦ = ϕ(z◦1 , z
◦
2) ≤ z⋆.

(Proof of z◦ ≥ z⋆) From (3.6), (x⋆
1,x

⋆
2) is a feasible solution to XKSP. This implies that

z◦ ≥ ϕ(
∑

j∈N1
p1jx

⋆
1j,

∑
j∈N2

p2jx
⋆
2j). Furthermore, from the constraint of IKPk(z

⋆
k), we have∑

j∈Nk
pkjx

⋆
kj ≥ z⋆k. From this inequality and assumption A5, we obtain ϕ(

∑
j∈N1

p1jx
⋆
1j,∑

j∈N2
p2jx

⋆
2j) ≥ ϕ(z⋆1 , z

⋆
2) = z⋆. Thus, (i) is proved.

So far, we have proved

z◦ = ϕ(z◦1 , z
◦
2) = ϕ(

∑
j∈N1

p1jx
⋆
1j,

∑
j∈N2

p2jx
⋆
2j) = ϕ(z⋆1 , z

⋆
2) = z⋆,

which completes the proof of (ii) and (iii), as well.
Thus, XKSP is solved by the DP-based algorithm Solve XKSP DP shown overleaf, which

actually solves XKSP′.

3.3. Complexity

Given Ūk, (k = 1, 2) by equation (3.1), the computational complexity of the algorithm
Solve XKSP DP is O(n1Ū1 +n2Ū2) for Step 1 to compute Wk(i, zk), k = 1, 2, and thanks to
the assumption A7, O(Ū1Ū2) to find the optimal (z⋆1 , z

⋆
2) in Step 2. In total, the algorithm

runs in pseudo-polynomial O(n1Ū1 + n2Ū2 + Ū1Ū2) time. The memory requirement to keep
Wk(i, zk) for i = 1, . . . , nk and zk ∈ [0, Ūk]int is O(n1Ū1 + n2Ū2). This memory space is also
sufficient for computing x⋆

1 and x⋆
2 in Step 3. Due to the existence of this pseudo-polynomial

time algorithm, XKSP is only weakly NP-hard [6].

4. FPTAS for the Problem XKSP

The DP-based algorithm described in the previous section solves XKSP to optimality in
pseudo-polynomial time. In this section, we explore an approximation algorithm that runs
in polynomial time in the size of the input data. For the optimal objective value z⋆ of XKSP
and an arbitrary ϵ ∈ [0, 1], an algorithm is said to be a (1−ϵ)-factor approximation algorithm
if its output z† satisfies z† ≥ (1− ϵ)z⋆ for any instance of XKSP. If this algorithm runs, for a
fixed ϵ, in polynomial time in the size of the input data, this is said to be a polynomial time
approximation scheme (PTAS). In addition, if the running time is polynomial with respect
to 1/ϵ as well, this is said to be a fully polynomial time approximation scheme (FPTAS)
[15, 16].

4.1. Subproblem

To construct such an approximation scheme for XKSP, we decompose the problem into
subproblems P [i1, i2] (i1 ∈ N1, i2 ∈ N2) by fixing the first ik − 1 of xkj’s to 0 and xkik to 1
for k = 1, 2, i.e.,

P [i1, i2] : Maximize ϕ(
∑
j∈N1

p1jx1j,
∑
j∈N2

p2jx2j)

subject to (1.2), (1.3),

xk1 = · · · = xkik−1 = 0, xkik = 1; k = 1, 2. (4.1)
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Algorithm Solve XKSP DP� �
Input: Item data {nk, (wk,j, pk,j), j = 1, . . . , nk} for k = 1, 2, and the capacity C.
Output: Optimal solution (x⋆

1,x
⋆
2) and the corresponding objective value z⋆.

// Step 0. Preparation: Compute Ūk, (k = 1, 2) by equation (3.1).
// Step 1. Solve IKPk(zk) to obtain the weight functions w⋆

k(zk), k = 1, 2.
// Initialization: i = nk

for k = 1 to 2 do
for zk = 0 to Ūk do

Initialize Wk(nk, zk) by equation (3.3).
endfor

endfor
// Backward recursion.
for k = 1 to 2 do

for i = nk − 1 down to 0 do
for zk = 0 to Ūk do

Compute Wk(i, zk) and xk(i, zk) by equations (3.4) and (3.5), resp.
endfor

endfor
for zk = 0 to Ūk do

w⋆
k(zk)←Wk(0, zk).

endfor
endfor

// Step 2. Find the optimal solution (z⋆1 , z
⋆
2) of XKSP′.

set z⋆ = z⋆1 = z⋆2 = −∞.
for z1 = 0 to Ū1 do

for z2 = 0 to Ū2 do
if w⋆

1(z1) + w⋆
2(z2) > C continue.

if ϕ(z1, z2) > z⋆ do
z⋆ ← ϕ(z1, z2), z

⋆
1 ← z1, z

⋆
2 ← z2.

endif
endfor

endfor
// Step 3. Retrieve the optimal solution and output.

x⋆
1,x

⋆
2 ← solutions of IKP1(z

⋆
1) and IKP2(z

⋆
2).

Output the optimal (x⋆
1,x

⋆
2) with the objective value z⋆, and stop.� �

Clearly, XKSP is solved by solving all of these subproblems. Corresponding to these
subproblems, we introduce the following inverse knapsack problem for agent k with the first
ik − 1 variables fixed to 0, and the ik-th to 1.

IKPk(zk|ik) : Minimize
∑
j∈Nk

wkjxkj

subject to
∑
j∈Nk

pkjxkj ≥ zk, xkj ∈ {0, 1}, j ∈ Nk,

xk1 = · · · = xkik−1 = 0, xkik = 1. (4.2)
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w⋆
k(zk|ik) denotes the optimal objective value of this problem. If this problem is infeasible,

we set w⋆
k(zk|ik) =∞.

Then, as in Theorem 3.1, P [i1, i2] can be rewritten as

P ′[i1, i2] : Maximize ϕ(z1, z2)

subject to w⋆
1(z1|i1) + w⋆

2(z2|i2) ≤ C,

zk ∈ [0, Ūk[ik]]int, k = 1, 2,

where Ūk[ik] is an upper bound of
∑

j∈Nk
pkjxkj under xk1 = · · · = xkik−1 = 0, xkik = 1.

With this constraint and assumption A4, we obtain the following:

Ūk[ik] = (nk − ik + 1)pkik . (4.3)

Thus, P [i1, i2] is solved by solving P ′[i1, i2]. Let (z⋆1 [i1, i2], z
⋆
2 [i1, i2]) be an optimal solution

to P ′[i1, i2], and x⋆
k[i1, i2] = (x⋆

kj[i1, i2]) denotes an optimal solution to IKPk(z
⋆
k[i1, i2]|ik).

Here, we note

pkik ≤ z⋆k[i1, i2] ≤ Ūk[ik], (4.4)

which follows directly from assumption A4 and xkik = 1 for this subproblem.

4.2. Scaling of IKPk(zk|ik)
For an arbitrary ϵ ∈ [0, 1], let

Hk[ik] := ϵpkik/(nk − ik + 1) (4.5)

be the scaling factor to divide the range [0, Ūk[ik]] of z
⋆
k[i1, i2] into

V̄k[ik] := ⌊(nk − ik + 1)2/ϵ⌋ (4.6)

sub-intervals of width Hk[ik]. We introduce the scaling of profits

qkj[ik] = ⌊pkj/Hk[ik]⌋ (4.7)

and the scaled subproblem

Q[i1, i2] : Maximize ϕ(H1[i1]
∑
j∈N1

q1j[i1]x1j, H2[i2]
∑
j∈N2

q2j[i2]x2j)

subject to (1.2), (1.3), (4.1).

Further, we introduce the inverse problem for zk ∈ [0, V̄k[ik]]int as

IKQk(zk|ik) : Minimize
∑
j∈Nk

wkjxkj

subject to
∑
j∈Nk

qkj[ik]xkj ≥ zk, xkj ∈ {0, 1}, j ∈ Nk,

(4.2).
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Let w†
k(zk|ik) be the optimal objective value for this problem. This can be computed,

analogously to the weight function w⋆
k(zk) introduced in Section 3, by the DP recursion

procedure. Then, again as in Theorem 3.1, Q[i1, i2] can be rewritten as

Q′[i1, i2] : Maximize ϕ(H1[i1]z1, H2[i2]z2)

subject to w†
1(z1|i1) + w†

2(z2|i2) ≤ C,

zk ∈ [0, V̄k[ik]]int, k = 1, 2.

By (z†1[i1, i2], z
†
2[i1, i2]), we denote an optimal solution to this problem, and x†

k[i1, i2] =

(x†
kj[i1, i2]) is an optimal solution to IKQk(z

†
k[i1, i2]|ik). Again, (x

†
1[i1, i2],x

†
2[i1, i2]) gives an

optimal solution to Q[i1, i2].

4.3. Approximation algorithm for XKSP

The solution (x†
1[i1, i2],x

†
2[i1, i2]) of Q[i1, i2], as obtained above, is a feasible solution to

P [i1, i2], which we employ as an approximate solution with the objective value

z†[i1, i2] = ϕ(
∑
j∈N1

p1jx
†
1j[i1, i2],

∑
j∈N2

p2jx
†
2j[i1, i2]).

The following algorithm Solve XKSP Approx, shown overleaf, solves XKSP approximately
by finding the best among all z†[i1, i2]’s, i.e., with (i†1, i

†
2) as a maximizer, we have

z† = z†[i†1, i
†
2] = max{z†[i1, i2] | i1 ∈ N1, i2 ∈ N2}. (4.8)

The computational complexity of this algorithm is analyzed below. In solving IKQk(zk|ik)
to compute w⋆

k(zk|ik) for zk ∈ [0, V̄k[ik]]int and i = 1, 2, . . . , nk, the DP algorithm runs in
(nk−ik+1)V̄k[ik] = O((nk−ik+1)3/ϵ) time. In total, Step 1 needs

∑
1≤i1≤n1

(n1−i1+1)3/ϵ+∑
1≤i2≤n2

(n2 − i2 + 1)3/ϵ = O((n4
1 + n4

2)/ϵ) time. To find the optimal z†[i1, i2] in Step 2,

again due to the assumption A7, V̄1[i1]V̄2[i2] = O((n1− i1+1)2(n2− i2+1)2/ϵ2) time suffices.
Thus, searching for the optimal z† requires

∑
1≤i1≤n1

∑
1≤i2≤n2

(n1−i1+1)2(n2−i2+1)2/ϵ2 =

O(n3
1n

3
2/ϵ

2) time. For Step 3, (n1 − i†1 + 1)V̄1[i
†
1] + (n2 − i†2 + 1)V̄2[i

†
2] = O((n3

1 + n3
2)/ϵ) time

suffices, which is negligible with respect to O((n4
1+n4

2)/ϵ) time for Step 1. In summary, the
total time complexity of this algorithm is O((n4

1 + n4
2)/ϵ+ n3

1n
3
2/ϵ

2).
The space requirement for the DP procedure to solve IKQk(zk|ik) is at most (nk)V̄k[1] =

O(n3
k/ϵ). This space is reusable for ik = 1, 2, . . . , nk, and is sufficient to keep w⋆

k(zk|ik) in
memory as well. Thus, for Step 1, we need O((n3

1 + n3
2)/ϵ) space. In Step 2, we note that

z†[i1, i2] is used only within the loop of (i1, i2). This means that it may be replaced, e.g., by
z‡, and z‡ can be used repeatedly for all pairs of (i1, i2) ∈ N1×N2. This is true for z

†
1[i1, i2]

and z†2[i1, i2]; thus, the memory needed for Step 2 is only O(1). For Step 3, the space used
for Step 1 is again reusable. Therefore, the total space requirement of Solve XKSP Approx
is O((n3

1 + n3
2)/ϵ).

4.4. Proof of FPTAS of the approximation algorithm

We prove that Solve XKSP Approx is an (1− ϵ)-approximation algorithm for XKSP. First,
we prepare the following.

Lemma 4.1.
Hk[ik]

∑
j∈Nk

qkj[ik]x
⋆
kj[i1, i2] ≥ (1− ϵ)z⋆k[i1, i2], k = 1, 2.
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Algorithm Solve XKSP Approx� �
Input: Item data {nk, (wk,j, pk,j), j = 1, . . . , nk} for k = 1, 2, and the capacity C.

Output: Approximate solution (x†
1,x

†
2) and the corresponding objective value z†.

// Step 1. Scale & solve IKQk(zk|ik) to obtain w†
k(zk|ik).

// Scaling
for k = 1 to 2 do

for ik = 1 to nk do
Initialize Hk[ik] and V̄ [ik] by equations (4.5) and (4.6), resp.
for j = 1 to nk do

Initialize qkj[ik] by equation (4.7).
endfor

Compute w†
k(zk|ik) by solving IKQk(zk|ik) via the DP procedure.

endfor
endfor

// Step 2. Compute the optimal z† and (i†1, i
†
2) = argmax{z†[i1, i2]}.

set i†1 = i†2 = 0, z† = z†1 = z†2 = −∞.
for i1 = 1 to n1 do

for i2 = 1 to n2 do

z†[i1, i2] = z†1[i1, i2] = z†2[i1, i2] = −∞.
for z1 = 0 to V̄1[i1] do

for z2 = 0 to V̄2[i2] do

if w†
1(z1|i1) + w†

2(z2|i2) > C continue.
if ϕ(H1[i1]z1, H2[i2]z2) > z†[i1, i2] do

z†[i1, i2]← ϕ(H1[i1]z1, H2[i2]z2),

z†1[i1, i2] = z1, z
†
2[i1, i2] = z2.

endif
endfor

endfor
if z†[i1, i2] > z† do

i†1 ← i1, i
†
2 ← i2, z

† ← z†[i1, i2], z
†
1 ← z†1[i1, i2], z

†
2 ← z†2[i1, i2].

endif
endfor

endfor
// Step 3. Retrieve the optimal solution and output.

x†
1,x

†
2 ← solutions of IKQ1(z

†
1|i

†
1) and IKQ2(z

†
2|i

†
2).

Output the approximate solution (x†
1,x

†
2) with the objective value z†, and stop.� �

Proof:

Hk[ik]
∑
j∈Nk

qkj[ik]x
⋆
kj[i1, i2] = Hk[ik]

∑
j∈Nk

⌊pkj/Hk[ik]⌋x⋆
kj[i1, i2]

≥ Hk[ik]
∑
j∈Nk

(pkj/Hk[ik]− 1)x⋆
kj[i1, i2]

≥
∑
j∈Nk

pkjx
⋆
kj[i1, i2]−Hk[ik](nk − ik + 1)

≥ z⋆k[i1, i2]− ϵpkik ≥ (1− ϵ)z⋆k[i1, i2],
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where the last inequality follows from the constraint∑
j∈Nk

pkjx
⋆
kj[i1, i2] ≥ z⋆k[i1, i2]

for IKPk(ik|z⋆k[i1, i2]) and (4.4).

Proposition 4.1.
z†[i1, i2] ≥ (1− rϵ)z⋆[i1, i2] for all (i1, i2) ∈ N1 ×N2.

Proof:

z†[i1, i2] = ϕ(
∑
j∈N1

p1jx
†
1j[i1, i2],

∑
j∈N2

p2jx
†
2j[i1, i2])

≥ ϕ(H1[i1]
∑
j∈N1

q1j[i1]x
†
1j[i1, i2], H2[i2]

∑
j∈N2

q2j[i1]x
†
2j[i1, i2])

(from pkj ≥ Hk[ik]qkj[ik] and Assumption A5)

≥ ϕ(H1[i1]z
†
1[i1, i2], H2[i2]z

†
2[i1, i2])

(from
∑
j∈Nk

qkj[k1]x
†
kj[i1, i2] ≥ z†k[i1, i2] and Assumption A5)

≥ ϕ(H1[i1]
∑
j∈N1

q1j[i1]x
⋆
1j[i1, i2], H2[i2]

∑
j∈N2

q2j[i1]x
⋆
2j[i1, i2])

(since (z†1[i1, i2], z
†
2[i1, i2]) is optimal for Q′[i1, i2])

≥ ϕ((1− ϵ)z⋆1 [i1, i2], (1− ϵ)z⋆2 [i1, i2]) (from Lemma 4.1)

≥ (1− ϵ)rϕ(z⋆1 [i1, i2], z
⋆
2 [i1, i2]) (from Assumption A8)

≥ (1− rϵ)z⋆[i1, i2].

Analogous to (4.8), the optimal objective value z⋆ is the best on out of all z⋆[i1, i2]’s;
with (i⋆1, i

⋆
2) as a maximizer, this yields

z⋆ = z⋆[i⋆1, i
⋆
2] = max{z⋆[i1, i2]|i1 ∈ N1, i2 ∈ N2}. (4.9)

Then, we obtain the following.
Theorem 4.1. Solve XKSP Approx gives an FPTAS for XKSP.

Proof: We already proved that Solve XKSP Approx runs in polynomial time of n1, n2 and
1/ϵ. This combined with z† = z†[i†1, i

†
2] ≥ z†[i⋆1, i

⋆
2] ≥ (1 − rϵ)z⋆[i⋆1, i

⋆
2] = (1 − rϵ)z⋆, which

follows from Proposition 4.1, proves Theorem 4.1.

4.5. The case of K > 2

Although we focused on the case of two agents (K = 2), most of the results can be extended
to the case of K > 2 agents, provided that K is an externally given, fixed number. XKSP
with K ≥ 2 is solved by solving

XKSP′ : Maximize ϕ(z1, z2, . . . , zK)

subject to w⋆
1(z1) + w⋆

2(z2) + · · ·+ w⋆
K(zK) ≤ C,

0 ≤ zk ≤ Ūk, k = 1, 2, . . . , K.

This can be solved in O(n1Ū1+n2Ū2+ · · ·+nKŪK) time to compute weight functions w⋆
k(zk)

in O(Ū1Ū2 · · · ŪK) time to find the optimal (z⋆1 , z
⋆
2 , . . . , z

⋆
K) that maximizes ϕ(z1, z2, . . . , zK).
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Thus, we have a O(n1Ū1 + n2Ū2 + · · ·+ nKŪK + Ū1Ū2 · · · ŪK) time pseudo-polynomial time
algorithm.

Solve XKSP Approx can be extended to the K > 2 case, as well. We decompose the
problem into subproblems P [i1, i2, . . . , iK ], and through (4.5)-(4.7) introduce the scaled sub-
problem Q[i1, i2, . . . , iK ]. Weight functions w†

k(z|ik) can be computed in O((n4
1 + n4

2 + · · ·+
n4
K)/ϵ) time, and the approximate value z†[i1, i2, . . . , iK ] is obtained in Ū1[i1]Ū2[i2] · · · ŪK [iK ]

= O((n3
1/ϵ)(n

3
2/ϵ) · · · (n3

K/ϵ)) time. Thus, in total, we have a FPTAS that runs in O((n4
1 +

n4
2 + · · · + n4

K)/ϵ + n3
1n

3
2 · · ·n3

K/ϵ
K) time. Thus, the algorithm is an FPTAS for XKSP,

provided that K is an externally given, fixed number.

5. Conclusion

In this article, we formulated the XKSP as a family of problems, including KSP, MKSP, and
QKSP. We developed a DP-based algorithm to solve this family of problems to optimality
in a unified way, and proved that this problem is NP-hard in the weak sense. Based on the
DP-based algorithm, we also constructed an algorithm to solve the problem approximately
in polynomial time by decomposing it into a series of subproblems and by introducing scaling
in the DP computation of the subproblems. The algorithm was proven to give an FPTAS
to the XKSP. In most parts of the paper, the algorithm was described for the case of two
agents (K = 2), but it can be extended to the case of K > 2, if K is an externally given,
fixed number. For KSP withK = 2 agents, we shall give a simpler approximation algorithm,
which is proven to be a PTAS, in the Appendix.

To our knowledge, this paper is the first to explore approximation algorithms for KSP
and its extensions from a theoretical FPTAS/PTAS point of view. We highlight the following
prospective future research issues.
- Improving the time/space complexity of Solve XKSP Approx. This may be possible by
improvements in the FPTAS for KP based on [8, 9, 12], etc.

- Developing a PTAS for KSP with K > 2, or extending PTAS to XKSP in general, and
at least to the multiplicative/quadratic KSP with K = 2 or more.

- Developing an approximation algorithm that runs in polynomial time of K may be a
worthwhile challenge.

Acknowledgments The authors would like to thank the anonymous referees and the Editor
of this journal for their helpful remarks and suggestions on our manuscript.

Appendix: PTAS for KSP with K = 2

We develop a greedy algorithm for the limited case of KSP with two agents and prove
that it is a PTAS. Throughout the Appendix, assumptions A1-A3 are maintained, while A4

is replaced with the following.
A9: Nk is numbered in non-increasing order of the profit per weight, i.e.,

pk1/wk1 ≥ pk2/wk2 . . . ≥ pknk
/wknk

, k = 1, 2.

We consider a slightly extended problem

KSP (z10, z20, c̄) : Maximize min(z10 +
∑
j∈N1

p1jx1j, z20 +
∑
j∈N2

p2jx2j)

subject to
∑
j∈N1

w1jx1j +
∑
j∈N2

w2jx2j ≤ c̄, xkj ∈ {0, 1},
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12 S. Kataoka & T. Yamada

where z10 and z20 are ‘fixed’ scores given a priori to each group, and KSP (0, 0, C) is the
original KSP.

We then introduce the knapsack problem

KPk(zk0, c) : Maximize zk0 +
∑
j∈Nk

pkjxkj

subject to
∑
j∈Nk

wkjxkj ≤ c, xkj ∈ {0, 1}.

By KP k(zk0, c), we denote the continuous relaxation of this problem, where 0-1 constraint
xkj ∈ {0, 1} is replaced with 0 ≤ xkj ≤ 1. The optimal objective value of KP k(zk0, c)
is denoted z̄k(zk0, c), and w̄kj :=

∑
1≤i≤j wki (p̄kj := zk0 +

∑
1≤i≤j pki, resp.) is the accu-

mulated weight (value, resp.) of items in Nk. Due to A9, z̄k(zk0, c) is a piecewise linear,
concave, and monotonically increasing function of c, which is obtained by connecting points
(w̄k0, p̄k0), (w̄k1, p̄k1), (w̄k2, p̄k2), . . . , (w̄knk

, p̄knk
).

If z̄1(z10, c̄) ≥ z20 and z̄2(z20, c̄) ≥ z10, then z̄1(z10, c) = z̄2(z20, c̄ − c) has a unique
solution, say ĉ, and the corresponding value ẑ := z̄1(z10, ĉ). This gives an upper bound
to KSP (z10, z20, c̄), since this is the optimal objective value for the continuous relaxation
of the problem. Thus, for the optimal objective value z⋆(z10, z20, c̄) of KSP (z10, z20, c̄), we
have

z⋆(z10, z20, c̄) ≤ ẑ.

Let s ∈ N1 be the item satisfying w̄1,s−1 ≤ ĉ < w̄1s. Such an item is said to be critical
in N1. Similarly, the critical item t in N2 satisfies w̄2,t−1 ≤ C − ĉ < w̄2t. Then,

z(z10, z20, c̄) := min(p̄1,s−1, p̄2,t−1)

gives a lower bound toKSP (z10, z20, c̄), and S(z10, z20, c̄) := {j ∈ N1|j < s}∪{j ∈ N2|j < t}
is a feasible solution to this problem. Furthermore, since p̄1s := p̄1,s−1 + p1s ≥ ẑ and
p̄2t := p̄2,t−1 + p2t ≥ ẑ, both of these give upper bounds to KSP (z10, z20, c̄). We take

z̄(z10, z20, c̄) :=

{
p̄1s, if p̄1,s−1 ≤ p̄2,t−1,
p̄2t, otherwise

as the upper bound of KSP (z10, z20, c̄) to be used hereafter.
For an arbitrary subset Fk ⊆ Nk (k = 1, 2), we write wk(Fk) :=

∑
j∈Fk

wkj and pk(Fk) :=∑
j∈Fk

pkj to simplify the notation, and for a pair of subsets (F1, F2), we introduce the
following to solve KSP (approximately) with F1 ∪ F2 fixed a priori.

Procedure GREEDY(F1, F2)� �
- Put ck0 := wk(Fk) and zk0 := pk(Fk), k = 1, 2, C ′ := C − c10 − c20.
- With KSP (z10, z20, C

′), compute a pair of critical items (s, t), the lower bound
z(F1, F2) := z(z10, z20, C

′), and the corresponding feasible solution
S(F1, F2) := S(z10, z20, C

′).� �
The running time of this procedure is O(n1 + n2).

We now describe a PTAS for KSP. Let ϵ ∈ (0, 1) be a fixed constant and let h := ⌈1/ϵ⌉.
We first try to guess the most profitable set of items from each group and pack the rest
greedily.
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Algorithm Approx KSP� �
for each pair (F1, F2) satisfying Fk ⊆ Nk, |Fk| ≤ h, k = 1, 2 do

- Pack F1 and F2 into the knapsack.
- Remove from Nk \ Fk all items j satisfying pkj > pki, where

i := argmin{pkj|j ∈ Fk} is the least profitable item in Fk.
- With the sets of remaining items, run GREEDY(F1, F2) and obtain

the lower bound z(F1, F2), together with the feasible solution S(F1, F2).
endfor
Output the best solution from above, and stop.� �

Theorem A.1. Approx KSP gives a PTAS for KSP with K = 2.

Proof: (Complexity) There are n1Ch ·n2Ch < nh
1 ·nh

2 pairs of sets satisfying |F1| ≤ h, |F2| ≤ h,
and for each pair (F1, F2) we need O(n1 + n2) time. Accordingly, the total time complexity
is O((n1 + n2)n

h
1n

h
2) = O((n1 + n2)(n1n2)

⌈1/ϵ⌉).
(Accuracy) Let (O⋆

1, O
⋆
2) be an optimal solution of the original KSP ≡

KSP (0, 0, C) with the optimal objective value z⋆ := min{p(O⋆
1), p(O

⋆
2)}. Here, for k = 1, 2

we set Fk to the first hmost profitable items in O⋆
k if |O⋆

k| ≥ h, and we set Fk = O⋆
k otherwise.

Since Fk ⊆ O⋆
k, KSP is solved by solving KSP (p1(F1), p2(F2), C − w1(F1) − w2(F2)), and

thus z⋆(p1(F1), p2(F2), C−w1(F1)−w2(F2)) = z⋆. Let s and t be the critical items obtained
by running GREEDY(F1, F2). Under this setting, we consider the following cases.

(i) If |O⋆
1| < h and p̄2,t−1 ≥ p(O⋆

1).
In this case, O⋆

2 can be regarded as an optimal solution to KP2(0, C − w(F1)), and we
have p(O⋆

2) ≥ p̄2,t−1. Thus, we have p(O⋆
2) ≥ p(O⋆

1), which implies z⋆ = min{p(O⋆
1),

p(O⋆
2)} = p(O⋆

1). At the same time, z(F1, F2) = min{p(F1), p̄2,t−1} = p(F1) = p(O⋆
1).

We thus conclude z(F1, F2) = z⋆.
(ii) If |O⋆

2| < h and p̄1,s−1 ≥ p(F2).
By symmetry, we have z(F1, F2) = z⋆ as above.

(iii) If |O⋆
1| ≥ h and p̄1,s−1 ≤ p̄2,t−1.

In this case, after running GREEDY(F1, F2), we have p1j ≥ p1s for all j ∈ F1. Then,
if p1s > ϵz⋆, we obtain z⋆ ≥ z(F1, F2) = p̄1,s−1 ≥

∑
j∈F1

p1j ≥
∑

j∈F1
p1s > hϵz⋆ ≥ z⋆,

which is a contradiction. Accordingly, p1s ≤ ϵz⋆ and from z̄(z10, z20, C) = z(F1, F2) +
p1s ≥ z⋆, we conclude z(F1, F2) ≥ (1− ϵ)z⋆.

(iv) If |F2| ≥ h and p̄1,s−1 ≤ p̄2,t−1.
Again, by symmetry to (iii) we have z(F1, F2) ≥ (1− ϵ)z⋆.

Thus, in all cases, z(F1, F2) ≥ (1− ϵ)z⋆ holds, which completes the proof.
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