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Abstract The authors analyse a search game involving an immobile hider and a searcher in which play
takes place in discrete time on a network comprising a cycle together with a node 0 adjacent to a specified
set of nodes in the cycle. The hider chooses a node of the cycle. Unaware of the hider’s choice, the searcher
starts at the node 0 and, at each subsequent time instant, moves from the node he occupies to an adjacent
node and decides whether to search it. Play terminates when the searcher is at the node chosen by the
hider and searches there. The searcher incurs a cost of one in moving from a node to an adjacent one and
a search cost depending on whether or not the node is in the specified set. The searcher wants to minimize
the costs of finding the hider and the hider to maximize them.
We obtain upper bounds for the value of this game for the cases when the specified set has no adjacent
nodes and when it is an interval. We show that these upper bounds are the value of the game in a number
of cases.

Keywords: Game theory, two-person, cyclic network, ordering of search of nodes, search
and traveling costs, optimal strategy

1. Introduction

The problem of finding someone who does not want to be found is an age-old one. Nowa-
days variations of it have come into prominence and include, amongst others, searching for
arms and explosives hidden by terrorists, searching for drugs trafficked by cartels and, in
the biological realm, behaviour of animals hiding food for future consumption. Although
mathematical search games may not be able to give ready-made solutions to these problems,
they can be a useful tool when addressing them. A particularly interesting example of this
is detailed in Fokkink and Lindelauf [10] where the capture of Saddam Hussein is discussed.
They illustrate how combining information about various social networks can be used to
build a picture of likely hiding places so that the problem then becomes a search game.

The mathematical theory of search games is a rapidly expanding field with recent ap-
plications to security issues (see [5, 6, 16]) and biology (see [3, 17]). However there is still
no comprehensive theory for the more traditional problems and many interesting and chal-
lenging ones remain unsolved, even for uncomplicated networks such as the cycle network.
The earlier studies concentrated on games in which the hider can hide at any point of the
network and the searcher starts from a designated node with the searcher incurring only
travelling (time) costs. Details of this work can be found in the classic book of Alpern
and Gal [4] published in 2003; for a more recent update on search games in various spaces
including networks see Gal [11]. Even more recently Hohzaki [12] has produced a very com-
prehensive survey of search games. When the hider is constrained to hide at a node it is
usual to include an inspection or search cost so that the searcher has both travelling and
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search costs; problems of this type in which the searcher starts from a designated node are
analysed in Kikuta and Ruckle [15], Kikuta [13] and Kikuta [14]. More recently there have
been papers in which the searcher can choose the starting node (see Alpern, Baston and
Gal [1] and [2], Dagan and Gal [9], Baston and Kikuta [7] and Baston and Kikuta [8]); in
the first three of these papers the hider can hide at any point of the network whereas, in
the last two, the hider must hide at a node.

In this paper we investigate search games on a cyclic graph in which the hider must hide
at a node and the searcher incurs both travelling and search costs. In previous papers, the
searcher has either complete freedom to choose the node at which to start the search or has
to start at a designated node. However these two scenarios can be thought of as extreme
cases of the situation in which the searcher has a limited number of options concerning the
nodes at which a search can start and this is the scenario we investigate here. In general the
case when there are arbitrary search costs at the nodes is an extremely difficult one, even
when the distance between adjacent nodes is one. We therefore consider the situation in
which the travelling cost between adjacent nodes is one and the nodes at which the searcher
can start have one cost and the other nodes a separate cost. We show that, even for this
case, the analysis is complicated when the graph is a cycle.

We now describe our results for the game on a cycle graph with n nodes when the nodes
at which a searcher can start are denoted by S; we call a game of this type a broken wheel
search game. Let |S| be the number of nodes in S.

• An upper bound for the value of the game when S has no adjacent nodes is obtained
(Theorem 3.1); furthermore this upper bound is the value of the game for the cases when
|S| = 1 and when n = 2m and |S| = m (Theorem 3.2);

• A complete solution of the game is found for the case when S is an interval and searching
a node of S is more costly than searching a node not in S (Theorem 4.1);

• When S is an interval and the cost of searching a node not in S is more costly than the
cost of searching a node of S, an upper bound for the value of the game is given and,
when |S| = 2, this upper bound is the value of the game (Theorem 4.2).

The formulae for the upper bounds in the above cases differ markedly in form. Fur-
thermore our optimal searcher strategies for games when S has no adjacent nodes and our
optimal searcher strategies for games when S is an interval and the cost of searching a node
in S is more costly than searching a node not in S have different supports. This suggests
that it will be difficult to develop a comprehensive theory for broken wheel search games.

2. The Model and Some Notation

In this section we describe our model and create a formal mathematical model for it. In
addition we introduce some notation and prove two elementary propositions which are used
in the next section.

We first describe our model in general terms. A searcher wants to find a hider who is able
to hide at one of a known number of locations. The searcher has a base from which he can
move directly to some of the hider locations and the other locations have to be accessed via
them. Travel between locations incurs a cost. To discover the hider, the searcher needs to
be at the location where the hider is hiding and carry out a search there; this search involves
a cost which can depend on the particular location. The searcher wants to minimize the
expected cost of finding the hider and the hider to maximize it.

The particular model we consider here is one where the routes between the hider locations
can be represented by a cyclic graph and the travelling cost between adjacent nodes is one.
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Search Games on a Broken Wheel with Traveling and Search Costs 381

Together with the routes from the searcher’s base, the network can therefore be thought of
as a wheel with some of its spokes missing. Figure 1 represents the situation in which there
are seven hider locations and the searcher can move from his base B to all nodes of S, 1
and 5 directly. In future we will use 0 to represent the searcher’s base.

1

4

B

5

3 6

2 7

Figure 1: Network with S = {1, 5}

We now present our model formally.
Let N = {0, 1, 2, . . . , n}, S ⊆ N \ {0} with |S| ≥ 1 and G(N,S) denote the network with
node set N and edge set E given by

E = {(0, i) : i ∈ S} ∪ {(i, i+ 1) : 1 ≤ i ≤ n− 1} ∪ {(1, n)}.

The traveling cost between adjacent nodes is taken to be one and the shortest traveling
cost between two nodes x and y is denoted by d(x, y).

Put T = N \ (S ∪ {0}). A search cost c is defined on N \ {0} by

ci =

{
cS if i ∈ S
cT if i ∈ T

.

In relation to search and traveling costs we use the following quantities frequently

W = n+ C, and ϵ =
cS − cT
2W

, where C =
n∑

i=1

ci.

We define a zero-sum game Γ(N,S) on G(N,S) with two players called searcher and
hider. A (mixed) hider strategy is a probability distribution p on N \ {0} and a (pure)
searcher strategy a permutation ξ = (ξ(1), ξ(2), . . . , ξ(n)) on N \ {0} representing the order
in which the nodes are to be searched.

Let Ξ denote the set of all permutations on N \ {0}. For ξ ∈ Ξ, let

di(ξ) = d(ξ(i− 1), ξ(i)) where d1(ξ) = d(0, ξ(1)), (2.1)

Dj(ξ) =

j∑
i=1

di(ξ) and Cj(ξ) =

j∑
i=1

cξ(i). (2.2)

The payoff function f(p, ξ) to the hider is defined as

f(p, ξ) =
n∑

i=1

pξ(i)(Di(ξ) + Ci(ξ)). (2.3)
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When the hider uses a pure strategy j ∈ N \ {0} we write the payoff to the hider as f(j, ξ),
that is, f(j, ξ) = Dξ−1(j)(ξ) + Cξ−1(j)(ξ).

We now introduce notation which will be used extensively in future sections. Pure
searcher strategies which search a node and then traverse the cycle searching each node as
they reach it play an important part in the analysis. For each i ∈ S, we define four searcher
strategies

−→
i ,
←−
i , i→ and ←i by

−→
i = i, i+ 1, . . . , n, 1, . . . , i− 1

←−
i = i, i− 1, . . . , 1, n, . . . , i+ 1 (2.4)

i→ = i+ 1, i+ 2, . . . , n, 1, . . . , i ←i = i− 1, i− 2, . . . , 1, n, . . . , i.

Comments relating to these strategies will be given later (See the beginning of Section 3.2.1
and the beginning of Section 3). The last two strategies look unnatural, but they must be
understood in relation to search and traveling costs and strategies of the hider. Furthermore,
each of them is not used as a pure strategy, but they are in mixed strategies. The searcher

strategy which employs each of
−→
i and

←−
i with probability 1/2 is denoted by

←→
i and the

searcher strategy which employs each of i→ and ←i with probability 1/2 is denoted by ←i→.
The expected costs for the nodes when the searcher uses these strategies are given in the
following propositions which will be needed in the next section.

Proposition 1. Let i ∈ S, then

f(j,
←→
i ) =

{
1 + ci if j = i

(W + 2 + ci + cj)/2 if j ̸= i
. (2.5)

Proof. Let i ∈ S, then the searcher can move from 0 to i at a cost of one. If the hider

is hiding at node i, each of
−→
i and

←−
i has an expected travel cost of one and an expected

search cost of ci. Thus f(i,
←→
i ) = 1 + ci.

If the hider is hiding at node j ̸= i, both node i and node j are searched by both
−→
i and←−

i whereas every other node is searched by precisely one of them. Thus the expected search

cost is (C + ci+ cj)/2. If j > i, the travel cost for
−→
i is j+1− i and the travel cost for

←−
i is

i+n+1−j; if j < i, the travel cost for
−→
i is n+1+j−i and the travel cost for

←−
i is i−j+1.

Thus, in either case, the expected travel cost is (n+2)/2 and f(j,
←→
i ) = (W +2+ci+cj)/2.

Proposition 2. Let i ∈ S, then

f(j,← i→) =

{
W + 1 if j = i

(W + 2− ci + cj)/2 if j ̸= i
. (2.6)

Proof. If the hider is hiding at node i, each of i→ and ←i has an expected travel cost of n+1
and an expected search cost of C so f(i,← i→) = W + 1.

If the hider is hiding at node j ̸= i, node i is searched by neither i→ nor ←i, node j is
searched by both i→ and ←i while every other node is searched by precisely one of them.
Thus the expected search cost is (C−ci+cj)/2. The travel costs for i→ and ←i are the same as

those for
←−
i and

−→
i in Proposition 1 so f(j,← i→) = (C−ci+cj+n+2)/2 = (W+2−ci+cj)/2.
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Search Games on a Broken Wheel with Traveling and Search Costs 383

3. The Case when No Two Nodes of S Are Adjacent

It has been shown in Theorem 4 of [7] that, for the cycle graph when the searcher can choose
at which node to start, an optimal searcher strategy is to choose the node i (i = 1, . . . , n)

with an appropriate probability and then use
←→
i ; this is so even for general search costs

at the node. The situation is not quite so straightforward when the searcher must start at
a restricted number of nodes in the cycle graph. However the idea that, once a node has
been searched, the searcher should subsequently search every node at the first visit seems
to be a sound one. In the subsection 3.1 we obtain a theorem (Theorem 3.1) which gives
an upper bound for the value of the game Γ(N,S) when no two nodes of S are adjacent. In
Sections 3.2.1 and 3.2.2 we show that this upper bound is the value of the game when S is
a singleton and when n = 2m and |S| = m.

3.1. Upper bound for the value

Here we obtain a theorem (Theorem 3.1) which gives an upper bound for the value of the
game Γ(N,S) when no two nodes of S are adjacent.

Theorem 3.1. Suppose no two vertices of S are adjacent in G(N,S). By choosing a node

i of S at random and then using
←→
i with probability 1/2 + ϵ|S| and ←i→ with probability

1/2− ϵ|S|, the searcher can ensure that the expected cost of finding the hider does not exceed

V =
W + 2 + cT

2
+ |S|cSϵ. (3.1)

Proof. Put γ = 1/2 + ϵ|S| and δ = 1/2− ϵ|S|, then γ + δ = 1.

If cS ≥ cT , then 0 ≤ |S|(cS − cT ) < C < W so ϵ|S| < 1/2 and γ satisfies 1/2 ≤ γ < 1.

If cT > cS, then, because no two nodes of S are adjacent, |S| ≤ |T | and 0 < |S|(cT − cS) <
C < W so 0 > ϵ|S| > −1/2 and δ satisfies 1/2 < δ < 1.

Thus γ and δ are admissible as probabilities and we can take qi to be the searcher strategy

which uses
←→
i with probability γ and ←i→ with probability δ.

By Propositions 1 and 2, the expected cost f(j, qi) when the hider hides at j is given by

f(j, qi) =

{
γ(1 + ci) + δ(W + 1) if j = i

(W + 2 + cj)/2 + (γ − δ)ci/2 if j ̸= i
. (3.2)

Now let q be the searcher strategy that chooses a member of {qi : i ∈ S} at random.

Suppose j ∈ T, then cj = cT , and ci = cS for all i ∈ S. From (3.2), it follows that, for all
i ∈ S,

f(j, qi) =
W + 2 + cT

2
+ |S|cSϵ = V.

Thus f(j, q) = V.

Suppose j ∈ S, then, when i = j, the first line of (3.2) gives

f(j, qi) = γ(1 + cS) + δ(W + 1) =
W + 2 + cS

2
− |S|ϵ(W − cS)

=
W + 2 + cS

2
+
|S|(cT − cS)

2
+ ϵcS|S|

=
W + 2 + cS

2
+
|S|(cT − cS)

2
+ (γ − δ)cS/2.
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So, from (3.2), the expectation of a node in S when the searcher uses strategy q is

1

|S|
∑
i∈S

f(j, qi) =
W + 2 + cS

2
+

1

|S|

(
|S|(cT − cS)

2
+

(γ − δ)cS
2

)
+
|S| − 1

|S|

(
(γ − δ)cS

2

)
=
W + 2 + cS

2
+
cT − cS

2
+ ϵ|S|cS = V.

Thus f(i, q) = V for all i ∈ N \ {0} and the theorem is established.

3.2. Value of Γ(N,S) for special cases

In this subsection we show that this upper bound given in Theorem 3.1 is the value of the
game when S is a singleton and when n = 2m and |S| = m.

Theorem 3.2. Suppose either |S| = 1 or n = 2m and |S| = m. Then the value of the game
Γ(N,S) is V at (3.1).

An optimal strategy for the hider is to hide at a node of S with probability cS/W and at a
node of T with probability (n/|T |+ cT )/W.

An optimal strategy for the searcher is to choose a node j of S at random and then use
←→
j

with probability 1/2 + |S|ϵ and ←j→ with probability 1/2− |S|ϵ.
3.2.1. Proof of the theorem when |S| = 1

When |S| = 1, say S = {1}, a naive intuition might lead one to suspect that it would be
advantageous for the hider to hide at nodes far away from 1 with greater probability than
to hide at nodes near 1. However nodes near 1 can involve large costs if the searcher elects
to traverse the graph in the “wrong” direction. Theorem 3.2 shows that it is optimal for the
hider to hide with the same probability at each node of T. In order to do this, we introduce
a new function F defined for a hider strategy p and a searcher strategy ξ by

F (p, ξ) =
n∑

i=1

pξ(i)(∆i(ξ) + Ci(ξ)) where ∆i(ξ) =

{
i if ξ(1) ∈ S
i+ 1 if ξ(1) ∈ T

. (3.3)

Because F has a similar form to that of our payoff function f, F can be thought of as
the payoff function of a corresponding search game with search costs in which the travelling
cost between two nodes is one except for travel from the starting node 0 to a node in T
when the cost is two. It ia easy to see that ∆i(ξ) ≤ Di(ξ) so that

F (p, ξ) ≤ f(p, ξ) for all p and ξ. (3.4)

We will use the function F in the proofs of Theorems 4.1 and 4.2 as well as in the proof
of Theorem 3.2.

Proof of Theorem 3.2 for |S| = 1. Without loss of generality we may assume that S = {1}.
Let α denote the hider strategy given by

αi =

{
αS = cS/W if i ∈ S
αT = (n/(n− 1) + cT )/W if i ∈ T

. (3.5)

We will show that minξ∈Ξ F (α, ξ) = V where F and V are given by (3.3) and (3.1) respec-
tively.
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First suppose ξ(1) ∈ S, then αξ(1) = αS, αξ(i) = αT if i ̸= 1, ∆i(ξ) = i and Ci(ξ) =
cS + (i− 1)cT so that

F (α, ξ) = 1 + cS + αT (1 + cT + · · ·+ (n− 1) + (n− 1)cT )

= 1 + cS + αT (1 + cT )n(n− 1)/2 = 1 + cS +
(n+ (n− 1)cT )n(1 + cT )

2W

= 1 + cS +
(W − cS)(W − cS + cT )

2W
=

2 +W + cT
2

+ cSϵ = V.

Thus

F (α, ξ) = V if ξ ∈ Ξ with ξ(1) ∈ S. (3.6)

Now suppose ξ(j) ∈ S with 2 ≤ j < n then αξ(j) = αS and αξ(i) = αT for i ̸= j. Define
θ ∈ Ξ by θ(j + 1) = ξ(j), θ(j) = ξ(j + 1) and θ(i) = ξ(i) otherwise, then

F (α, ξ)− F (α, θ) = αS(1 + j + Cj(ξ)) + αT (2 + j + Cj+1(ξ))

− αT (1 + j + Cj(θ))− αS(2 + j + Cj+1(θ))

= αT (1 + cS)− αS(1 + cT ) =
(n/(n− 1) + cT )(1 + cS)− cS(1 + cT )

W
> 0.

By repeating the argument an appropriate number of times, it follows that

min{F (α, ξ) : ξ ∈ Ξ and ξ(1) ∈ T} = F (α, ϕ) (3.7)

where ϕ(n) ∈ S and ϕ(i) ∈ T for i < n. We then have, using (n− 1)αT = 1− αS,

F (α, ϕ) = 1 + αT (1 + cT )n(n− 1)/2 + αS(n+ cS + (n− 1)cT )

= 1 + (1− αS)n(1 + cT )/2 + αSW = 1 + (1− αS)(W + cT − cS)/2 + αSW

=
(2 +W + cT − cS)

2
+
αSW

2
+
αS(cS − cT )

2
=

(2 +W + cT )

2
+ cSϵ = V.

Thus, by (3.7),

F (α, ξ) ≥ V if ξ ∈ Ξ with ξ(1) ∈ T. (3.8)

Hence, by (3.6) and (3.8), F (α, ξ) ≥ V for all ξ ∈ Ξ.

By (3.4) we therefore have f(α, ξ) ≥ V for all ξ ∈ Ξ. Thus the hider can ensure a cost
of at least V by using the strategy α. However Theorem 3.1 ensures that the searcher can
restrict the cost to at most V by choosing

←→
1 with probability (W + cS − cT )/2W and

←1→ with probability (W + cT − cS)/2W. Thus the value of the game is V and the optimal
strategies for the players are as stated in the theorem. □
3.2.2. Proof of the theorem when n = 2m and |S| = m

The case analysed in the previous section is the one for which S contains the least possible
number of nodes because |S| ≥ 1. In this section a case when S contains the greatest number
of nodes consistent with it having no two nodes adjacent is investigated. In Section 3.2.1
we introduced the function F which had a similar form to that of our payoff function f
and this enabled us to prove that the hider strategy in Theorem 3.2 is optimal. However a
more complicated function than F is needed to prove the optimality of the hider strategy
in Theorem 3.2. We define a function H as follows:
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Given ξ ∈ Ξ, let υ1(ξ) = 1 if ξ(1) ∈ S and υ1(ξ) = 2 if ξ(1) ∈ T,

υi(ξ) =

{
2 if ξ(i− 1) and ξ(i) are both in S or both in T

1 otherwise
for i > 1,

and Υj(ξ) =
∑j

i=1 υi(ξ).

For a hider strategy p and a searcher strategy ξ define H(p, ξ) by

H(p, ξ) =
n∑

i=1

pξ(i)(Υi(ξ) + Ci(ξ)). (3.9)

Proof of Theorem 3.2 for n = 2m and |S| = m. Because S = {1, 3, 5, . . . , 2m − 1}, Di(ξ)
given by (2.2) satisfies Υi(ξ) ≤ Di(ξ) for all ξ ∈ Ξ and all i. Thus, for all hider strategies p
and ξ ∈ Ξ,

H(p, ξ) ≤ f(p, ξ). (3.10)

Let α denote the hider strategy given by

αi =

{
αS = cS/W if i ∈ S
αT = (2 + cT )/W if i ∈ T

. (3.11)

We will show that L = minξ∈ΞH(α, ξ) equals V where H and V are given by (3.9) and (3.1)
respectively. Let Π = {ξ ∈ Ξ : H(α, ξ) = L}. We have the next lemma, the proof of which
is given in Appendix (I).

Lemma 3.1. Permutations arising from
−→
1 and from 1→ are in Π.

Now

H(α,
−→
1 ) = αS(1 + cS + (3 + 2cS + cT ) + · · ·+ 2m− 1 +mcS + (m− 1)cT )

+ αT (2 + cS + cT + (4 + 2cS + 2cT ) + · · ·+ 2m+mcS +mcT )

= mαS(1 + cS) + (αS + αT )(W/m)(1 + 2 + · · ·+m− 1) + αTW

=
mcS(1 + cS)

W
+
W (m− 1)

2m
+ 2 + cT =

mcS(1 + cS)

W
+
W

2
− 2 + cS + cT

2
+ 2 + cT

=
mcS(1 + cS)

W
+
W + 2 + cT

2
− cS

2
=
W + 2 + cT

2
+mcSϵ = V.

Comparing the costs of nodes in H(α, 1→) with the costs of the corresponding nodes in

H(α,
−→
1 ), each node other than node 1 is cS less costly whereas node 1 is W + 1 − 1 − cS

more costly. Thus

H(α, 1→)−H(α,
−→
1 ) = αS(W −mcS)−mαT cS = αS(W −mcS −m(2 + cT )) = 0.

Thus L = V and, by (3.10), f(α, ξ) ≥ V for all ξ ∈ Ξ. Thus the hider can ensure a cost of at
least V by using the strategy α. However Theorem 3.1 ensures that the searcher can restrict
the cost to at most V by choosing

←→
1 with probability 1/2 +mϵ and ←1→ with probability

1/2−mϵ. Thus the value of the game is V and the optimal strategies for the players are as
stated in the theorem. □
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4. The Case when S Is an Interval

In the case when no two nodes in S are adjacent, we have seen that the searcher has a strategy
which guarantees an expected cost of at most V̄ given by (3.1) and which is optimal in at
least two cases. The support of this strategy is the same irrespective of whether cS > cT
or cS < cT . This does not appear to be the case when S does have adjacent nodes. In this
section we obtain an expression (vint) for the value of Γ(N,S) when S is an interval and
cS ≥ cT . We also obtain an upper bound for the game when cS < cT and show that this
upper bound is the value of the game when S comprises two adjacent nodes.
Theorem 4.1. Suppose the nodes of S comprise an interval with |S| ≥ 2 and cS ≥ cT , then
the value of Γ(N,S) is

vint =
W + 1 + cT

2
+ |S|(1 + cS)ϵ. (4.1)

Assuming the interval is [1, k], an optimal strategy for the searcher is to use each of
−→
k and

←−−−
k − 1 with probability 1/2− ϵ and each of

−→
1 and

←−
k with probability ϵ.

An optimal strategy for the hider is to hide at each node of S with probability (1 + cS)/W
and at each node of T with probability (1 + cT )/W.

Proof. We first show that the searcher can make the expected cost equal to vint. Let G1

denote the searcher strategy which uses each of
−→
k and

←−−−
k − 1 with probability 1/2.

If the hider hides at node i, the expected cost for G1 is

n+ 1 + C + ci
2

=
W + 1 + ci

2
.

Let G2 denote the searcher strategy which uses each of
−→
1 and

←−
k with probability 1/2.

If the hider hides at a node of S, the expected cost for G2 is

(k + 1)(1 + cS)

2
.

If the hider hides at a node of T, the expected cost for these nodes is

n+ k + 1 + C + cT + kcS
2

=
W + k(1 + cS) + 1 + cT

2
.

Let G∗ denote the searcher strategy which employs G1 with probability 1− 2ϵ and G2 with
probability 2ϵ.
If the hider hides at a node of S, the expected cost for G∗ is

W + 1 + cS
2

− ϵ[W − k(1 + cS)] =
W + 1 + cT

2
+ k(1 + cS)ϵ = vint.

If the hider hides at a node of T, the expected cost for G∗ is

W + 1 + cT
2

+ ϵ[k(1 + cS)] = vint.

Thus G∗ restricts the hider to (4.1).
We now show that the hider can ensure that the expected cost is at least vint. Put

αi =

{
αS = (1 + cS)/W if i ∈ S
αT = (1 + cT )/W if i ∈ T

(4.2)
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and let L = minξ∈Ξ F (α, ξ) where F is given by (3.3).
Let Π = {ξ ∈ Ξ : F (α, ξ) = L}. Suppose ϕ ∈ Π and there is a j with 1 < j < n satisfying
ϕ(j) ∈ T and ϕ(j + 1) ∈ S. Define ζ by ζ(j) = ϕ(j + 1), ζ(j + 1) = ϕ(j) and ζ(i) = ϕ(i)
otherwise. Because ζ(1) = ϕ(1), the corresponding terms in the sums for F (α, ϕ) and
F (α, ζ) are equal except possibly when i = j or j + 1. Hence, putting υ = υ1(ϕ) = υ1(ξ),

F (α, ϕ)− F (α, ζ) = αT (j − 1 + υ + Cj(ϕ)) + αS(j + υ + Cj+1(ϕ))

− αS(j − 1 + υ + Cj(ζ))− αT (j + υ + Cj+1(ζ))

= αS(1 + cT )− αT (1 + cS) = 0.

Because F (α, ϕ) = F (α, ζ), given any ξ ∈ Ξ and i with 1 < i < n, ξ(i) ∈ T, ξ(i + 1) ∈ S
we can interchange the elements ξ(i) and ξ(i+1) and leave the value of F unchanged. The
analysis therefore divides into two cases depending on whether ξ(1) ∈ S or ξ(1) ∈ T.

If ξ(1) ∈ S, all the S members of ξ can be brought forward so that F (α, ξ) = F (α, θ)
where θ(i) ∈ S for i = 1, . . . , k and θ(i) ∈ T otherwise.
Now

W = n+ C =
(n+ C)2

n+ C
=

(k(1 + cS) + (n− k)(1 + cT ))
2

W

= αSk
2(1 + cS) + 2k(1 + cS)(n− k)αT + αT (n− k)2(1 + cT )

and

F (α, θ) = αS
k(k + 1)

2
(1 + cS) + αTk(1 + cS)(n− k) + αT

(n− k)(n− k + 1)

2
(1 + cT )

so

F (α, θ) =
W

2
+
αS(k + kcS)

2
+
αT (n+ C − k − kcS)

2
=
W + 1 + cT

2
+ k(1 + cS)ϵ = vint.

If ξ(1) ∈ T, all the T members of ξ can be brought forward so that F (α, ξ) = F (α, µ)
where µ(i) ∈ T for i = 1, . . . , n− k and µ(i) ∈ S otherwise. Now

F (α, µ) = 1 + αT
(n− k)(n− k + 1)

2
(1 + cT ) + αS(n− k)(1 + cT )k + αS

k(k + 1)

2
(1 + cS)

= 1 + F (α, θ).

Hence, for ζ ∈ Ξ, by (3.3)

f(α, ζ) ≥ F (α, ζ) ≥ min{F (α, θ), F (α, µ)} = F (α, θ) = vint

which is equivalent to (4.1). Thus the hider can ensure an expected cost of at least (4.1) by
using the strategy α given by (4.2) and the proof is complete.

Theorem 4.2. Suppose the nodes of S comprise the interval [1, k] where k ≥ 2 and cT ≥ cS.

By using the strategy which chooses each of
−→
k and

←−−−
k − 1 with probability 1/2− ϵ and each

of ←1 and k→ with probability ϵ, the searcher can make the expected cost in Γ(N,S) equal
to

VINT =
W + 1 + cT

2
− [2− k(1 + cS)]ϵ. (4.3)

When k = 2, VINT is the value of the game and an optimal hider strategy is α where
αi = cS/W if i ∈ S and αi = (n/(n− 2) + cT )/W if i ∈ T.
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Proof. (Outline) We first show that the searcher can make the expected cost equal to (4.3).

Let G1 denote the searcher strategy which uses each of
−→
k and

←−−−
k − 1 with probability 1/2.

Let G2 denote the searcher strategy which uses each of ←1 and k→ with probability 1/2.
Let G∗ denote the searcher strategy which employs G1 with probability 1 + 2ϵ and G2 with
probability −2ϵ. Then G∗ restricts the hider to VINT given by (4.3).

Next we prove that the value of the game is given by VINT when k = 2. Let α be
the strategy for the hider given in the statement of the theorem. We show that L =
minξ∈Ξ F (α, ξ) equals VINT where F is given by (3.3). By a similar argument to that of

Theorem 4.1 we arrive at the fact that L = F (α, 2→) = F (α,
←−
1 ) = f(α, 2→) = f(α,

←−
1 ). By

symmetry f(α,← 1) = f(α, 2→) and f(α,
−→
2 ) = f(α,

←−
1 ). These imply f(α,G∗) = L when

k = 2. From the first part of the proof, we see that VINT = f(α,G∗). Thus, by (3.3),
f(α, ξ) ≥ F (α, ξ) ≥ L = VINT for all ξ ∈ Ξ so the hider can ensure an expected cost of at
least VINT by using the strategy α. Hence, when k = 2 the value of the game is VINT .

5. Discussion of Results

At first sight games on a broken wheel may give the impression that they are fairly straight-
forward to solve. However we have shown that the expression for the value of a game can
depend on whether S has no adjacent nodes or whether S is an interval. Although the
supports of our optimal searcher strategies are all contained in the set of pure strategies
which, once a node is searched, traverse the cycle searching a node the first time it is visited
thereafter, there are qualitative differences between them. In the games when S has no
adjacent nodes, the supports of our optimal searcher strategies always contain a strategy
which begins by searching a node in S irrespective of whether cT > cS or cS > cT . This
is not the case when S is an interval and cS > cT ; in this case the support of our optimal
searcher strategies contain only strategies which first search a node of S.

The functions F and H introduced in Sections 3.2 and 3.2.2 meant effectively that, in
order to prove that our hider strategies were optimal, it was sufficient to consider a much
reduced searcher strategy space. This process is capable of further development and we
have used a modification of it to obtain the values of some particular broken wheel games
not mentioned in the paper. However to develop a comprehensive theory for broken wheel
games seems difficult.
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Appendix
(I) Proof of Lemma 3.1

Suppose ϕ ∈ Π and there is an i such that ϕ(i) and ϕ(i + 1) are both in S or both
in T. Let j be the least such i and ϕ(j) ∈ X where X ∈ {S, T}. Thus, if i ≤ j, one of
ϕ(i− 1) and ϕ(i) is in S and the other is in T. Because |S| = |T |, this means that there is
an i > j + 1 such that ϕ(i) /∈ X; let k be the least such i. Define ξ ∈ Ξ by ξ(k − 1) = ϕ(k),
ξ(k) = ϕ(k − 1) and ξ(i) = ϕ(i) otherwise. It is easily seen that

υi(ξ) = υi(ϕ) for i /∈ {k − 1, k, k + 1},

Υk+1(ξ) =

{
Υk+1(ϕ) if ϕ(k + 1) ∈ X
Υk+1(ϕ)− 2 if ϕ(k + 1) /∈ X

so Υi(ξ) ≤ Υi(ϕ) for i ≥ k + 1,

cξ(i) = cϕ(i) and αξ(i) = αϕ(i) if i /∈ {k − 1, k}.
Putting Yi(ξ) = αξ(i)(Υi(ξ) + Ci(ξ)), we have

Yk−1(ξ) = αξ(k−1)(Υk−1(ξ)+Ck−1(ξ)) = αϕ(k)(Υk(ϕ)−2+Ck(ϕ)−cϕ(k−1)) = Yk(ϕ)−αϕ(k)(2+cϕ(k−1))
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Yk(ξ) = αϕ(k−1)(Υk−1(ϕ) + Ck−1(ϕ) + cϕ(k)) = Yk−1(ϕ) + αϕ(k−1)cϕ(k).

Hence H(α, ϕ)−H(α, ξ) ≥ αϕ(k)(2 + ck−1(ϕ))− αϕ(k−1)cϕ(k).
When ϕ(k) ∈ S, we have H(α, ϕ)−H(α, ξ) ≥ αS(2 + cT )− αT cS = 0 by (3.11).
When ϕ(k) ∈ T, we have H(α, ϕ) − H(α, ξ) ≥ αT (2 + cS) − αScT = ((2 + cT )(2 + cS) −
cScT )/W > 0.
Thus H(α, ϕ) ≥ H(α, ξ) so ξ ∈ Π.

The argument can be repeated to give a θ ∈ Π such that either θ(i) and θ(i+ 1) are in
different sets for all i or the first i such that θ(i) and θ(i + 1) are in the same set satisfies
i > j. We write this i as i = j(θ). But now the same reasoning gives the existence of a
ψ ∈ Π such that either ψ(i) and ψ(i+1) are in different sets for all i or the first i such that
ψ(i) and ψ(i + 1) are in the same set satisfies i = j(ψ) > j(θ). Continuing this process it
must terminate giving the existence of an ω ∈ Π for which ω(i) and ω(i+1) are in different
sets for all i.
Because |S| = |T |, there are only two possibilities for ω; one arising from

−→
1 and the other

from 1→.
(II) Proof of Theorem 4.2

We first show that the searcher can make the expected cost equal to (4.3). Let G1 denote

the searcher strategy which uses each of
−→
k and

←−−−
k − 1 with probability 1/2.

If the hider hides at node i, the expected cost for G1 is

n+ 1 + C + ci
2

=
W + 1 + ci

2
.

Let G2 denote the searcher strategy which uses each of ←1 and k→ with probability 1/2.
If the hider hides at a node of S, the expected cost for G2 is

2n+ 2− (k − 1) + 2(n− k)cT + (k + 1)cS
2

=
2W + 2− (k − 1)(1 + cS)

2
.

If the hider hides at a node of T, the expected cost for these nodes is

n− k + 3 + (n− k + 1)cT
2

=
W + 3 + cT − k(1 + cS)

2
.

Let G∗ denote the searcher strategy which employs G1 with probability 1 + 2ϵ and G2 with
probability −2ϵ.
If the hider hides at a node of S, the expected cost for G∗ is

W + 1 + cS
2

− 2ϵ
2W + 2− (k − 1)(1 + cS)−W − (1 + cS)

2

=
W + 1 + cS

2
+
cT − cS

2
+
cT − cS
W

2− k(1 + cS)

2

=
W + 1 + cT

2
− [2− k(1 + cS)]ϵ

= VINT .

If the hider hides at a node of T, the expected cost for G∗ is

W + 1 + cT
2

+− 2ϵ
W + 3 + cT − k(1 + cS)−W − 1− cT

2

=
W + 1 + cT

2
− [2− k(1 + cS)]ϵ

= VINT .
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Thus G∗ restricts the hider to VINT given by (4.3).
We now prove that the value of the game is given by VINT when k = 2.
Put

αi =

{
αS = cS/W if i ∈ S
αT = (n/(n− 2) + cT )/W if i ∈ T

. (A.1)

We will show that L = minξ∈Ξ F (α, ξ) equals VINT where F and VINT are given by (3.3)
and (4.3) respectively. Let Π = {ξ ∈ Ξ : F (α, ξ) = L}.

Suppose ϕ ∈ Π and there is an j with 1 < j < n satisfying ϕ(j) ∈ S and ϕ(j + 1) ∈ T.
Define ζ by ζ(j) = ϕ(j+1), ζ(j+1) = ϕ(j) and ζ(i) = ϕ(i) otherwise. Because ζ(1) = ϕ(1),
the corresponding terms in the sums for F (α, ϕ) and F (α, ζ) are equal except possibly when
i = j or j + 1. Hence, putting υ = υ1(ϕ) = υ1(ζ),

F (α, ϕ)− F (α, ζ) = αS(j − 1 + υ + Cj(ϕ)) + αT (j + υ + Cj+1(ϕ))

− αT (j − 1 + υ + Cj(ζ))− αS(j + υ + Cj+1(ζ))

= αT (1 + cS)− αS(1 + cT ) =
n/(n− 2) + cT

W
(1 + cS)−

cS
W

(1 + cT ) > 0.

Because F (α, ϕ) > F (α, ζ), it follows that, if ξ ∈ Π, satisfies ξ(j) ∈ T for j > 1, then
either ξ(i) ∈ T for i = 1, . . . , n − 2 or ξ(1) ∈ S and ξ(i) ∈ T for i = 2, 3, . . . , n − 1. Thus

L = F (α, 2→) = f(α, 2→) or L = F (α,
←−
1 ) = f(α,

←−
1 )

Now

F (α, 2→) = αT

n−2∑
i=1

(1 + i+ icT ) + αS(2n+ 1 + 3cS + 2(n− 2)cT )

and

F (α,
←−
1 ) = αT

n−2∑
i=1

(1 + cS + i+ icT ) + αS(n+ 1 + 3cS + (n− 2)cT ).

so

F (α, 2→)−F (α,←−1 ) = −αT

n−2∑
i=1

cS+αS(n+(n−2)cT ) = −(n−2)αT cS+αS(n+(n−2)cT ) = 0

by (A.1). Thus L = F (α, 2→) = F (α,
←−
1 )

By symmetry f(α,← 1) = f(α, 2→) and f(α,
−→
2 ) = f(α,

←−
1 ). In the first part of the proof,

we showed that

VINT = (
1

2
+ ϵ)f(α,

−→
2 ) + (

1

2
+ ϵ)f(α,

←−
1 )− ϵf(α,← 1)− ϵf(α, 2→)

so
VINT = (1 + 2ϵ)f(α,

←−
1 )− 2ϵf(α, 2→) = (1− 2ϵ)L+ 2ϵL = L = min

ξ∈Ξ
F (α, ξ).

Thus, by (3.3), f(α, ξ) ≥ VINT for all ξ ∈ Ξ so the hider can ensure an expected cost of at
least VINT by using the strategy α. Hence, when k = 2 the value of the game is VINT .
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