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Abstract This paper discusses the error estimation of the last-column-block-augmented northwest-corner
truncation (LC-block-augmented truncation, for short) of block-structured Markov chains (BSMCs) in con-
tinuous time. We first derive upper bounds for the absolute difference between the time-averaged functionals
of a BSMC and its LC-block-augmented truncation, under the assumption that the BSMC satisfies the gen-
eral f -modulated drift condition. We then establish computable bounds for a special case where the BSMC
is exponentially ergodic. To derive such computable bounds for the general case, we propose a method
that reduces BSMCs to be exponentially ergodic. We also apply the obtained bounds to level-dependent
quasi-birth-and-death processes (LD-QBDs), and discuss the properties of the bounds through the numeri-
cal results on an M/M/s retrial queue, which is a representative example of LD-QBDs. Finally, we present
computable perturbation bounds for the stationary distribution vectors of BSMCs.

Keywords: Queue, block-structured Markov chain (BSMC), level-dependent quasi-
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1. Introduction

Let {(X(t), J(t)); t ≥ 0} denote a continuous-time regular-jump Markov chain with state
space F := ∪k∈Z+{k} × Sk (see, e.g., Brémaud [9, Chapter 8, Definition 2.5]), where

Sk = {0, 1, . . . , Sk} ⊂ Z+, Z+ = {0} ∪ N, N = {1, 2, 3, . . . }.

Let P (t) = (p(t)(k, i; ℓ, j))(k,i;ℓ,j)∈F2 denote the transition matrix function of {(X(t), J(t))},
i.e.,

p(t)(k, i; ℓ, j) = P(X(t) = ℓ, J(t) = j | X(0) = k, J(0) = i), t ≥ 0, (k, i; ℓ, j) ∈ F2,

where (k, i; ℓ, j) denotes ordered pair ((k, i), (ℓ, j)). Since {(X(t), J(t))} is a regular-jump
Markov chain, the transition matrix function P (t) is continuous, which implies that the
infinitesimal generator of {(X(t), J(t))} is well-defined (see, e.g., Brémaud [9, Chapter 8,
Theorems 2.1 and 3.4]). Thus, we define Q := (q(k, i; ℓ, j))(k,i;ℓ,j)∈F2 as the infinitesimal
generator of {(X(t), J(t))}, i.e.,

Q = lim
t↓0

P (t) − I

t
,

where I denotes the identity matrix with an appropriate order according to the context.

It should be noted (see, e.g., Brémaud [9, Chapter 8, Definition 2.4 and Theorem 2.2])
that the infinitesimal generator Q of the regular-jump Markov chain {(X(t), J(t))} is stable
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and conservative, i.e.,∑
(ℓ,j)∈F\{(k,i)}

q(k, i; ℓ, j) = −q(k, i; k, i) <∞, (k, i) ∈ F,

0 ≤ q(k, i; ℓ, j) <∞, (k, i; ℓ, j) ∈ F2, (k, i) ̸= (ℓ, j).

Note also that Q and its principal submatrices (obtained by deleting a set of rows and
columns with the same indices; e.g., the northwest-corner truncation QFn in (1.2) below)
belong to the set of q-matrices, i.e., diagonally dominant matrices with nonpositive diagonal
and nonnegative off-diagonal elements (see, e.g., Anderson [1, Section 2.1]). In some cases,
we refer to the q-matrix as the infinitesimal generator, especially when it is connected with
a specific Markov chain. As with the infinitesimal generator, any q-matrix is called stable if
its diagonal elements are all finite; and called conservative if its row sums are all equal to
zero.

We now assume that Q has the following block-structured form:

Q =



L0 L1 L2 L3 · · ·
L0 Q(0; 0) Q(0; 1) Q(0; 2) Q(0; 3) · · ·
L1 Q(1; 0) Q(1; 1) Q(1; 2) Q(1; 3) · · ·
L2 Q(2; 0) Q(2; 1) Q(2; 2) Q(2; 3) · · ·
L3 Q(3; 0) Q(3; 1) Q(3; 2) Q(3; 3)

. . .
...

...
...

...
. . . . . .

, (1.1)

where Lk = {k} × Sk ⊂ F for k ∈ Z+, which is called level k. Markov chains with block-
structured infinitesimal generators like Q in (1.1) are called block-structured Markov chains
(BSMCs). Typical examples of BSMCs are in block-Toeplitz-like and/or block-Hessenberg
forms (including block-tridiagonal form), such as level-independent GI/G/1-type Markov
chains (see, e.g., Grassmann and Heyman [21], Neuts [53]); level-dependent quasi-birth-
and-death processes (LD-QBDs) (see, e.g., Latouche and Ramaswami [34, Chapter 12]);
and level-dependent M/G/1- and GI/M/1-type Markov chains (see, e.g., Masuyama [44],
Masuyama and Takine [46]).

Throughout the paper, we assume that the BSMC {(X(t), J(t))} is ergodic, i.e., irre-
ducible and positive recurrent. It then follows that the BSMC {(X(t), J(t))} has the unique
stationary distribution vector (called stationary distribution or stationary probability vec-
tor), denoted by π := (π(ℓ, j))(ℓ,j)∈F (see, e.g., Anderson [1, Section 5.4, Theorem 4.5]). By
definition,

πQ = 0, πe = 1,

where e denotes a column vector of ones with an appropriate order according to the context.
Let π(k) = (π(k, i))i∈Sk for k ∈ Z+, which is the subvector of π corresponding to level k

and thus π = (π(0),π(1), . . . ). It is, in general, difficult to compute π = (π(0),π(1), . . . )
because we have to solve an infinite dimensional system of equations. As for the BSMCs with
the special structures mentioned above, we can establish the stochastically interpretable
expression of the stationary distribution vector by matrix analytic methods (Grassmann
and Heyman [21], Latouche and Ramaswami [34], Neuts [53], Zhao et al. [65]) and can also
obtain the analytical expression of the stationary distribution vector by continued fraction
approaches (Hanschke [23], Pearce [54]). However, the construction of such expressions
requires an infinite number of computational steps involving an infinite number of block
matrices that characterize those BSMCs.
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Augmented truncations of Markov chains 273

To solve this problem practically, we can truncate infinite iterations (e.g., infinite sums,
products and other algebraic operations) and/or truncate the infinite set of block matrices.
The former truncation includes the state-space truncation and is incorporated into many
algorithms in the literature (Baumann and Sandmann [7], Bright and Taylor [11], Grassmann
and Heyman [22], Masuyama [44], Phung-Duc et al. [55], Takine [60]). On the other hand,
the latter truncation can be achieved by the state-space truncation, banded approximation
(Zhao et al. [64]), spatial homogenization (Klimenok and Dudin [32], Liu et al. [36], Shin
and Pearce [59]), etc.

This paper considers the last-column-block-augmented northwest-corner truncation (LC-
block-augmented truncation, for short) of Q and thus the BSMC {(X(t), J(t))} (see Li and
Zhao [37], Masuyama [42, 43, 45]). The LC-block-augmented truncation is one of the state-
space truncations and is also a special case of block-augmented truncations (see, e.g., Li
and Zhao [37, Section 3] for the discrete-time case; and Masuyama [45, Definition 4.1] for
the continuous-time case). In fact, the LC-block-augmented truncation is an extension
of the last-column-augmented northwest-corner truncation (last-column-augmented trunca-
tion, for short; see, e.g., Gibson and Seneta [19]) to BSMCs.

The reason we focus on the LC-block-augmented truncation is twofold. The first reason
is that the LC-block-augmented truncation yields the best (in a certain sense) approximation
to the stationary distribution vector of block-monotone BSMCs among the approximations
by block-augmented truncations (see Li and Zhao [37, Theorem 3.6] and Masuyama [45,
Theorem 4.1]). Note here that block monotonicity is an extension of (classical) monotonicity
(see Daley [13]) to BSMCs (see, e.g., Masuyama [42, Definition 1.1] and Masuyama [45,
Definition 3.2] for the definition of block monotonicity). Note also that block monotonicity
appears in the queue length processes of such representative semi-Markovian queues as
BMAP/GI/1, BMAP/M/s and BMAP/M/∞ queues (see Masuyama [42, 43, 45]).

The second reason is that the LC-block-augmented truncation is related to queueing
models with finite capacity. The (possibly embedded) queue length processes in semi-
Markovian queues with finite capacity (such as MAP/PH/s/N and MAP/GI/1/N ; see,
e.g., Baiocchi [6], Miyazawa et al. [51]) can be considered the LC-block-augmented trun-
cations of the queue length processes in the corresponding semi-Markovian queues with
infinite capacity. Therefore, the estimation of the “difference” between those finite and
infinite queues is reduced to the error estimation of the LC-block-augmented truncation.

The above two reasons lead us to focus on the LC-block-augmented truncation. We now
outline the procedure to construct the LC-block-augmented truncation of Q. To this end,
we need some symbols and notation. Let | · | denote the cardinality of the set in the vertical
bars. Let Fn = ∪n

k=0Lk ⊂ F and Fn = F \ Fn = ∪∞
k=n+1Lk for n ∈ Z+. In addition, let

k∗ = inf{k ∈ N;Sℓ = Sk for all ℓ ≥ k}. Throughout the paper, unless otherwise stated, we
assume that k∗ = 1, i.e.,

Sk = S1 for all k ∈ N.

It should be noted that the case where k∗ ≥ 2 can be reduced to the case where k∗ = 1 by
relabeling ∪k∗−1

ℓ=0 Lℓ,Lk∗ ,Lk∗+1, . . . as levels 0, 1, 2, . . . , respectively.

Under the above assumption, we define QFn = (q(k, i; ℓ, j))(k,i;ℓ,j)∈(Fn)2 for n ∈ N, which
is the |Fn| × |Fn| northwest-corner truncation of Q, i.e.,
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QFn =


Q(0; 0) Q(0; 1) · · · Q(0;n− 1) Q(0;n)
Q(1; 0) Q(1; 1) · · · Q(1;n− 1) Q(1;n)

...
. . . . . .

...
Q(n− 1; 0) Q(n− 1; 1) · · · Q(n− 1;n− 1) Q(n− 1;n)
Q(n; 0) Q(n; 1) · · · Q(n;n− 1) Q(n;n)

 . (1.2)

Since the BSMC {(X(t), J(t))} is irreducible, QFn is not conservative. In order to form
a conservative q-matrix from QFn , we augment the last block-column of the |Fn| × |Fn|
northwest-corner truncation QFn by

∑∞
m=n+1Q(0;m)∑∞
m=n+1Q(1;m)

...∑∞
m=n+1 Q(n;m)

 .

We then extend the augmented northwest-corner truncation QFn to the order of the original
generatorQ in the manner described below, which enables us to perform algebraic operations
on the resulting q-matrix and original generator Q.

We now provide a formal definition of the LC-block-augmented truncation of the in-
finitesimal generator Q. To shorten expressions, we use the notation: x ∧ y = min(x, y).
For n ∈ N, let [n]Q := ([n]q(k, i; ℓ, j))(k,i;ℓ,j)∈F2 denote a block-structured conservative q-
matrix whose block matrices [n]Q(k; ℓ) := ([n]q(k, i; ℓ, j))(i,j)∈Sk∧1×Sℓ∧1

, k, ℓ ∈ Z+ are given
by

[n]Q(k; ℓ) =


Q(k; ℓ), if k ∈ Z+, 0 ≤ ℓ ≤ n− 1,

Q(k;n) +
∑

m>n,m ̸=k

Q(k;m), if k ∈ Z+, ℓ = n,

Q(k; k), if k = ℓ ≥ n+ 1,
O, otherwise.

(1.3)

We call [n]Q the last-column-block-augmented |Fn| × |Fn| northwest-corner truncation (LC-
block-augmented truncation, for short) of Q.

We now have the following result, whose proof is given in Appendix A.

Proposition 1.1 For n ∈ N, let {([n]X(t), [n]J(t)); t ≥ 0} denote a Markov chain with state
space F and infinitesimal generator [n]Q. If the original generator Q is irreducible, then (i)
the Markov chain {([n]X(t), [n]J(t))} (and thus [n]Q) has at least one and at most (S1 + 1)

closed communicating classes in Fn; and (ii) has no closed communicating classes in Fn.

Proposition 1.1 shows that the LC-block-augmented truncation [n]Q of the ergodic gen-
erator Q may have more than one stationary distribution vector. On the other hand, it
follows from Theorem 2.1 and Remark 2.2 of Hart and Tweedie [24] that

lim
n→∞

P([n]X(t) = ℓ, [n]J(t) = j | [n]X(0) = k, [n]J(t) = i)

= P(X(t) = ℓ, J(t) = j | X(0) = k, J(t) = i), t ≥ 0, (k, i; ℓ, j) ∈ F2.

From this fact and the ergodicity of Q, we can expect that, in many natural settings, [n]Q
has a single closed communicating class in Fn for all n’s larger than some finite n∗ ∈ N. Such
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cases are reduced to the special case where n∗ = 1 by relabeling ∪n∗−1
ℓ=0 Lℓ,Ln∗ ,Ln∗+1, . . . as

levels 0, 1, 2, . . . , respectively. Thus, for convenience, we assume that, for each n ∈ N, [n]Q
has a single closed communicating class in the sub-state space Fn, which implies that [n]Q
has the unique closed communicating class in the whole state space F because all the states
in Fn are transient due to Proposition 1.1 (ii). As a result, [n]Q has the unique stationary
distribution vector (see, e.g., Anderson [1, Section 5.4, Theorem 4.5]).

For n ∈ N, let [n]π := ([n]π(k, i))(k,i)∈F denote the unique stationary distribution vector
of [n]Q, which satisfies

[n]π [n]Q = 0, [n]πe = 1, n ∈ N. (1.4)

Since Fn is transient, it holds (see Masuyama [45, Lemma 4.2]) that

[n]π(k) = 0 for all k ≥ n+ 1 and n ∈ N, (1.5)

where [n]π(k) := ([n]π(k, i))i∈Sk∧1
is the subvector of [n]π corresponding to level k. It follows

from (1.5) that (1.4) is reduced to a finite dimensional system of equations and thus is
solvable numerically. Therefore, we consider [n]π to be a computable approximation to the
stationary distribution vector π of the original generator Q.

From a practical point of view, it is significant to estimate the error of the approximation

[n]π to π, and further, to derive computable error bounds for the approximation [n]π. Several
authors have derived computable error bounds for the approximation [n]π. Tweedie [63] and
Liu [38] considered the last-column-augmented truncation of discrete-time Markov chains
without block structure, which correspond to the case where Sk = 0 for all k ∈ Z+ in the
context of this paper. Tweedie [63] assumed that the original Markov chain is monotone
and geometrically ergodic, and derived a computable upper bound for the total variation
distance between the stationary distribution vectors of the original Markov chain and its
last-column-augmented truncation. Liu [38] presented a similar bound under the assumption
that the original Markov chain is monotone and polynomially ergodic. The monotonicity of
Markov chains is crucial to the derivation of the computable bounds presented in Tweedie
[63] and Liu [38].

Without the help of the monotonicity, Hervé and Ledoux [26] derived an error bound for
the stationary distribution vector of the last-column-augmented truncation of a discrete-
time Markov chain with geometric ergodicity. However, the computation of Hervé and
Ledoux [26]’s bound requires the second largest eigenvalue of the last-column-augmented
truncation and thus the bound is less computation-friendly than the bounds presented in
Tweedie [63] and Liu [38]. Masuyama [42, 43] extended the results in Tweedie [63] and
Liu [38] to discrete-time block-monotone BSMCs with geometric ergodicity and those with
subgeometric ergodicity, respectively. By the uniformization technique (see, e.g., Tijms [61,
Section 4.5.2]), the bounds presented in Masuyama [42, 43] are applicable to continuous-time
block-monotone BSMCs with bounded infinitesimal generators.

There have been some studies on the truncation of continuous-time Markov chains. Zeif-
man et al. [67, 69] studied the truncation of a weakly ergodic non-time-homogeneous birth-
and-death process with bounded transition rates (see also Zeifman and Korolev [66], Zeifman
et al. [68]). Hart and Tweedie [24] discussed the convergence of the stationary distribution
vectors of the augmented northwest-corner truncations of continuous-time Markov chains
with monotonicity or exponential ergodicity. Masuyama [45] presented computable upper
bounds for the total variation distance between the stationary distribution vectors of a
BSMC (with possibly unbounded transition rates) and its LC-block-augmented truncation,
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under the assumption that the BSMC is block-wise dominated by a Markov chain with block
monotonicity and exponential ergodicity.

In this paper, we do not assume either Q is bounded or block monotone. In addition, we
do not necessarily assume that Q has a specified ergodicity, such as exponential ergodicity
and polynomial ergodicity. Instead, we assume that Q satisfies the f -modulated drift condi-
tion (see Meyn and Tweedie [47, Equation (7)] and Meyn and Tweedie [49, Section 14.2.1]):

Condition 1.1 (f-modulated drift condition) There exist some b > 0, K ∈ Z+, col-
umn vectors v := (v(k, i))(k,i)∈F ≥ 0 and f := (f(k, i))(k,i)∈F ≥ e such that

Qv ≤ −f + b1FK
, (1.6)

where, for any set C ⊆ F, 1C := (1C(k, i))(k,i)∈F denotes a column vector whose (k, i)th
element 1C(k, i) is given by

1C(k, i) =

{
1, (k, i) ∈ C,
0, (k, i) ∈ F \ C.

Condition 1.1 is the basic condition of this paper. If f = cv for some c > 0, then
Condition 1.1 is reduced to the exponential drift condition (i.e., the drift condition for
exponential ergodicity; see Meyn and Tweedie [49, Theorem 20.3.2]). On the other hand,
if f(k, i) = φ(v(k, i)) for some nondecreasing differentiable concave function φ : [1,∞) →
(0,∞) with limt→∞ φ′(t) = 0, then Condition 1.1 is reduced to the subgeometric drift
condition (i.e., the drift condition for subgeometric ergodicity) presented in Douc et al. [15].

Under Condition 1.1, we study the estimate of the absolute difference between the time-
averaged functionals of the BSMC {(X(t), J(t)); t ≥ 0} and its LC-block-augmented trun-
cation. Let g := (g(k, i))(k,i)∈F denote a nonnegative column vector. It is known that if
πg <∞ then the time-average of the functional g(X(t), J(t)) is equal to πg with probabil-
ity one (see, e.g., Brémaud [9, Chapter 8, Theorem 6.2]), i.e.,

lim
T→∞

1

T

∫ T

0

g(X(t), J(t))dt = πg with probability one.

Note here that if

g⊤ =
(L0 L1 L2 L3 · · ·
0 e⊤ 2e⊤ 3e⊤ . . .

)
,

then πg is the mean of the stationary distribution vector.
The main contribution of this paper is to derive several bounds of the following types

under different technical conditions (together with Condition 1.1):

|π − [n]π| g ≤ πg + 1

2
E(n) for all n ∈ N and 0 ≤ g ≤ f , (1.7)

sup
0<g≤f

|π − [n]π| g
πg

≤ E(n) for all n ∈ N, (1.8)

where | · | denotes the vector (resp. matrix) obtained by taking the absolute values of the
elements of the vector (resp. matrix) in the vertical bars; and where the function E is
called the error decay function and may be different in different bounds. Note here that
|πg − [n]πg| ≤ |π − [n]π| g. Note also that (1.6) yields πg ≤ πf ≤ b for 0 ≤ g ≤ f . Thus,
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from (1.7) and (1.8), we obtain the bounds for the approximation [n]πg to the time-averaged
functional πg:

|πg − [n]πg| ≤
b+ 1

2
E(n) for all n ∈ N and 0 ≤ g ≤ f ,

sup
0<g≤f

|πg − [n]πg|
πg

≤ E(n) for all n ∈ N.

Furthermore, (1.7) (or (1.8)) leads to

|π − [n]π| e ≤ E(n), n ∈ N,

which is an upper bound for the total variation distance between π and [n]π.

We now remark that, as with this paper, Baumann and Sandmann [8] considered a
similar condition to Condition 1.1, under which they studied the truncation error of the
infinite sum in calculating the time-averaged functional πg. More specifically, they derived
an upper bound for the relative error of the truncated sum

∑
(k,i)∈C π(k, i)g(k, i) to the

time-averaged functional πg =
∑

(k,i)∈F π(k, i)g(k, i), where C ⊂ F is a finite set.

The rest of this paper is divided into four sections. In Section 2, we begin with two facts:
(i) π − [n]π can be expressed through the deviation matrix D := (d(k, i; ℓ, j))(k,i;ℓ,j)∈F2 of
the BSMC {(X(t), J(t))} (see (2.2) below); and (ii) the deviation matrix D is a solution
of a certain Poisson equation (see (2.1) below). By Dynkin’s formula (see, e.g., Meyn and
Tweedie [48]), we then derive an upper bound for |D| g under Condition 1.1, i.e., the f -
modulated drift condition. Furthermore, using the upper bound for |D| g, we present the
bounds of the two types (1.7) and (1.8) in Theorem 2.1 below, which are the foundation of
the subsequent results of this paper.

These fundamental bounds of the two types are characterized by an error decay function
that includes the implicit factors πv and [n]π. However, if we find two essentially different
solutions (b,K,v,f) and (b♯, K♯,v♯,f ♯) to Condition 1.1 such that limk→∞ v(k, i)/f ♯(k, i) =
0 for all i ∈ S1, then we can remove [n]π from the error decay function, which facilitates the
qualitative sensitivity analysis of the error decay function. On the other hand, the factor πv
cannot be computed but can be estimated from above when Q satisfies the exponential drift
condition. Indeed, if Condition 1.1 holds for f = cv ≥ e, then (1.6) yields πv < b/c. As a
result, we obtain a computable error decay function under the exponential drift condition.

In Section 3, we propose a method that reduces the generator Q satisfying Condition 1.1
to be exponentially ergodic. Combining the proposed method and the results in Section 2,
we can establish computable error decay functions under the general f -modulated drift
condition with some mild technical conditions. As far as we know, such a reduction to
exponential ergodicity has not been reported in the literature.

In Section 4, we consider LD-QBDs, which describe the queue length processes in var-
ious state-dependent queues with Markovian environments, such as M/M/s retrial queues
and their variants and generalizations (see, e.g., Breuer et al. [10], Dudin and Klimenok
[16], Phung-Duc et al. [56, 57]). The study of LD-QBDs and their related queueing models
has been a hot topic in queueing theory for the last couple of decades (for an extensive bibli-
ography, see Artalejo [3, 4], Artalejo and Gómez-Corral [5]). To demonstrate the usefulness
of our error bounds, we apply them to an M/M/s retrial queue and show some numerical
results. Furthermore, using the numerical results, we discuss the properties of our error
bounds.
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Finally, in Section 5, we consider the perturbation of the stationary distribution vector
π caused by that of the generator Q. The perturbation analysis of Markov chains is closely
related to the error estimation of the truncation approximation of Markov chains (see,
e.g., Hervé and Ledoux [26], Liu [40]). Many perturbation bounds have been shown for
the stationary distribution of (time-homogeneous) infinite-state Markov chains (Anisimov
[2], Heidergott et al. [25], Hervé and Ledoux [26], Kartashov [27, 28, 29], Liu [39, 40],
Mitrophanov [50], Mouhoubi and Aı̈ssani [52], Tweedie [62]); though these bounds require
specific conditions on ergodicity (such as uniform and exponential ergodicity) and/or include
parameters difficult to be identified or calculated (such as the stationary distribution, the
ergodic coefficient and other parameters associated with the convergence rate to the steady
state). On the other hand, we establish a computable perturbation bound under the general
f -modulated drift condition, by employing the technique used to derive the error bounds
for the LC-block-augmented truncation.

2. Error Bounds for LC-Block-Augmented Truncations

This section discusses the error estimation of the time-averaged functions of the LC-block-
augmented truncation [n]Q under Condition 1.1. To this end, we focus on the deviation
matrix of the Markov chain {(X(t), J(t))}. Using an upper bound associated with the
deviation matrix, we derive the fundamental bounds of the two types (1.7) and (1.8). Fur-
thermore, utilizing an additional condition on v and another solution to Condition 1.1, we
discuss the convergence and simplification of the error decay function of the fundamental
bounds. We then consider a special case where Q is an exponentially ergodic generator. In
this special case, we establish computable error decay functions and propose a procedure
for computing them.

2.1. General case

For convenience, we summarize all the assumptions made in Section 1, except for Condi-
tion 1.1.

Assumption 2.1 The stochastic process {(X(t), J(t))} is an ergodic regular-jump Markov
chain with infinitesimal generator Q given in (1.1). Furthermore, the LC-block-augmented
truncation [n]Q has the unique closed communicating class in Fn for each n ∈ N.

In addition to Assumption 2.1 and Condition 1.1, we assume πv < ∞. It then follows
that each element of

∫∞
0

|P (t) − eπ|dt is finite (see Meyn and Tweedie [47, Theorem 7]).
Based on this, we define D = (d(k, i; ℓ, j))(k,i;ℓ,j)∈F2 as the deviation matrix of the Markov
chain {(X(t), J(t))}, i.e.,

D =

∫ ∞

0

(
P (t) − eπ

)
dt.

It is known that the deviation matrix D is a solution to the following Poisson equation (see,
e.g., Coolen-Schrijner and van Doorn [12, Theorem 5.2]):

−QD = I − eπ with πD = O. (2.1)

It is also known (see, e.g., Heidergott et al. [25, Section 4.1, Equation (9)]) that

[n]π − π = [n]π
(
[n]Q−Q

)
D, n ∈ N. (2.2)

Therefore, we estimate [n]π − π through the deviation matrix D.
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For the estimation of the deviation matrix D, we introduce some symbols. For β > 0,
let Φ(β) = (ϕ(β)(k, i; ℓ, j))(k,i;ℓ,j)∈F2 denote a stochastic matrix such that

Φ(β) =

∫ ∞

0

βe−βtP (t)dt > O, (2.3)

where Φ(β) > O follows from the ergodicity of {(X(t), J(t))}. The positivity of Φ(β) implies
that any finite set C ⊂ F is a petite set of {(X(t), J(t))}. Indeed, for any finite set C ⊂ F,
let m

(β)
C denote a measure on the Borel σ-algebra B(F) of F such that

m
(β)
C (ℓ, j) := m

(β)
C ({(ℓ, j)}) = min

(k,i)∈C
ϕ(β)(k, i; ℓ, j) > 0, (ℓ, j) ∈ F.

It then follows that, for any finite set C ⊂ F,∑
(ℓ,j)∈A

ϕ(β)(k, i; ℓ, j) ≥ m
(β)
C (A), (k, i) ∈ C, A ∈ B(F), (2.4)

which shows that C is m
(β)
C -petite (see Meyn and Tweedie [49, Sections 5.5.2 and 20.3.3]).

We now define ğ := (ğ(k, i))(k,i)∈F as a column vector such that 0 ≤ |ğ| ≤ f . From (1.6),
we then have

π |ğ| ≤ πf ≤ b for all 0 ≤ |ğ| ≤ f . (2.5)

Thus, since πğ is finite, it follows from (2.1) that h := Dğ is a solution of the following
Poisson equation:

−Qh = ğ − (πğ)e with πh = 0. (2.6)

In addition, the boundedness and uniqueness of the solution h = Dğ are guaranteed by
Lemma 2.1 below.

Lemma 2.1 Suppose that Assumption 2.1 and Condition 1.1 are satisfied. If πv < ∞,
then, for some c0 ∈ (0,∞),

|Dğ| ≤ c0(v + e) for all 0 ≤ |ğ| ≤ f , (2.7)

and h = Dğ is the unique solution of the Poisson equation (2.6) having an additional
constraint π |h| <∞.

Proof. The bound (2.7) follows from Kontoyiannis and Meyn [33, Theorem 1.2]. Therefore,
we prove the uniqueness of the solution h = Dğ. From (2.7) and πv <∞, we have

π |h| = π |Dğ| ≤ c0(πv + 1) <∞ for all 0 ≤ |ğ| ≤ f . (2.8)

Thus, h = Dğ is a solution of the Poisson equation (2.6) having the constraint π |h| <∞.
We now assume that there exists another solution h′ of (2.6) such that π |h′| < ∞. It
follows from (2.8), π |h′| <∞ and Proposition 1.1 of Glynn and Meyn [20] that h′ = h+ ce
for some finite constant c. Furthermore, since πh′ = πh = 0, the constant c must be equal
to zero and therefore h′ = h. 2

The following lemma presents a more specific bound for the solution h = Dğ.
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Lemma 2.2 Suppose that Assumption 2.1 and Condition 1.1 are satisfied. If πv < ∞,
then

|Dğ| ≤ (|πğ|+ 1)

[
v +

(
πv +

2b

βϕ
(β)

K

)
e

]
for all 0 ≤ |ğ| ≤ f , (2.9)

where

ϕ
(β)

K = sup
(ℓ,j)∈F

m
(β)
FK

(ℓ, j) = sup
(ℓ,j)∈F

min
(k,i)∈FK

ϕ(β)(k, i; ℓ, j) > 0. (2.10)

Remark 2.1 The bound (2.9) includes the implicit factors |πğ|, πv and ϕ
(β)

K . Owing to
(2.5), the first one |πğ| is bounded from above by b, i.e., |πğ| ≤ b. Furthermore, if f = cv
for some c > 0 (i.e., Condition 1.1 is reduced the exponential drift condition), then the

second one πv is also bounded from above by b/c. As for the last one ϕ
(β)

K , we will later
discuss the estimation and computation of this factor in Section 2.2.

Proof of Lemma 2.2. For (ℓ, j) ∈ F, let h(ℓ,j) := (h(ℓ,j)(k, i))(k,i)∈F denote a column vector
such that

h(ℓ,j)(k, i) = E(k,i)

[∫ τ(ℓ,j)

0

ğ(X(t), J(t))dt

]
− (πğ)E(k,i)[τ(ℓ, j)], (k, i) ∈ F, (2.11)

where τ(ℓ, j) = inf{t ≥ 0 : (X(t), J(t)) = (ℓ, j)} for (ℓ, j) ∈ F and

E(k,i)[ · ] = E[ · | X(0) = k, J(0) = i], (k, i) ∈ F.

According to Lemma B.2, the column vector h(ℓ,j) is a solution of a Poisson equation of the
same type as (2.6):

−Qh(ℓ,j) = ğ − (πğ)e. (2.12)

We now suppose that π |h(ℓ,j)| < ∞. It then follows from (2.8) and Proposition 1.1 of
Glynn and Meyn [20] that there exists some finite constant c such that Dğ = h(ℓ,j) + ce.
Combining this with π(Dğ) = 0, we have c = −πh(ℓ,j) and thus

Dğ = h(ℓ,j) − (πh(ℓ,j))e for all (k, i) ∈ F,

which leads to
|Dğ| ≤ inf

(ℓ,j)∈F

{
|h(ℓ,j)|+ (π |h(ℓ,j)|)e

}
.

Therefore, to obtain the bound (2.9), it suffices to prove that

|h(ℓ,j)| ≤ (|πğ|+ 1)

(
v +

b

βm
(β)
FK

(ℓ, j)
e

)
, (ℓ, j) ∈ F, (2.13)

which implies that π |h(ℓ,j)| <∞ due to πv <∞.
In what follows, we derive the bound (2.13) by using the technique in the proof of

Theorem 2.2 of Glynn and Meyn [20]. It follows from (2.11), |ğ| ≤ f and f ≥ e that, for
(k, i; ℓ, j) ∈ F2,

|h(ℓ,j)(k, i)| ≤ E(k,i)

[∫ τ(ℓ,j)

0

f(X(t), J(t))dt

]
+ |πğ|E(k,i)[τ(ℓ, j)]

≤ (1 + |πğ|)E(k,i)

[∫ τ(ℓ,j)

0

f(X(t), J(t))dt

]
. (2.14)
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It also follows from (2.4) with C = FK and A = {(ℓ, j)} that

1FK
(k, i) ≤ ϕ(β)(k, i; ℓ, j)

m
(β)
FK

(ℓ, j)
, (k, i; ℓ, j) ∈ F2. (2.15)

Furthermore, using (2.15) and Lemma B.1 (replacing Y (t) with (X(t), J(t)); i with (k, i); τ
with τ(ℓ, j); and w with b1FK

), we obtain, for (k, i; ℓ, j) ∈ F2,

E(k,i)

[∫ τ(ℓ,j)

0

f(X(t), J(t))dt

]

≤ v(k, i) + bE(k,i)

[∫ τ(ℓ,j)

0

1FK
(X(t), J(t))dt

]

≤ v(k, i) +
b

m
(β)
FK

(ℓ, j)
E(k,i)

[∫ τ(ℓ,j)

0

ϕ(β)(X(t), J(t); ℓ, j)dt

]

= v(k, i) +
b

m
(β)
FK

(ℓ, j)

∫ ∞

0

βe−βuE(k,i)

[∫ τ(ℓ,j)

0

p(u)(X(t), J(t); ℓ, j)dt

]
du

= v(k, i) +
b

m
(β)
FK

(ℓ, j)

∫ ∞

0

βe−βuE(k,i)

[∫ τ(ℓ,j)

0

1{(ℓ,j)}(X(t+ u), J(t+ u))dt

]
du, (2.16)

where we use (2.3) in the second-to-last equality.
It is easy to see that

E(k,i)

[∫ τ(ℓ,j)

0

1{(ℓ,j)}(X(t+ u), J(t+ u))dt

∣∣∣∣∣ τ(ℓ, j) ≤ u

]
≤ u.

In addition, since τ(ℓ, j) is the first passage time to state (ℓ, j),

E(k,i)

[∫ τ(ℓ,j)

0

1{(ℓ,j)}(X(t+ u), J(t+ u))dt

∣∣∣∣∣ τ(ℓ, j) > u

]

= E(k,i)

[∫ τ(ℓ,j)

τ(ℓ,j)−u

1{(ℓ,j)}(X(t+ u), J(t+ u))dt

∣∣∣∣∣ τ(ℓ, j) > u

]
≤ u.

Therefore,

E(k,i)

[∫ τ(ℓ,j)

0

1{(ℓ,j)}(X(t+ u), J(t+ u))dt

]
≤ u, (k, i; ℓ, j) ∈ F2.

Applying this inequality to the right hand side of (2.16) yields

E(k,i)

[∫ τ(ℓ,j)

0

f(X(t), J(t))dt

]
≤ v(k, i) +

b

m
(β)
FK

(ℓ, j)

∫ ∞

0

uβe−βudu

= v(k, i) +
b

βm
(β)
FK

(ℓ, j)
, (k, i; ℓ, j) ∈ F2. (2.17)
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Furthermore, substituting (2.17) into (2.14) results in

|h(ℓ,j)| ≤ (|πğ|+ 1)

(
v +

b

βm
(β)
FK

(ℓ, j)
e

)
, (ℓ, j) ∈ F,

which shows that (2.13) holds. 2

From Lemma 2.2, we have a similar bound for |D|g with 0 ≤ g ≤ f .

Lemma 2.3 Suppose that Assumption 2.1 and Condition 1.1 are satisfied. If πv < ∞,
then

|D| g ≤ (πg + 1)

[
v +

(
πv +

2b

βϕ
(β)

K

)
e

]
for all 0 ≤ g ≤ f , (2.18)

where ϕ
(β)

K is given in (2.10).

Proof. Let d(k, i), (k, i) ∈ F, denote the (k, i)th row of D, i.e., d(k, i) = (d(k, i; ℓ, j))(ℓ,j)∈F.
Furthermore, let sgn( · ) denote the sign function, i.e.,

sgn(x) =


1, x > 0,
0, x = 0,
−1, x < 0.

It then follows that |d(k, i)| g is the (k, i)th element of |D| g and

|d(k, i)| g =
∑

(ℓ,j)∈F

|d(k, i; ℓ, j)| g(ℓ, j)

=
∑

(ℓ,j)∈F

d(k, i; ℓ, j) sgn(d(k, i; ℓ, j)) g(ℓ, j),

= d(k, i)g̃(k,i), (k, i) ∈ F, (2.19)

where g̃(k,i) := (g̃(k,i)(ℓ, j))(ℓ,j)∈F is a column vector such that

g̃(k,i)(ℓ, j) = sgn(d(k, i; ℓ, j)) g(ℓ, j), (ℓ, j) ∈ F.

Since 0 ≤ g ≤ f , we have 0 ≤ |g̃(k,i)| ≤ f for (k, i) ∈ F. Thus, combining Lemma 2.2 with
|πğ(k,i)| ≤ πg yields

|Dg̃(k,i)| ≤ (πg + 1)

[
v +

(
πv +

2b

βϕ
(β)

K

)
e

]
, (k, i) ∈ F. (2.20)

It also follows from (2.19) and (2.20) that

|d(k, i)| g = |d(k, i)g̃(k,i)| ≤ (πg + 1)

[
v(k, i) +

(
πv +

2b

βϕ
(β)

K

)]
, (k, i) ∈ F,

which shows that (2.18) holds. 2

Let v(k) = (v(k, i))i∈Sk∧1
and f(k) = (f(k, i))i∈Sk∧1

for k ∈ Z+, which are the subvectors
of v and f , respectively, corresponding to Lk. Using Lemma 2.3, we obtain the following
theorem.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Augmented truncations of Markov chains 283

Theorem 2.1 Suppose that Assumption 2.1 and Condition 1.1 are satisfied. If πv < ∞,
then the following bounds hold for all n ∈ N.∣∣π − [n]π

∣∣ g ≤ πg + 1

2
E(n) for all 0 ≤ g ≤ f , (2.21)

sup
0<g≤f

∣∣π − [n]π
∣∣ g

πg
≤ E(n), (2.22)

where the error decay function E is given by

E(n) = 2
n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)

×

{
v(m) + v(n) + 2

(
πv +

2b

βϕ
(β)

K

)
e

}
, n ∈ N. (2.23)

Remark 2.2 As with (2.5), it holds that

πg ≤ πf ≤ b for all 0 ≤ g ≤ f . (2.24)

Substituting (2.24) into the right hand side of (2.21), we have a bound for
∣∣π − [n]π

∣∣ g below.

∣∣π − [n]π
∣∣ g ≤ b+ 1

2
E(n) for all 0 ≤ g ≤ f ,

which is insensitive to g.

Remark 2.3 The error decay function E in (2.23) depends on a free parameter β. In fact,
the parameter β is also included by the other error decay functions presented in the rest of
this paper. Although it is, in general, difficult to find an optimal β, we discuss the impact
of β on the error decay functions through some numerical examples in Section 4.2.3.

Proof of Theorem 2.1. From (2.2), we have∣∣π − [n]π
∣∣ g ≤ [n]π

∣∣
[n]Q−Q

∣∣ |D| g, n ∈ N. (2.25)

Substituting (1.1), (1.3) and (2.18) into (2.25) yields

∣∣π − [n]π
∣∣ g ≤ (πg + 1)[n]π

∣∣
[n]Q−Q

∣∣ [v +

(
πv +

2b

βϕ
(β)

K

)
e

]

= (πg + 1)
n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)

×

{
v(m) + v(n) + 2

(
πv +

2b

βϕ
(β)

K

)
e

}
, n ∈ N,

which leads to (2.21). Note here that

sup
0<g≤f

∣∣π − [n]π
∣∣ g

πg
= sup

0<ε≤1
εe≤g≤εf

∣∣π − [n]π
∣∣ (g/ε)

π(g/ε)
= sup

e≤g≤f

∣∣π − [n]π
∣∣ g

πg
, n ∈ N. (2.26)
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Furthermore, using (2.21) and supg≥e(πg + 1)/(2πg) = 1, we obtain

sup
e<g≤f

∣∣π − [n]π
∣∣ g

πg
≤ sup

e≤g≤f

πg + 1

2πg
· E(n) ≤ sup

g≥e

πg + 1

2πg
· E(n) = E(n), n ∈ N.

Applying this inequality to (2.26), we have (2.22). 2

In fact, we can often find a solution (b,K,v,f) of Condition 1.1 such that the subvector
vF0

:= (v(k, i))(k,i)∈F0
of v is level-wise nondecreasing, i.e., v(k) ≤ v(k+1) for all k ∈ N. In

such cases, we obtain the following result, which is used in Section 3.

Lemma 2.4 If Condition 1.1 holds and vF0
is level-wise nondecreasing, then

πf ≤ b, [n]πf ≤ b for all n ∈ N. (2.27)

Proof. Pre-multiplying both sides of (1.6) by π yields the first inequality of (2.27). Fur-
thermore, it follows from (1.3) and v(k) ≤ v(k + 1) for all k ∈ N that

∞∑
ℓ=0

[n]Q(k; ℓ)v(ℓ) ≤
∞∑
ℓ=0

Q(k; ℓ)v(ℓ), k ∈ Z+,

and thus [n]Qv ≤ Qv. From this result and (1.6), we have

[n]Qv ≤ Qv ≤ −f + b1FK
, n ∈ N,

which yields the second inequality of (2.27). 2

We now present another error decay function E+, which is weaker but (slightly) more
tractable than E. At the same time, we also provide a sufficient condition for the error
decay functions E and E+ to converge to zero.

Theorem 2.2 Suppose that the conditions of Theorem 2.1 (Assumption 2.1, Condition 1.1
and πv <∞) are satisfied; and that the subvector vF0

of v (appearing in Condition 1.1) is
positive and level-wise nondecreasing. Let E+(n), n ∈ N, denote

E+(n) = 4
n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)

{
v(m) +

(
πv +

2b

βϕ
(β)

K

)
e

}
, n ∈ N. (2.28)

Under these conditions, the error bounds (2.21) and (2.22) hold and

E(n) ≤ E+(n), n ∈ N. (2.29)

Furthermore, if

sup
n∈N

∑
(k,i)∈F

[n]π(k, i) |q(k, i; k, i)| v(k, i) <∞, (2.30)

then

lim
n→∞

E(n) = lim
n→∞

E+(n) = 0. (2.31)
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Proof. Since Theorem 2.1 is available, the bounds (2.21) and (2.22) hold. Furthermore,
since vF0

is positive and level-wise nondecreasing,

0 < v(k) ≤ v(k + 1) for all k ∈ N, (2.32)

and thus

∞∑
m=n+1

Q(k;m)v(n) ≤
∞∑

m=n+1

Q(k;m)v(m), 0 ≤ k ≤ n, n ∈ N.

Applying this to (2.23), we obtain

E(n) ≤ 4
n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)

{
v(m) +

(
πv +

2b

βϕ
(β)

K

)
e

}
= E+(n), n ∈ N,

which shows that (2.29) holds.

It remains to prove that limn→∞E+(n) = 0. From (2.32), we have

v(m)

min
(ℓ,j)∈F0

v(ℓ, j)
≥ e, m ∈ N.

It follows from this inequality and (2.28) that, for n ∈ N,

E+(n) ≤ 4

1 +

πv +
2b

βϕ
(β)

K

min
(ℓ,j)∈F0

v(ℓ, j)


n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)v(m). (2.33)

It also follows from (1.6) that, for n ≥ k and (k, i) ∈ F,

0 ≤
∑

(m,j)∈Fn

q(k, i;m, j)v(m, j)

= −q(k, i; k, i)v(k, i)−
∑

(m,j)∈Fn\{(k,i)}

q(k, i;m, j)v(m, j) +
∑

(m,j)∈F

q(k, i;m, j)v(m, j)

≤ |q(k, i; k, i)| v(k, i)−
∑

(m,j)∈Fn\{(k,i)}

q(k, i;m, j)v(m, j)− f(k, i) + b

≤ |q(k, i; k, i)| v(k, i) + b, (2.34)

which implies that
∑

(m,j)∈F |q(k, i;m, j)| v(m, j) <∞ for all (k, i) ∈ F. Thus,

lim
n→∞

∞∑
m=n+1

Q(k;m)v(m) = 0, k ∈ Z+. (2.35)
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In addition, (2.30) and (2.34) yield

sup
n∈N

n∑
k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)v(m)

= sup
n∈N

∑
(k,i)∈Fn

[n]π(k, i)
∑

(m,j)∈Fn

q(k, i;m, j)v(m, j)

≤ sup
n∈N

∑
(k,i)∈Fn

[n]π(k, i) {|q(k, i; k, i)| v(k, i) + b}

≤ sup
n∈N

∑
(k,i)∈F

[n]π(k, i) |q(k, i; k, i)| v(k, i) + b <∞.

Therefore, applying the dominated convergence theorem to the right hand side of (2.33) and
using (2.35), we obtain limn→∞E+(n) = 0. 2

Theorem 2.2 provides a sufficient condition for convergence to zero of the error decay
functions E and E+. However, the convergence condition, as well as, the error decay func-
tions themselves are not tractable in the sense that they include the stationary distribution
vector [n]π of the LC-block-augmented truncation [n]Q. In what follows, by removing [n]π
from them, we derive a simple error decay function and convergence condition. To this end,
we focus on an empirical fact that once we find a solution (b,K,v,f) to the f -modulated
drift condition (i.e., Condition 1.1) then we can readily obtain an essentially different solu-
tion (b♯, K♯,v♯,f ♯). Thus, we proceed under Condition 2.1 below.

Condition 2.1 (i) Condition 1.1 holds, and vF0
is positive and level-wise nondecreasing;

and (ii) there exist some b♯ > 0, K♯ ∈ Z+, column vectors v♯ := (v♯(k, i))(k,i)∈F ≥ 0 and

f ♯ := (f ♯(k, i))(k,i)∈F ≥ e such that v♯

F0
:= (v♯(k, i))(k,i)∈F0

is level-wise nondecreasing and

Qv♯ ≤ −f ♯ + b♯1F
K♯
. (2.36)

Under Condition 2.1, we present a tractable sufficient condition for convergence to zero
of the error decay functions E and E+.

Theorem 2.3 Suppose that Assumption 2.1, Condition 2.1 and πv <∞ are satisfied. We
then have (2.21), (2.22) and (2.29). Furthermore, if

sup
(k,i)∈F

|q(k, i; k, i)| v(k, i)
f ♯(k, i)

<∞, (2.37)

then (2.31) holds.

Proof. Under the present conditions, Theorem 2.2 holds. Thus, it suffices to prove that
(2.30) is satisfied. It follows from (2.37) that, for some C > 0,

|q(k, i; k, i)| v(k, i) ≤ Cf ♯(k, i) for all (k, i) ∈ F,

which leads to ∑
(k,i)∈F

[n]π(k, i) |q(k, i; k, i)| v(k, i) ≤ C · [n]πf
♯, n ∈ N. (2.38)
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Furthermore, since v♯

F0
is level-wise nondecreasing, it follows from (2.36) and Lemma 2.4

that

[n]πf
♯ ≤ b♯, n ∈ N. (2.39)

Therefore, substituting this inequality into (2.38) yields

sup
n∈N

∑
(k,i)∈F

[n]π(k, i) |q(k, i; k, i)| v(k, i) ≤ Cb♯ <∞,

which completes the proof. 2

In addition to Condition 2.1, we assume the following condition.

Condition 2.2 There exist a column vector a = (a(i))i∈S1 > 0 and two nondecreasing
log-subadditive functions V : [0,∞) → [1,∞) and T : [0,∞) → [1,∞) such that

v(k) = V (k)a, k ∈ N, (2.40)

lim
x→∞

T (x) = ∞, (2.41)

sup
(k,i)∈F

T (k)V (k)

f ♯(k, i)
<∞, (2.42)

sup
k,ℓ∈Z+

T (ℓ)

∥∥∥∥∥
∞∑

m=ℓ+1

Q(k; k +m)V (m)a

∥∥∥∥∥
∞

<∞, (2.43)

where ∥ · ∥∞ denotes the ∞-norm (or called “the uniform norm”).

Remark 2.4 A function F : [0,∞) → [1,∞) is said to be log-subadditive if logF (x+ y) ≤
logF (x) + logF (y), or equivalently, F (x+ y) ≤ F (x)F (y) for all x ≥ 0 and y ≥ 0.

Using Conditions 2.1 and 2.2, we obtain a convergent error decay function.

Theorem 2.4 If Assumption 2.1, Conditions 2.1 and 2.2 are satisfied, then the error
bounds (2.21) and (2.22) hold and

E(n) ≤ E+(n) ≤ 4r♯0r
♯
1b

♯

T (n)

[
1 +

a−1

V (n+ 1)

(
πv +

2b

βϕ
(β)

K

)]
, n ∈ N, (2.44)

where a, r♯0 and r♯1 are positive numbers such that

a = min
i∈S1

a(i), (2.45)

r♯0 ≥ sup
(k,i)∈F

T (k)V (k)

f ♯(k, i)
, (2.46)

r♯1 ≥ sup
k,ℓ∈Z+

T (ℓ)

∥∥∥∥∥
∞∑

m=ℓ+1

Q(k; k +m)V (m)a

∥∥∥∥∥
∞

. (2.47)

Proof. We first confirm that the conditions of Theorem 2.2 are satisfied. Note that Condi-
tion 2.1 implies that Condition 1.1 holds and that vF0

is positive and level-wise nondecreas-
ing. Thus, it suffices to show that πv <∞. It follows from (2.36) that

πf ♯ ≤ b♯. (2.48)
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It also follows from T ≥ 1 and (2.42) that there exists some C > 0 such that

V (k) ≤ Cf ♯(k, i) for all (k, i) ∈ F. (2.49)

Using (2.40), (2.48) and (2.49), we have

πv =
∑
i∈S0

π(0, i)v(0, i) +
∞∑
k=1

∑
i∈S1

π(k, i)V (k)a(i)

≤
∑
i∈S0

π(0, i)v(0, i) + C

∞∑
k=1

∑
i∈S1

π(k, i)f ♯(k, i)a(i)

≤
∑
i∈S0

π(0, i)v(0, i) + C

∞∑
k=1

∑
i∈S1

π(k, i)f ♯(k, i)
∑
j∈S1

a(j)

≤
∑
i∈S0

π(0, i)v(0, i) + Cb♯
∑
j∈S1

a(j) <∞,

which shows that the conditions of Theorem 2.2 are satisfied. Therefore, (2.21), (2.22) and
(2.29) hold.

In what follows, we prove the second inequality in (2.44). Replacing v(m) in (2.28) by
V (m)a (see (2.40)) yields

E+(n) = 4
n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)V (m)a

+ 4

(
πv +

2b

βϕ
(β)

K

)
n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)e, n ∈ N. (2.50)

Since e ≤ a/a and V is nondecreasing,

∞∑
m=n+1

Q(k;m)e ≤ a−1

V (n+ 1)

∞∑
m=n+1

Q(k;m)V (m)a, n ∈ N.

Substituting this inequality into (2.50), we have, for n ∈ N,

E+(n) ≤ 4

[
1 +

a−1

V (n+ 1)

(
πv +

2b

βϕ
(β)

K

)]
n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)V (m)a. (2.51)

Note here that since V ≥ 1 and T ≥ 1 are log-subadditive (see Remark 2.4),

V (m) ≤ V (k)V (m− k), 0 ≤ k ≤ m, m ∈ N, (2.52)

1 ≤ T (k)T (n− k)

T (n)
, 0 ≤ k ≤ n, n ∈ N. (2.53)
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Using (2.52) and (2.53), we obtain, for n ∈ N,
n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)V (m)a

≤
n∑

k=0

[n]π(k)
T (k)T (n− k)

T (n)

∞∑
m=n+1

Q(k;m)V (k)V (m− k)a

=
1

T (n)

n∑
k=0

[n]π(k)T (k)V (k) · T (n− k)
∞∑

m=n−k+1

Q(k; k +m)V (m)a

≤ 1

T (n)

n∑
k=0

[n]π(k)T (k)V (k)e · sup
k,ℓ∈Z+

T (ℓ)

∥∥∥∥∥
∞∑

m=ℓ+1

Q(k; k +m)V (m)a

∥∥∥∥∥
∞

≤ r♯1
T (n)

n∑
k=0

[n]π(k)T (k)V (k)e, (2.54)

where the last inequality follows from (2.47). It also follows from (2.46) that

T (k)V (k)e ≤ r♯0f
♯(k), k ∈ Z+. (2.55)

Applying (2.55) to (2.54) and using (2.39) leads to

n∑
k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)V (m)a ≤ r♯0r
♯
1

T (n)

n∑
k=0

[n]π(k)f
♯(k) ≤ r♯0r

♯
1b

♯

T (n)
, n ∈ N. (2.56)

Substituting (2.56) into (2.51) results in (2.44). 2

2.2. Exponentially ergodic case

In this subsection, we derive some computable error bounds in the case where Q is ex-
ponentially ergodic. To this end, we assume that Condition 1.1 is satisfied together with
f = cv ≥ e and c > 0 (see Meyn and Tweedie [49, Theorem 20.3.2]), i.e., (1.6) is reduced
to

Qv ≤ −cv + b1FK
. (2.57)

From (2.57), we have πv ≤ b/c. Applying this inequality to (2.23) in Theorem 2.1, we
obtain

E(n) ≤ 2
n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)

×

{
v(m) + v(n) + 2b

(
1

c
+

2

βϕ
(β)

K

)
e

}
, n ∈ N. (2.58)

The right hand side of (2.58) does not include the computationally intractable factor π.
Thus, in order to obtain a computable error decay function, we establish a computable

lower bound for ϕ
(β)

K . In estimating ϕ
(β)

K , we do not necessarily assume that the vector f in
Condition 1.1 satisfies f = cv for some c > 0.

Let QFN
= (q(k, i; ℓ, j))(k,i;ℓ,j)∈(FN )2 for N ∈ {K,K + 1, . . . }, which is the |FN | × |FN |

northwest corner of Q. Let Φ
(β)
FN

:= (ϕ
(β)
FN

(k, i; ℓ, j))(k,i;ℓ,j)∈(FN )2 , N ∈ {K,K +1, . . . }, denote

Φ
(β)
FN

=

∫ ∞

0

βe−βt exp{QFN
t}dt = (I −QFN

/β)−1 . (2.59)
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Since Q is an irreducible infinitesimal generator, its finite northwest corner QFN
is nonsin-

gular and thus all the eigenvalues of QFN
are in the strictly left half of the complex plane.

Therefore, the matrix Φ
(β)
FN

in (2.59) is well-defined.
We now denote, by [ · ]FK

, the |FK | × |FK | northwest corner of the matrix in the square
brackets. It then follows from Proposition 2.2.14 of Anderson [1] that, for any fixed t ≥ 0
and K ∈ Z+,

[exp{QFN
t}]FK

↗ [P (t)]FK
as N → ∞.

Thus, by the monotone convergence theorem, we have[∫ ∞

0

βe−βt exp{QFN
t}dt

]
FK

↗
[∫ ∞

0

βe−βtP (t)dt

]
FK

as N → ∞. (2.60)

Combining (2.60) with (2.3) and (2.59), we obtain[
Φ

(β)
FN

]
FK

↗
[
Φ(β)

]
FK

> O as N → ∞, (2.61)

which implies that, for all sufficiently large N ∈ {K,K + 1, . . . },

O < [Φ
(β)
FN

]FK
≤
[
Φ(β)

]
FK
. (2.62)

Remark 2.5 Suppose that QFN0
is irreducible for some N0 ∈ {K,K + 1, . . . }. It then

follows that, for all N ≥ N0, [exp{QFN
t}]FK

> O for all t > 0 and thus [Φ
(β)
FN

]FK
> O (see

(2.59)). Consequently, (2.62) holds for all N ≥ N0.

Remark 2.6 Let F denote a nonnegative matrix such that

F = I +
1

q
(β)
FN

+ 1
(QFN

/β − I), (2.63)

where q
(β)
FN

= max(ℓ,j)∈FN
|q(ℓ, j; ℓ, j)|/β. It follows from (2.59) and (2.63) that

Φ
(β)
FN

=
1

q
(β)
FN

+ 1
(I − F )−1 =

1

q
(β)
FN

+ 1

∞∑
m=0

Fm, (2.64)

which leads to a numerically stable computation of Φ
(β)
FN

= (ϕ
(β)
FN

(k, i; ℓ, j))(k,i;ℓ,j)∈(FN )2 . In-

deed, Le Boudec [35] proposed an efficient and stable algorithm for computing Φ
(β)
FN

=
(I − F )−1 (see Proposition 1 therein), which does not depend on any structure of F and
thus QFN

. Furthermore, if QFN
is block-tridiagonal, then QFN

/β− I can be considered the
transient generator of a finite-state LD-QBD with an absorbing state and thus its funda-
mental matrix Φ

(β)
FN

= (I −QFN
/β)−1 can be efficiently and stably computed by Shin [58]’s

algorithm.

To proceed further, we fix N ∈ {K,K + 1, . . . } arbitrarily such that (2.62) holds. We

then define ϕ
(β)

K,N , N ∈ {K,K + 1, . . . }, as

ϕ
(β)

K,N = sup
(ℓ,j)∈FN

min
(k,i)∈FK

ϕ
(β)
FN

(k, i; ℓ, j), (2.65)
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which is computable because so is Φ
(β)
FN

(see Remark 2.6). It follows from (2.10), (2.61) and
(2.65) that

ϕ
(β)

K,N ↗ ϕ
(β)

K as N → ∞, (2.66)

which shows that ϕ
(β)

K,N is a computable and nontrivial lower bound for ϕ
(β)

K . As a result,
combining Theorem 2.1 with (2.58) and (2.66), we have the following result.

Corollary 2.1 Suppose that Assumption 2.1 is satisfied. Suppose that there exist some
b > 0, c > 0, K ∈ Z+ and column vector v ≥ e/c such that (2.57) holds; and fix N ∈
{K,K + 1, . . . } arbitrarily such that (2.62) holds. Under these conditions, we have, for all
n ∈ N,

∣∣π − [n]π
∣∣ g ≤ πg + 1

2
ẼN(n) for all 0 ≤ g ≤ cv, (2.67)

sup
0<g≤cv

∣∣π − [n]π
∣∣ g

πg
≤ ẼN(n), (2.68)

where the error decay function ẼN is given by

ẼN(n) = 2
n∑

k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)

×

{
v(m) + v(n) + 2b

(
1

c
+

2

βϕ
(β)

K,N

)
e

}
, n ∈ N. (2.69)

Furthermore, if the subvector vF0
of v is level-wise nondecreasing, then ẼN(n) ≤ Ẽ+

N(n) for
n ∈ N, where

Ẽ+
N(n) = 4

n∑
k=0

[n]π(k)
∞∑

m=n+1

Q(k;m)

{
v(m) + b

(
1

c
+

2

βϕ
(β)

K,N

)
e

}
, n ∈ N. (2.70)

Proof. Recall that (2.58) holds. Applying (2.66) to (2.58), we obtain E(n) ≤ ẼN(n)
for n ∈ N. Substituting this inequality into (2.21) and (2.22), we have (2.67) and (2.68),

respectively. Furthermore, it is clear that ẼN(n) ≤ Ẽ+
N(n) for n ∈ N if vF0

is level-wise
nondecreasing. 2

It should be noted that the error decay functions ẼN are Ẽ+
N are computable. We

summarize the procedure for computing them.

(i) Find b > 0, c > 0, K ∈ Z+ and v ≥ e/c such that (2.57) holds.
(ii) Fix β > 0 arbitrarily and find N ∈ {K,K+1, . . . } such that (2.62) holds; and compute

Φ
(β)
FN

by (2.64).

(iii) Compute ϕ
(β)

K,N by (2.65).
(iv) Compute [n]π(k) for k = 0, 1, . . . , n.

(v) Compute ẼN(n) and Ẽ
+
N(n) by (2.69) and (2.70), respectively.

We now present another corollary.
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Corollary 2.2 Suppose that Assumption 2.1 is satisfied; and Conditions 2.1 and 2.2 are
satisfied, together with f = cv for some c > 0. Fix N ∈ {K,K + 1, . . . } arbitrarily such
that (2.62) holds. We then have the error bounds (2.67) and (2.68). In addition,

ẼN(n) ≤ Ẽ+
N(n)

≤ 4r♯0r
♯
1b

♯

T (n)

[
1 +

a−1b

V (n+ 1)

(
1

c
+

2

βϕ
(β)

K,N

)]
=: Ẽ♯

N(n), n ∈ N, (2.71)

where r♯0 and r♯1 are positive numbers such that (2.46) and (2.47) hold.

Proof. Corollary 2.2 is immediate from (2.66) and Theorem 2.4, and this corollary is proved
in a similar way to the proof of Corollary 2.1. Thus, we omit the details of the proof. 2

We close this section by summarizing the procedure for computing the error decay func-
tion Ẽ♯

N in (2.71).
(i) Find b > 0, c > 0, K ∈ Z+, v(0) ≥ e/c, a > 0 and nondecreasing log-subadditive

function V ≥ 1 such that V (1)a ≥ e/c and

Q


v(0)
V (1)a
V (2)a

...

 ≤ −c


v(0)
V (1)a
V (2)a

...

+ b1FK
.

(ii) Find b♯ > 0, K♯ ∈ Z+, v
♯ ≥ 0, f ♯ ≥ e and nondecreasing log-subadditive function

T ≥ 1 such that the subvector v♯

F0
of v♯ is level-wise nondecreasing and the conditions

(2.36), (2.41), (2.42) and (2.43) are satisfied.
(iii) Choose r♯0 and r♯1 such that (2.46) and (2.47) hold.
(iv) Fix β > 0 arbitrarily and find N ∈ {K,K+1, . . . } such that (2.62) holds; and compute

Φ
(β)
FN

by (2.64).

(v) Compute ϕ
(β)

K,N by (2.65).

(vi) Compute Ẽ♯
N(n) by (2.71), where a is given by (2.45).

3. Reduction to Exponentially Ergodic Case

This section considers a procedure for establishing computable bounds for
∣∣π − [n]π

∣∣ g with
0 ≤ g ≤ f under the general f -modulated drift condition.

For any vector x, we denote by ∆x a diagonal matrix whose ith diagonal element is
equal to the ith element of the vector x. For any vectors x and y > 0 of the same order,
we define x/y as a vector such that ∆x/y = ∆x∆

−1
y . We also assume Condition 3.1 below,

in addition to Assumption 2.1.

Condition 3.1 Condition 1.1 holds and

Cf/v := sup
(k,i)∈F

f(k, i)

v(k, i)
<∞. (3.1)

It follows from (3.1) that

0 < π(f/v) ≤ Cf/v, (3.2)

0 < [n]π(f/v) ≤ Cf/v for all n ∈ N. (3.3)
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Thus, we define π̂ and [n]π̂, n ∈ N, as

π̂ =
π∆f/v

π (f/v)
, (3.4)

[n]π̂ =
[n]π∆f/v

[n]π (f/v)
, n ∈ N, (3.5)

respectively. We also define Q̂ and [n]Q̂, n ∈ N, as

Q̂ = ∆v/f ·Q, (3.6)

[n]Q̂ = ∆v/f · [n]Q, n ∈ N, (3.7)

respectively. It then follows from (3.4)–(3.7) that Q̂ and [n]Q̂ can be considered the q-
matrices with the stationary distribution vectors π̂ and [n]π̂, respectively. Furthermore,
from (3.6) and Condition 1.1, we have

Q̂v ≤ −v + b∆v/f1FK
≤ −v + b̂1FK

, (3.8)

where

b̂ = b max
(k,i)∈FK

v(k, i)/f(k, i).

Inequality (3.8) shows that Q̂ satisfies the exponential drift condition and

π̂v ≤ b̂. (3.9)

Thus, using Corollaries 2.1 and 2.2, we obtain computable bounds for
∣∣π̂ − [n]π̂

∣∣ ĝ with 0 ≤
ĝ ≤ v, under appropriate conditions. As a result, combining such bounds and Theorem 3.1
below, we have computable bounds for

∣∣π − [n]π
∣∣ g with 0 ≤ g ≤ f .

Theorem 3.1 Suppose that Assumption 2.1 and Condition 3.1 are satisfied. Furthermore,
suppose that there exists some function Ê : [0,∞) → [0,∞) such that

sup
0<ĝ≤v

∣∣π̂ − [n]π̂
∣∣ ĝ

π̂ĝ
≤ Ê(n), n ∈ N. (3.10)

Under these conditions, the following two bounds hold for n ∈ N:∣∣π − [n]π
∣∣ e ≤ 2Ê(n), (3.11)

sup
0<g≤f

∣∣π − [n]π
∣∣ g

πg
≤ Ê(n)

[
1 +

1 + Ê(n)(
1− Ê(n) ∧ 1

)
∨
(
b̂Cf/v

)−1

]
, (3.12)

where x∨ y = max(x, y) and x∧ y = min(x, y) (the latter has been defined in Section 1). In
addition, if the subvector vF0

of v is level-wise nondecreasing, then

sup
0<g≤f

∣∣π − [n]π
∣∣ g

πg
≤ Ê(n)

[
1 +

1 + Ê(n)(
1− Ê(n) ∧ 1

)
∨
(
b̂Cf/v

)−1 ∧ b

]
, n ∈ N. (3.13)
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Remark 3.1 Suppose that limx→∞ Ê(x) = 0. It then follows from (3.12) that, for all
sufficiently large n ∈ N,

sup
0<g≤f

∣∣π − [n]π
∣∣ g

πg
≤ Ê(n)

(
1 +

1 + Ê(n)

1− Ê(n)

)
.

Furthermore, if Ê(x) > 0 for all x ≥ 0, then

lim sup
n→∞

1

Ê(n)
sup

0<g≤f

∣∣π − [n]π
∣∣ g

πg
≤ 2.

Proof of Theorem 3.1. It follows from (3.4) and (3.5) that

π =
π̂∆v/f

π̂ (v/f)
, (3.14)

[n]π =
[n]π̂∆v/f

[n]π̂ (v/f)
, n ∈ N,

which yield

π − [n]π =

[
1

π̂ (v/f)
(π̂ − [n]π̂) +

(
1

π̂ (v/f)
− 1

[n]π̂ (v/f)

)
[n]π̂

]
∆v/f

=
1

π̂ (v/f)

[
(π̂ − [n]π̂) +

(
1− π̂ (v/f)

[n]π̂ (v/f)

)
[n]π̂

]
∆v/f .

=
1

π̂ (v/f)

[
(π̂ − [n]π̂) + ([n]π̂ − π̂) (v/f)

[n]π̂

[n]π̂ (v/f)

]
∆v/f , n ∈ N. (3.15)

We now fix 0 < ĝ ≤ v arbitrarily and g = ∆f/v ĝ (i.e., ĝ = ∆v/f g). It then follows from
(3.14) that

π̂ĝ = πg · π̂ (v/f) . (3.16)

Using (3.15) and (3.16), we obtain, for n ∈ N,∣∣π − [n]π
∣∣ g

πg
≤ 1

πg · π̂ (v/f)

[∣∣π̂ − [n]π̂
∣∣+ ∣∣π̂ − [n]π̂

∣∣ (v/f) [n]π̂

[n]π̂ (v/f)

]
∆v/f g

=
1

π̂ĝ

[∣∣π̂ − [n]π̂
∣∣+ ∣∣π̂ − [n]π̂

∣∣ (v/f) [n]π̂

[n]π̂ (v/f)

]
ĝ

=

∣∣π̂ − [n]π̂
∣∣ ĝ

π̂ĝ
+

∣∣π̂ − [n]π̂
∣∣ (v/f)

[n]π̂ (v/f)
[n]π̂ĝ

π̂ĝ

=

∣∣π̂ − [n]π̂
∣∣ ĝ

π̂ĝ
+

∣∣π̂ − [n]π̂
∣∣ (v/f)

π̂ (v/f)

(
π̂ (v/f)

[n]π̂ (v/f)
[n]π̂ĝ

π̂ĝ

)
. (3.17)

Note here that 0 < ĝ ≤ v and 0 < v/f ≤ v (due to f ≥ e). Thus, (3.10) yields∣∣π̂ − [n]π̂
∣∣ ĝ

π̂ĝ
≤ Ê(n),

∣∣π̂ − [n]π̂
∣∣ (v/f)

π̂ (v/f)
≤ Ê(n), n ∈ N. (3.18)
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Applying (3.18) to (3.17), we obtain, for all n ∈ N and 0 < g ≤ f ,∣∣π − [n]π
∣∣ g

πg
≤ Ê(n)

(
1 +

π̂ (v/f)

[n]π̂ (v/f)
[n]π̂ĝ

π̂ĝ

)
. (3.19)

Therefore, if g = e, i.e., ĝ = v/f , then (3.19) is reduced to (3.11).
Next, we prove (3.12). To this end, we estimate the term

π̂ (v/f)

[n]π̂ (v/f)
[n]π̂ĝ

π̂ĝ
, n ∈ N.

From (3.18), we have

[n]π̂ĝ

π̂ĝ
≤ 1 + Ê(n),

[n]π̂ (v/f)

π̂ (v/f)
≥ 1− Ê(n) ∧ 1, n ∈ N. (3.20)

Furthermore, from (3.1) and f ≥ e, we have

v ≥ v/f ≥ 1

Cf/v

e. (3.21)

Using (3.9) and (3.21), we obtain

[n]π̂ (v/f)

π̂ (v/f)
≥ 1

Cf/v

[n]π̂e

π̂v
≥ 1

b̂Cf/v

, n ∈ N. (3.22)

Combining (3.20) and (3.22) yields

π̂ (v/f)

[n]π̂ (v/f)
[n]π̂ĝ

π̂ĝ
≤ 1 + Ê(n)(

1− Ê(n) ∧ 1
)
∨
(
b̂Cf/v

)−1 , n ∈ N. (3.23)

Substituting (3.23) into (3.19), we obtain (3.12).
Finally, we prove (3.13) under the additional condition that vF0

is level-wise nondecreas-
ing. We fix ĝ = ∆v/f g and e ≤ g ≤ f . We then have v/f ≤ ĝ ≤ v and thus

π̂ (v/f)

[n]π̂ (v/f)
[n]π̂ĝ

π̂ĝ
≤ π̂ĝ

[n]π̂ (v/f)
[n]π̂v

π̂ĝ
=

[n]π̂v

[n]π̂ (v/f)
, n ∈ N. (3.24)

From (3.5), we also have

[n]π̂v =
[n]πf

[n]π (f/v)
, [n]π̂ (v/f) =

1

[n]π (f/v)
, n ∈ N.

Substituting these equations into (3.24) and using (2.27) yields

π̂ (v/f)

[n]π̂ (v/f)
[n]π̂ĝ

π̂ĝ
≤ [n]πf ≤ b, n ∈ N. (3.25)

Combining (3.19) with (3.23) and (3.25) leads to

sup
e<g≤f

∣∣π − [n]π
∣∣ g

πg
≤ Ê(n)

[
1 +

1 + Ê(n)(
1− Ê(n) ∧ 1

)
∨
(
b̂Cf/v

)−1 ∧ b

]
, n ∈ N.

Applying this inequality to (2.26) results in (3.13). 2
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4. Application to Level-Dependent Quasi-Birth-and-Death Processes

In this section, we first establish a computable error bound for LD-QBDs with exponential
ergodicity by using the results in Section 2.2. We then consider the queue length process
in an M/M/s retrial queue, which is a special case of LD-QBDs. For this special case, we
derive two bounds: one includes [n]π and the other does not. Using the two bounds, we
present some numerical examples.

4.1. Numerical procedure for the error bound

We assume that the infinitesimal generator Q of the Markov chain {(X(t), J(t))} has the
following block-tridiagonal form:

Q =



L0 L1 L2 L3 · · ·
L0 A0(0) A0(1) O O · · ·
L1 A1(−1) A1(0) A1(1) O · · ·
L2 O A2(−1) A2(0) A2(1) · · ·
L3 O O A3(−1) A3(0)

. . .
...

...
...

...
. . . . . .

. (4.1)

In this setting, {(X(t), J(t))} is called the level-dependent quasi-birth-and-death process
(LD-QBD) and Q is called the LD-QBD generator. Applying Corollary 2.1 to Q in (4.1),
we readily obtain the following result.

Corollary 4.1 Suppose that (i) Q in (4.1) is irreducible and its LC-block-augmented trun-
cation [n]Q has a single communicating class in Fn for each n ∈ N; and (ii) there exist some
b > 0, c > 0, K ∈ Z+ and column vector v ≥ e/c such that (2.57) holds. Furthermore, fix
N ∈ {K,K + 1, . . . } arbitrarily such that (2.62) holds. Under these conditions,

sup
0<g≤cv

∣∣π − [n]π
∣∣ g

πg
≤ 2[n]π(n)An(1)

×

[
v(n) + v(n+ 1) + 2b

(
1

c
+

2

βϕ
(β)

K,N

)
e

]
, n ∈ N, (4.2)

where ϕ
(β)

K,N is defined in (2.65).

Recall here that ϕ
(β)

K,N is expressed in terms of the fundamental matrix Φ
(β)
FN

= (I −
QFN

/β)−1 of I − QFN
/β (see (2.59) and (2.65)). Since QFN

is block-tridiagonal, we can

efficiently compute Φ
(β)
FN

= (I−QFN
/β)−1 by Shin [58]’s algorithm (see Remark 2.6). In ad-

dition, since [n]Q is block-tridiagonal in its unique communicating class Fn, we can compute
its stationary distribution vector [n]π in an efficient way, which is described as follows.

Proposition 4.1 (Gaver et al. [18], Lemma 3) For each n ∈ N, let {[n]Rℓ; ℓ = 0, 1, . . . ,
n−1} denote a sequence of (Sℓ∧1+1)× (S1+1) nonnegative matrices defined recursively by

[n]Rn−1 = An−1(1) (−An(0)−An(1))
−1 ,

[n]Rℓ = Aℓ(1)
(
−Aℓ+1(0)− [n]Rℓ+1Aℓ+2(−1)

)−1
, ℓ = n− 2, n− 3, . . . , 0.
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It then holds that, for n ∈ N,

[n]π(0)
(
A0(0) + [n]R0A1(−1)

)
= 0,

[n]π(0)e+ [n]π(0)
n∑

k=1

k−1∏
ℓ=0

[n]Rℓe = 1,

[n]π(k) = [n]π(0)
k−1∏
ℓ=0

[n]Rℓ, k = 1, 2, . . . , n,

where
∏k−1

ℓ=0 [n]Rℓ = [n]R0 · [n]R1 · · · · · [n]Rk−1 for k = 1, 2, . . . , n.

We summarize the procedure for computing the bound (4.2).

(i) Find b > 0, c > 0, K ∈ Z+ and v ≥ e/c such that (2.57) holds.
(ii) Fix β > 0 arbitrarily and find N ∈ {K,K+1, . . . } such that (2.62) holds; and compute

Φ
(β)
FN

by Shin [58]’s algorithm.

(iii) Compute ϕ
(β)

K,N by (2.65).
(iv) Compute [n]π(n) according to Proposition 4.1.
(v) Compute the bound (4.2).

4.2. Numerical example: M/M/s retrial queue

4.2.1. Model description

In this subsection, we consider an M/M/s retrial queue, where s is a positive integer. The
system has s identical servers but no waiting room. Customers arrive at the system according
to a Poisson process with rate λ > 0. Such customers are called primary customers. If a
primary customer finds at least one server idle, then the customer occupies one of them;
otherwise joins the orbit (virtual waiting room). The customers in the orbit are called retrial
customers. Each retrial customer tries to occupy one of idle servers after a random sojourn
time in the orbit, which is independent of the sojourn times of other retrial customers and
is distributed with an exponential distribution having mean 1/η > 0. If a retrial customer
is not accepted by any server (i.e., finds all the server busy), it goes back to the orbit and
becomes a retrial customer again. Primary and retrial customers in service leave the system
after exponential service times with mean 1/µ > 0, which are independent one another.

Let L(t), t ≥ 0, denote the number of customers in the orbit, called the queue length, at
time t. Let B(t), t ≥ 0, denote the number of busy servers at time t. It is known (see, e.g.,
Liu and Zhao [41]) that {(L(t), B(t)); t ≥ 0} is an LD-QBD whose infinitesimal generator
is given by Q in (4.1), where S0 = S1 = {0, 1, . . . , s},

Ak(1) =


0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 λ

 , Ak(−1) =


0 kη 0 · · · 0

0 0 kη
. . .

...
...

. . . . . . 0
... 0 kη
0 · · · · · · 0 0

 , (4.3)
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and

Ak(0) =



−ψk,0 λ 0 · · · · · · 0

µ −ψk,1 λ
. . .

...

0 2µ −ψk,2
. . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . −ψk,s−1 λ
0 · · · · · · 0 sµ −ψk,s


, (4.4)

with

ψk,i = λ+ iµ+ kη, k ∈ Z+, i = 0, 1, . . . , s− 1,

ψk,s = λ+ sµ, k ∈ Z+.

In the rest of this section, we assume that Q is the infinitesimal generator of the LD-
QBD {(L(t), B(t)); t ≥ 0}, i.e., the LD-QBD generator given by (4.1) together with (4.3)
and (4.4). Thus, Q is not uniformizable because its diagonal elements are unbounded.
Therefore, the existing results on discrete-time Markov chains (see Hervé and Ledoux [26],
Liu [38], Masuyama [42, 43], Tweedie [63]) are not applicable to the LD-QBD generator Q
considered here.

We first that condition (i) of Corollary 4.1 is satisfied. We then define ρ = λ/(sµ) and
assume ρ < 1. It thus follows that the LD-QBD generator Q (equivalently, the LD-QBD
{(L(t), B(t))}) is ergodic (see, e.g., Falin and Templeton [17, Section 2.2]) and therefore has
the unique stationary distribution vector, denoted by π = (π(0),π(1), . . . ). By definition,

π(k, i) = lim
t→∞

P(L(t) = k,B(t) = i), k ∈ Z+, i = 0, 1, . . . , s.

We now define L and B as random variables such that

P(L = k,B = i) = lim
t→∞

P(L(t) = k,B(t) = i) = π(k, i), k ∈ Z+, i = 0, 1, . . . , s,

where L and B can be interpreted as the queue length and the number of busy servers,
respectively, in steady state. We also define [n]L and [n]B, n ∈ N, as random variables such
that

P([n]L = k, [n]B = i) = [n]π(k, i), k ∈ Z+, i = 0, 1, . . . , s.

We then consider E[g([n]L, [n]B)] as an approximation to E[g(L,B)], where E[g(L,B)] is the
time-averaged functional of the LD-QBD {(L(t), B(t)); t ≥ 0}.
4.2.2. Error bounds for time-averaged functionals

In what follows, we estimate the relative error of the approximation E[g([n]L, [n]B)] to the
time-averaged functional E[g(L,B)], i.e.,∣∣E[g(L,B)]− E[g([n]L, [n]B)]

∣∣
E[g(L,B)]

.

Note here that if g = e then E[g(L,B)] = E[L], which is equal to the mean queue length in
steady state. Note also that

sup
0<g≤cv

∣∣E[g(L,B)]− E[g([n]L, [n]B)]
∣∣

E[g(L,B)]
≤ sup

0<g≤cv

∣∣π − [n]π
∣∣ g

πg
. (4.5)
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Therefore, once we can establish the exponentially drift condition (2.57), we can use Corol-
lary 4.1 to estimate the relative error of E[g([n]L, [n]B)].

The following lemma leads to the exponentially drift condition (2.57).

Lemma 4.1 Let Q be given by (4.1) together with (4.3) and (4.4). Suppose ρ = λ/(sµ) < 1
and let v́ := (v́(k, i))(k,i)∈F be given by

v́(k, i) =

{
αk, k ∈ Z+, i = 0, 1, . . . , s− 1,
γ−1αk, k ∈ Z+, i = s,

(4.6)

where α and γ are positive constants such that

1 < α < ρ−1, (4.7)

α−1 < γ < 1− ρ(α− 1). (4.8)

Furthermore, let

c = sµ [1− ρ(α− 1)− γ] , (4.9)

b́ = max
0≤k≤K

αk
[
c−

{
kη(1− γ−1α−1) + λ(1− γ−1)

}]
∨ 0, (4.10)

K =

⌈
c+ λ(γ−1 − 1)

η(1− γ−1α−1)

⌉
∨ 1− 1. (4.11)

Under these conditions,

Qv́ ≤ −cv́ + b́1FK
. (4.12)

Proof. We first confirm that there exist constants α and γ such that (4.7) and (4.8) hold.
A positive constant γ satisfying (4.8) exists if

α−1 < 1− ρ(α− 1), α > 1,

or equivalently,

ρα2 − (ρ+ 1)α + 1 = (α− 1)(ρα− 1) < 0, α > 1. (4.13)

Clearly, (4.13) is equivalent to (4.7). Therefore, there exist positive constants α and γ
satisfying (4.7) and (4.8).

Next we prove that (4.12) holds. For k ∈ Z+, let u(k) := (u(k, i))i∈{0,1,...,s} denote

u(k) =
∞∑
ℓ=0

Q(k; ℓ)v́(ℓ)

= Ak(−1)v́(k − 1) +Ak(0)v́(k) +Ak(1)v́(k + 1), k ∈ Z+, (4.14)

where v́(k) = (v́(k, i))i∈{0,1,...,s} for k ∈ Z+. Thus, it suffices to show that

u(k) ≤
{

−cv́(k) + b́e, k = 0, 1, . . . , K,
−cv́(k), k = K + 1, K + 2, . . . .

(4.15)
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It follows from (4.3), (4.4), (4.6) and (4.9) that, for k ∈ Z+,

u(k, s) = sµαk − ψk,sγ
−1αk + λγ−1αk+1

= {sµ(γ − 1) + λ(α− 1)} γ−1αk

= −sµ
{
1− γ − λ

sµ
(α− 1)

}
· γ−1αk

= −sµ {1− ρ(α− 1)− γ} · γ−1αk

= −c · γ−1αk, (4.16)

and

u(k, s− 1) = kηγ−1αk−1 + {(s− 1)µ− ψk,s−1}αk + λγ−1αk

=
{
kη(γ−1α−1 − 1) + λ(−1 + γ−1)

}
· αk

= −
{
kη(1− γ−1α−1) + λ(1− γ−1)

}
· αk, (4.17)

u(k, i) = kηαk−1 + (iµ− ψk,i + λ)αk

= −kη(1− α−1) · αk, i = 0, 1, . . . , s− 2. (4.18)

Since 0 < γ < 1 (see (4.7) and (4.8)),

kη(1− γ−1α−1) + λ(1− γ−1) ≤ kη(1− α−1).

Therefore, from (4.17) and (4.18), we have

u(k, i) ≤ −
{
kη(1− γ−1α−1) + λ(1− γ−1)

}
· αk, k ∈ Z+, i = 0, 1, . . . , s− 1. (4.19)

Note here that (4.11) implies

kη(1− γ−1α−1) + λ(1− γ−1) ≥ c for all k = K + 1, K + 2, . . . . (4.20)

Combining (4.19) with (4.20) and using (4.6) and (4.10) yields

u(k, i) ≤ −c · v́(k, i), k = K + 1, K + 2, . . . , i = 0, 1, . . . , s− 1. (4.21)

u(k, i) ≤ −c · v́(k, i) + b́, k = 0, 1, . . . , K, i = 0, 1, . . . , s− 1. (4.22)

Furthermore, applying (4.6) to (4.16) leads to

u(k, s) ≤ −c · v́(k, s), k ∈ Z+. (4.23)

As a result, from (4.21), (4.22) and (4.23), we obtain (4.15). 2

Let v be given by

v(k, i) = c−1v́(k, i) =

{
αk/c, k ∈ Z+, i = 0, 1, . . . , s− 1,
αk/(cγ), k ∈ Z+, i = s,

(4.24)

where c is defined in (4.9). Clearly, v ≥ e/c. Furthermore, from (4.10) and (4.12), we have

Qv ≤ −cv + b1FK
,

where
b = b́/c = max

0≤k≤K
αk
[
1− c−1

{
kη(1− γ−1α−1) + λ(1− γ−1)

}]
∨ 0. (4.25)
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Therefore, condition (ii) of Corollary 4.1 holds.
We now fix N ∈ {K,K + 1, . . . } arbitrarily such that (2.62) holds. Thus, all the

conditions of Corollary 4.1 are satisfied. It follows from Corollary 4.1 and (4.5) that

sup
0<g≤cv

∣∣E[g(L,B)]− E[g([n]L, [n]B)]
∣∣

E[g(L,B)]

≤ 2[n]π(n)An(1)

[
v(n) + v(n+ 1) + 2b

(
1

c
+

2

βϕ
(β)

K,N

)
e

]
, n ∈ N. (4.26)

Note here that

Ak(1) = esλ, k ∈ Z+, (4.27)

v(k) = αka, k ∈ Z+, (4.28)

where

e⊤
s = (0, 0, . . . , 0, 1), λ = (0, 0, . . . , 0, λ), a⊤ = c−1(1, 1, . . . , 1, γ−1). (4.29)

Substituting (4.27) and (4.28) into (4.26), we obtain the following bound:

sup
0<g≤cv

∣∣E[g(L,B)]− E[g([n]L, [n]B)]
∣∣

E[g(L,B)]

≤ 2[n]π(n)es · λ

[
(α + 1)αna+ 2b

(
1

c
+

2

βϕ
(β)

K,N

)
e

]

=
4λ

γ

[
α + 1

2c
+
γb

αn

(
1

c
+

2

βϕ
(β)

K,N

)]
[n]π(n, s)α

n, n ∈ N, (4.30)

where c, b and K are given in (4.9), (4.25) and (4.11), respectively, and where α and γ are
positive constants that satisfy (4.7) and (4.8). Recall here that [n]π(n) can be computed
through {[n]Rℓ; ℓ = 0, 1, . . . , n− 1} (see Proposition 4.1). Owing to (4.27), the recursion of
{[n]Rℓ} is rewritten as follows: For n ∈ N,

[n]Rℓ = es · [n]ξℓ, ℓ = 0, 1, . . . , n− 1,

[n]ξn−1 = λ (−An(0)− esλ)
−1 ,

[n]ξℓ = λ
(
−Aℓ+1(0)− es · [n]ξℓ+1Aℓ+2(−1)

)−1
, ℓ = n− 2, n− 3, . . . , 0.

Therefore, the cost of computing [n]π(n) is somewhat reduced.
In what follows, we derive a computable bound without [n]π(n, s) by using Corollary 2.2.

To this end, we fix

v♯(k, i) =

{
(α♯)k, k ∈ Z+, i = 0, 1, . . . , s− 1,
(α♯)k/γ♯, k ∈ Z+, i = s,

(4.31)

where α♯ and γ♯ are positive constants such that

1 < α < α♯ < ρ−1, (4.32)

1/α♯ < γ♯ < 1− ρ(α♯ − 1). (4.33)
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We also fix

f ♯(k, i) = c♯v♯(k, i), (k, i) ∈ F, (4.34)

c♯ = sµ
[
1− ρ(α♯ − 1)− γ♯

]
, (4.35)

b♯ = max
0≤k≤K♯

(α♯)k
[
c♯ −

{
kη

(
1− 1

γ♯α♯

)
+ λ(1− 1/γ♯)

}]
∨ 0, (4.36)

K♯ =

⌈
c♯ + λ(1/γ♯ − 1)

η{1− 1/(γ♯α♯)}

⌉
∨ 1− 1. (4.37)

It then follows from Lemma 4.1 that

Qv♯ ≤ −c♯v♯ + b♯1F
K♯

= −f ♯ + b♯1F
K♯
.

Note here that the subvectors vF0
and v♯

F0
of v and v♯ in (4.24) and (4.31), respectively, are

level-wise nondecreasing. As a result, Condition 2.1 is satisfied.
Next we confirm that Condition 2.2 is satisfied, in order to use Corollary 2.2. Let V and

T be positive functions on [0,∞) such that

V (x) = αx, T (x) =

(
α♯

α

)x

, x ≥ 0. (4.38)

Thus, (4.24) and (4.29) yield (2.40). Furthermore, V and T are log-subadditive and
limx→∞ V (x) = limx→∞ T (x) = ∞ (therefore, (2.41) holds). From (4.31), (4.34) and (4.38),
we have

sup
(k,i)∈F

T (k)V (k)

f ♯(k, i)
= sup

(k,i)∈F

T (k)V (k)

c♯v♯(k, i)
=

1

c♯
=: r♯0. (4.39)

From (4.1), (4.27), (4.29) and (4.38), we also have

sup
k,ℓ∈Z+

T (ℓ)

∥∥∥∥∥
∞∑

m=ℓ+1

Q(k; k +m)V (m)a

∥∥∥∥∥
∞

= T (0)V (1) sup
k∈Z+

∥Ak(1)a∥∞ = α ∥esλa∥∞ =
αλ

cγ
=: r♯1. (4.40)

As a result, Condition 2.2 holds.
We are ready to use Corollary 2.2. We set a = c−1 according to (2.45) and (4.29).

Combining Corollary 2.2 with (4.5), a = c−1 and (4.38)–(4.40), we obtain

sup
0<g≤cv

∣∣E[g(L,B)]− E[g([n]L, [n]B)]
∣∣

E[g(L,B)]

≤ 4αλ

cγ

b♯

c♯

( α
α♯

)n [
1 +

cb

αn+1

(
1

c
+

2

βϕ
(β)

K,N

)]

=
4λ

γ

[
α

c
+

b

αn

(
1

c
+

2

βϕ
(β)

K,N

)]
b♯

c♯

( α
α♯

)n
, n ∈ N. (4.41)
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Finally, we compare the two bounds (4.30) and (4.41), where the former includes [n]π(n, s)
whereas the latter does not. For simplicity, let

˜̃
EN(n) =

4λ

γ

[
α + 1

2c
+
γb

αn

(
1

c
+

2

βϕ
(β)

K,N

)]
[n]π(n, s)α

n, n ∈ N, (4.42)

˜̃
E♯

N(n) =
4λ

γ

[
α

c
+

b

αn

(
1

c
+

2

βϕ
(β)

K,N

)]
b♯

c♯

( α
α♯

)n
, n ∈ N, (4.43)

which are the error decay functions of the bounds (4.30) and (4.41), respectively. Note here
that (2.39) holds in the present setting. Using (2.39) and (4.34), we have

[n]π(n, s)v
♯(n, s) = [n]π(n, s)f

♯(n, s)/c♯

≤
n∑

k=0

[n]π(k)f
♯(k)/c♯ ≤ b♯/c♯, n ∈ N. (4.44)

Combining (4.44) with (4.31) and γ♯ < 1 yields

[n]π(n, s)α
n = [n]π(n, s)

(α♯)n

γ♯
· γ♯
( α
α♯

)n
= [n]π(n, s)v

♯(n, s) · γ♯
( α
α♯

)n
<
b♯

c♯

( α
α♯

)n
, n ∈ N. (4.45)

Substituting (4.45), γ < 1 and α > 1 into (4.42) and using (4.43) leads to

˜̃
EN(n) ≤

˜̃
E♯

N(n), n ∈ N. (4.46)

Consequently,

sup
0<g≤cv

∣∣E[g(L,B)]− E[g([n]L, [n]B)]
∣∣

E[g(L,B)]
≤ ˜̃
EN(n) ≤

˜̃
E♯

N(n), n ∈ N.

4.2.3. Numerical results and discussion

First of all, we discuss the impact of α and α♯ on the error decay functions
˜̃
EN and

˜̃
E♯

N .

According to (4.43), the decay rate of
˜̃
E♯

N is equal to α♯/α > 1. Recall here that α and α♯

must satisfy the constraint (4.32), i.e., 1 < α < α♯ < ρ−1, which leads to

1 <
α♯

α
< ρ−1. (4.47)

Clearly, the decay rate α♯/α of
˜̃
E♯

N is larger (i.e.,
˜̃
E♯

N decays more rapidly) as α is smaller
and/or α♯ is larger. However, it follows from (4.8) and (4.9) that if α ↓ 1 then γ ↑ 1 and
thus

1/c→ ∞ as α ↓ 1.

This result, in combination with (4.42) and (4.46), implies that

˜̃
EN(1) → ∞ and

˜̃
E♯

N(1) → ∞ as α ↓ 1. (4.48)
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Similarly, it follows from (4.33), (4.35) and (4.37) that if α♯ ↑ ρ−1 then γ♯ ↓ ρ, which causes

1/c♯ → ∞ and K♯ → ∞ as α♯ ↑ ρ−1.

It is likely, from these facts and (4.36), that the factor b♯/c♯ of (4.43) diverges and thus˜̃
E♯

N(1) does. In summary, the decay rare and the initial value of the error decay function
are in a trade-off relation.

To support the above argument, we present Figures 1 and 2 below. In the examples
therein and all the subsequent ones, we fix s = η = 50, µ = 1 and

γ =
1

2

[
1

α
+ {1− ρ(α− 1)}

]
,

γ♯ =
1

2

[
1

α♯
+ {1− ρ(α♯ − 1)}

]
.

Figure 1 plots
˜̃
EN(1) with ρ = 0.1, 0.5, 0.9, 0.95, 0.99, as a function of x ∈ (0, 1), where

α = 1 + x(ρ−1 − 1), 0 < x < 1,

β = 1, N = K + 100.

Figure 2 plots
˜̃
E♯

N(1) with ρ = 0.1, 0.5, 0.9, 0.95, 0.99, as a function of y ∈ (0, 1), where

α♯ = α + y(ρ−1 − α), 0 < y < 1,

α = 1 + 10−3,

β = 1, N = K + 100.
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Figure 1: Impact of α (= 1 + x(ρ−1 − 1)) on initial value
˜̃
EN(1)

As expected, Figure 1 shows that
˜̃
EN(1) increases as α decreases toward one (i.e., x

decreases toward zero), and Figure 2 shows that
˜̃
E♯

N(1) increases as α
♯ increases toward ρ−1

(i.e., y increases toward one). Furthermore, we can see from Figure 1 that
˜̃
EN(1) rapidly

increases as α increases toward ρ−1. This observation is justified as follows: It follows from
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Figure 2: Impact of α♯ (= α + y(ρ−1 − α)) on initial value
˜̃
E♯

N(1)

Table 1: Values of x for which α = 1 + 10−3 in Figure 1

ρ x =
10−3

ρ−1 − 1

0.1 1.111× 10−4

0.5 0.001
0.9 0.009
0.95 0.019
0.99 0.099

(4.8) and (4.9) that if α ↑ ρ−1 then γ ↓ ρ and thus 1/c → ∞. This result and (4.42) imply

that
˜̃
EN(1) → ∞ as α ↑ ρ−1.

It should be noted that α = 1+10−3 in Figure 2, which corresponds to x = 10−3/(ρ−1−1)
in Figure 1. Table 1 provides the values of x for which α = 1+10−3 in Figure 1. We can see

from Figure 1 and Table 1 that
˜̃
EN(1) with α = 1 + 10−3 takes a value not much different

from the minimum for each ρ = 0.1, 0.5, 0.9, 095, 0.99. In addition, 1 + 10−3 is close to one,

i.e., the lower limit of α. Recall here that the decay rate α♯/α of
˜̃
E♯

N is larger as α is smaller.
Based on these facts, we set α = 1 + 10−3 in the subsequent numerical examples.

According to (4.43), we can expect that the behavior of
˜̃
E♯

N is sensitive to the choice of
α♯, provided that α is fixed. Thus, we observe the impact of α♯ on the error decay function˜̃
E♯

N . To this end, we define

αi = α +
i

100
(ρ−1 − α), i = 0, 1, 10, 50, 90, 99,

with α = 1+10−3. We then denote by “line i” the
˜̃
EN(n)’s with α = αi and denote by “line

(i, j)” the
˜̃
E♯

N(n)’s with (α, α♯) = (αi, αj). Furthermore, we fix λ = 0.5s (thus ρ = 0.5),
β = 1 and N = K + 100. In this setting, Figure 3 plots

lines 0, (0, 1), (0, 10), (0, 50), (0, 90), (0, 99),

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



306 H. Masuyama

where line 0, i.e., the
˜̃
EN(n)’s with α = 1+ 10−3, serves as the “reference line” because the

other lines must be over line 0 due to (4.46). As shown in Figure 3, the choice of large α♯ is
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Figure 3: Impact of α♯ on
˜̃
E♯

N(n)

basically better. Although the initial value of line (0, 99) is larger than that of line (0, 90),
the decay rate of the former is larger than that of the latter and thus the two lines cross
over eventually. Anyway, for later discussion, we fix α♯ = α99.

Next, we discuss the impact of the traffic intensity ρ on the decay rates of the error decay

functions
˜̃
EN and

˜̃
E♯

N . Inequality (4.47) shows that, as ρ ↑ 1, the decay rate α♯/α of
˜̃
E♯

N

becomes smaller and thus that of
˜̃
EN can be also smaller. In addition, (4.32) shows that if

ρ ↑ 1 then α ↓ 1, which leads to
˜̃
EN(1) → ∞ and

˜̃
E♯

N(1) → ∞ (see (4.48)). Consequently,

as ρ ↑ 1, the decay rates of
˜̃
EN and

˜̃
E♯

N decrease and their initial values
˜̃
EN(1) and

˜̃
E♯

N(1)
increase, which is a “double whammy” for the bounds (4.30) and (4.41).

To visualize the impact of the traffic intensity ρ on the error decay functions
˜̃
EN and˜̃

E♯
N , we provide Figures 4 and 5, where s = η = 50, µ = 1, λ = ρs, β = 1 and N = K +100.

Figures 4 and 5 plot lines 0 and (0,99), respectively, for ρ = 0.1, 0.5, 0.9, 0.95, 0.99. These

two figures show that, in the case where ρ = 0.99, the error decay functions
˜̃
EN and

˜̃
E♯

N

take extremely large values and yield useless bounds in the region of the truncation level n

shown therein. This is mainly because the common factor ϕ
(β)

K,N of
˜̃
EN and

˜̃
E♯

N (with β = 1
in Figures 4 and 5) takes exceedingly small values, as shown in Table 2. Note here that

Table 2 presents the values of ϕ
(1)

K,N with N = K + 10, K + 50, K + 100, K + 100, K + 500,

which show the validity of our choice N = K + 100 for computing ϕ
(β)

K,N .

We now discuss the impact of β on the error decay functions
˜̃
EN and

˜̃
E♯

N . It follows

from (2.59) and (2.65) that if the minimum element of each column of Φ
(β)
FN

in (2.59) is

small then so is ϕ
(β)

K,N . Since QFN
considered here is block-tridiagonal, there can be a large

variation in the elements of exp{QFN
t} for small values of t. However, such a variation would

become smaller as t increases, because QFN
is irreducible. Furthermore, as β is smaller, the

integrand factor exp{QFN
t} for large values of t (that is, the right tail of this factor) has

a greater contribution to Φ
(β)
FN

. Therefore, we can expect that ϕ
(β)

K,N takes a large value
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Figure 4: Impact of traffic intensity ρ on
˜̃
EN(n) with α = α0
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Figure 5: Impact of traffic intensity ρ on
˜̃
E♯

N(n) with (α, α♯) = (α0, α99)

if β is small. In addition, it is known that the queue length process reaches the limiting
state more slowly as 1 − ρ approaches to zero (see, e.g., Doorn [14], Kijima [30, 31]). As

a result, it would be better to decrease β with 1 − ρ in order to keep the value of ϕ
(β)

K,N

“moderate”. Indeed, Table 3 shows that such choices of β improve the values of ϕ
(β)

K,N for

ρ = 0.99, compared to those of ϕ
(1)

K,N in Table 2. Note here that Table 3 is provided in the
same setting as Figures 4 and 5 except the value of β.

We have to remark that the error decay functions
˜̃
EN and

˜̃
E♯

N include a factor 1/(βϕ
(β)

K,N)
and thus the small value of β does not necessarily yield tight bounds, as shown in Table 4
provided in the same setting as Table 3. It would not be easy to systematically find an

optimal value of β such that
˜̃
EN and

˜̃
E♯

N are minimized. Anyway, we fix β = 1 − ρ and

present Figure 6, which plots the
˜̃
EN(n)’s and the

˜̃
E♯

N(n)’s in the same setting as Figures 4

and 5 except the value of β. Obviously, for sufficiently large n’s,
˜̃
EN(n) and

˜̃
E♯

N(n) are
so small that the obtained bounds are practically useful even in the “worst” case, where
ρ = 0.99.
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Table 2: Values of K and ϕ
(1)

K,N in the same setting as Figures 4 and 5

ϕ
(1)

K,N

ρ K N = K + 10 N = K + 50 N = K + 100 N = K + 500

0.1 1 1.84× 10−2 1.84× 10−2 1.84× 10−2 1.84× 10−2

0.5 2 1.79× 10−2 1.79× 10−2 1.79× 10−2 1.79× 10−2

0.9 18 8.66× 10−3 8.66× 10−3 8.66× 10−3 8.66× 10−3

0.95 38 1.48× 10−3 1.52× 10−3 1.52× 10−3 1.52× 10−3

0.99 219 4.32× 10−9 4.52× 10−9 4.52× 10−9 4.52× 10−9

Table 3: Impact of β on ϕ
(β)

K,N

ϕ
(β)

K,N

ρ β = (1− ρ)1/2 β = 1− ρ β = (1− ρ)2 β = (1− ρ)3

0.1 2.03× 10−2 2.23× 10−2 2.65× 10−2 3.09× 10−2

0.5 2.70× 10−2 3.65× 10−2 5.34× 10−2 6.50× 10−2

0.9 2.37× 10−2 3.70× 10−2 4.77× 10−2 4.92× 10−2

0.95 8.87× 10−3 2.10× 10−2 3.11× 10−2 2.13× 10−2

0.99 1.81× 10−4 2.11× 10−3 1.86× 10−3 2.67× 10−5

Table 4: Impact of β on 1/(βϕ
(β)

K,N)

1/(βϕ
(β)

K,N)

ρ β = (1− ρ)1/2 β = 1− ρ β = (1− ρ)2 β = (1− ρ)3

0.1 5.20× 101 4.99× 101 4.66× 101 4.44× 101

0.5 5.24× 101 5.48× 101 7.49× 101 1.23× 102

0.9 1.34× 102 2.70× 102 2.10× 103 2.03× 104

0.95 5.04× 102 9.53× 102 1.29× 104 3.76× 105

0.99 5.52× 104 4.74× 104 5.39× 106 3.74× 1010

5. Perturbation Bounds

In this section, we consider the perturbation bound for the stationary distribution vector
π of Q. Let Q∗ = (q∗(k, i; ℓ, j))(k,i;ℓ,j)∈F2 denote the infinitesimal generator of an ergodic
Markov chain with state space F, and π∗ = (π∗(k, i))(k,i)∈F denote the stationary distribution
vector of Q∗. Furthermore, we introduce the v-norm ∥ · ∥v for row vectors and matrices,
where v = (v(k, i))(k,i)∈F is a nonnegative |F|×1 vector, as in the previous sections. For any
row vector x := (x(k, i))(k,i)∈F and matrix Z := (z(k, i; ℓ, j))(k,i;ℓ,j)∈F2 , let ∥x∥v and ∥Z∥v
denote

∥x∥v =
∑

(k,i)∈F

|x(k, i)| v(k, i), ∥Z∥v = sup
(k,i)∈F

∑
(ℓ,j)∈F |z(k, i; ℓ, j)| v(ℓ, j)

v(k, i)
,

respectively. By definition, |x|v = ∥x∥v.
We first present a perturbation bound under the exponential drift condition.
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Figure 6: Values of
˜̃
EN(n) and

˜̃
E♯

N(n) with ρ = 0.99 and β = 1− ρ

Theorem 5.1 Suppose that Assumption 2.1 is satisfied; and there exist some b > 0, c > 0,
K ∈ Z+ and column vector v ≥ e/c such that (2.57) holds. Furthermore, fix N ∈ {K,K +
1, . . . } arbitrarily such that (2.62) holds; and suppose that

∥Q∗ −Q∥v <
1

C
(β)
K,N

, (5.1)

where

C
(β)
K,N =

b+ 1

c

(
1 + b+

2bc

βϕ
(β)

K,N

)
. (5.2)

We then have

∥π∗ − π∥v ≤ b

c
·

C
(β)
K,N∥Q∗ −Q∥v

1− C
(β)
K,N∥Q∗ −Q∥v

. (5.3)

Remark 5.1 As mentioned in Section 2.2, we can compute ϕ
(β)

K,N and thus C
(β)
K,N . Therefore,

the perturbation bound (5.3) is computable, provided that ∥Q∗ −Q∥v is obtained.

Remark 5.2 It follows from (2.66) and (5.2) that {C(β)
K,N ;N = K,K +1, . . . } is decreasing

and

lim
N→∞

C
(β)
K,N =

b+ 1

c

(
1 + b+

2bc

βϕ
(β)

K

)
=: C

(β)
K .

Thus, as N increases, the bound (5.3) becomes tighter. In addition, if the conditions of

Theorem 5.1 are satisfied and ∥Q∗ −Q∥v < 1/C
(β)
K , then

∥π∗ − π∥v ≤ b

c
· C

(β)
K ∥Q∗ −Q∥v

1− C
(β)
K ∥Q∗ −Q∥v

. (5.4)

Proof of Theorem 5.1. Combining Lemma 2.3 with f = cv ≥ e and πv < b/c yields

|D|v ≤ cπv + 1

c

[
v +

(
πv +

2b

βϕ
(β)

K

)
(cv)

]
≤ b+ 1

c

(
1 + b+

2bc

βϕ
(β)

K

)
v.
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Furthermore, applying (2.66) to the above inequality leads to

|D|v ≤ b+ 1

c

(
1 + b+

2bc

βϕ
(β)

K,N

)
v = C

(β)
K,Nv,

which implies that

∥D∥v ≤ C
(β)
K,N . (5.5)

From (5.1) and (5.5), we have

∥(Q∗ −Q)D∥v ≤ ∥(Q∗ −Q)∥v · ∥D∥v ≤ C
(β)
K,N∥(Q

∗ −Q)∥v < 1.

Thus, it holds (see, e.g., Heidergott et al. [25, Section 4.1]) that

π∗ − π = π

∞∑
m=1

{(Q∗ −Q)D}m. (5.6)

It follows from (5.5) and (5.6) that

∥π∗ − π∥v ≤ ∥π∥v
∞∑

m=1

{∥Q∗ −Q∥v · ∥D∥v}m

≤ ∥π∥v
∞∑

m=1

{
C

(β)
K,N∥Q

∗ −Q∥v
}m

≤ b

c
·

C
(β)
K,N∥Q∗ −Q∥v

1− C
(β)
K,N∥Q∗ −Q∥v

,

where the last inequality holds because ∥π∥v = πv ≤ b/c. 2

Remark 5.3 Kartashov [27, 28, 29] considered discrete-time infinite-state Markov chains
with uniform ergodicity (or equivalently, strong stability; see Kartashov [27, Theorem B]),
and then derived perturbation bounds of a type similar to the bound (5.3):

∥ϖ∗ −ϖ∥ ≤ C1 ·
C2∥P ∗ − P ∥

1− C2∥P ∗ − P ∥
, (5.7)

where ∥ · ∥ denotes an appropriate norm, and where ϖ and ϖ∗ are the stationary distribu-
tions of the original transition kernel P and a perturbated transition kernel P ∗, respectively.
Mouhoubi and Aı̈ssani [52] established a bound of the type (5.7) by using the norm of a
residual matrix of the original transition probability matrix (see Theorem 5 therein). How-
ever, the perturbation bounds in these previous studies are not easy to compute because
the parameters C1 and C2 depend on ∥ϖ∥. As for continuous-time infinite-state Markov
chains, Liu [39] presented a perturbation bound that is similar to the bound (5.3) and inde-
pendent of ∥π∥v, under such an exponential drift condition as corresponds to the condition
(2.57) with 1FK

being replaced by 1{(k,i)}, together with the condition that the infinitesimal
generator is bounded. The boundedness of the infinitesimal generator is removed by Liu
[40].
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Next we derive a perturbation bound under the general f -modulated drift condition.
To this end, we use the reduction to exponential ergodicity, as in Theorem 3.1. Recall here
that if Condition 1.1 holds then Q̂ = ∆v/fQ satisfies the exponential drift condition (3.8),
which leads to (3.9). Note also that, for all sufficiently large N ∈ {K,K + 1, . . . },[

Φ̂
(β)
FN

]
FK

> O, (5.8)

which is confirmed as in the argument leading to (2.62). We now fix N ∈ {K,K + 1, . . . }
such that (5.8) holds. We then define Φ̂

(β)
FN

:= (ϕ̂
(β)
FN

(k, i; ℓ, j))(k,i;ℓ,j)∈F2 as

Φ̂
(β)
FN

= (I − Q̂FN
/β)−1,

where Q̂FN
= ∆v/fQFN

. We also define Ĉ
(β)
K,N as

Ĉ
(β)
K,N = (̂b+ 1)

1 + b̂+
2b̂

βϕ̂
(β)
K,N

 , (5.9)

where

ϕ̂
(β)
K,N = sup

(ℓ,j)∈FN

min
(k,i)∈FK

ϕ̂
(β)
FN

(k, i; ℓ, j) > 0.

Since ϕ̂
(β)
K,N corresponds to ϕ

(β)

K,N in (2.65), the former can be computed in a similar way to
the computation of the latter (see Remark 2.6).

The following theorem presents a computable perturbation bound under the general
f -modulated drift condition.

Theorem 5.2 Suppose that Assumption 2.1 and Condition 3.1 are satisfied. Furthermore,
fix N ∈ {K,K + 1, . . . } arbitrarily such that (5.8) holds. If πv <∞ and

∥∆v/f (Q
∗ −Q)∥v <

1

Ĉ
(β)
K,N

, (5.10)

then

∥π∗ − π∥f ≤ Cf/v

(
1 + b̂ Cf/v

)
·
b̂Ĉ

(β)
K,N∥∆v/f (Q

∗ −Q)∥v
1− Ĉ

(β)
K,N∥∆v/f (Q∗ −Q)∥v

. (5.11)

Proof. Let π̂∗ and Q̂∗ denote

π̂∗ =
π∗∆f/v

π∗(f/v)
, Q̂∗ = ∆v/fQ

∗,

respectively, where π̂∗ is the probability vector such that π̂∗Q̂∗ = 0. Proceeding as in the
derivation of (3.15), we have

π∗ − π =
1

π̂∗ (v/f)

[
(π̂∗ − π̂) + (π̂ − π̂∗) (v/f)

π̂

π̂ (v/f)

]
∆v/f .

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



312 H. Masuyama

Using this equation and (3.21), we obtain

∥π∗ − π∥f ≤ 1

π̂∗ (v/f)

[
|π̂∗ − π̂|+ |π̂ − π̂∗| (v/f) π̂

π̂ (v/f)

]
v

≤ 1

π̂∗ (v/f)

[
|π̂∗ − π̂|v + |π̂ − π̂∗|v · π̂v

π̂ (v/f)

]
=

1

π̂∗ (v/f)

(
1 +

π̂v

π̂ (v/f)

)
∥π̂∗ − π̂∥v

≤ Cf/v

(
1 + π̂v · Cf/v

)
∥π̂∗ − π̂∥v

≤ Cf/v

(
1 + b̂ Cf/v

)
∥π̂∗ − π̂∥v, (5.12)

where the last inequality follows from (3.9).

It remains to estimate ∥π̂∗ − π̂∥v. From (5.10), Q̂ = ∆v/fQ and Q̂∗ = ∆v/fQ
∗, we

have

∥Q̂∗ − Q̂∥v = ∥∆v/f (Q
∗ −Q)∥v <

1

Ĉ
(β)
K,N

.

Thus, applying Theorem 5.1 to Q̂ satisfying (3.8), we obtain

∥π̂∗ − π̂∥v ≤ b̂
Ĉ

(β)
K,N∥Q̂∗ − Q̂∥v

1− Ĉ
(β)
K,N∥Q̂∗ − Q̂∥v

=
b̂ Ĉ

(β)
K,N∥∆v/f (Q

∗ −Q)∥v
1− Ĉ

(β)
K,N∥∆v/f (Q∗ −Q)∥v

. (5.13)

Substituting (5.13) into (5.12) results in (5.11). 2

Remark 5.4 A similar remark to Remark 5.2 applies to the bound (5.11). To save space,
we omit the details.

A. Proof of Proposition 1.1

We first prove statement (i). From (1.3), we have

[n]q(k, i; ℓ, j) = 0, (k, i) ∈ Fn, (ℓ, j) ∈ Fn,

which shows that the Markov chain {([n]X(t), [n]J(t))} cannot move from Fn to Fn. Thus,
Fn is closed and therefore includes at least one closed communicating class.

We now denote by C a closed communicating class in Fn. We then assume that C∩Ln =
∅, i.e., C ⊆ Fn−1. In this setting, the submatrix [n]QC := ([n]q(k, i; ℓ, j))(k,i;ℓ,j)∈C2 of [n]Q
is a conservative q-matrix. Furthermore, it follows from (1.3) and C ⊆ Fn−1 that [n]QC
is equal to the submatrix QC := (q(k, i; ℓ, j))(k,i;ℓ,j)∈C2 of the original generator Q, i.e.,

[n]QC = QC. Therefore, QC is a conservative q-matrix, and C is a closed communicating
class in the original Markov chain {(X(t), J(t))} with infinitesimal generator Q. This is,
however, inconsistent with the irreducibility of the Markov chain {(X(t), J(t))}. As a result,
C ∩ Ln ̸= ∅.

According to the above discussion, any closed communicating class in Fn shares at least
one element with Ln. This implies that the number of closed communicating classes in Fn

is not greater than the cardinality of Ln, i.e., S1 + 1. Consequently, statement (i) has been
proved.

Next we prove statement (ii). To this end, we assume that there exists a closed communi-
cating class C in Fn. Recall here that the |Fn|×|Fn| southeast corner of [n]Q is block-diagonal
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due to (1.3). Thus, the closed communicating class C is within a single level, i.e., C ⊆ Lk

for some k ≥ n + 1, which implies that the |C| × |C| submatrix of [n]Q(k; k) = Q(k; k) is
a conservative q-matrix. Therefore, the original Markov chain {(X(t), J(t))} with infinites-
imal generator Q cannot move out of C ⊆ Lk. This contradicts the irreducibility of the
Markov chain {(X(t), J(t))}. Therefore, there are no closed communicating classes in Fn.

B. Applications of Dynkin’s Formula

In this appendix, we present two applications of Dynkin’s formula (see, e.g., Meyn and
Tweedie [48]). For convenience, we redefine some of the symbols used in the body of the
paper, in a different way.

We define {Y (t); t ≥ 0} as an irreducible regular-jump Markov chain with state space Z+

and infinitesimal generatorQ := (q(i, j))i,j∈Z+ . For anym ∈ N, we also define {Ym(t); t ≥ 0}
as a stochastic process such that

Ym(t) =

{
Y (t), t < τm,
Y (τm), t ≥ τm,

(B.1)

where τm = inf{t ≥ 0 : Y (t) ≥ m}. Since τm is a stopping time for the Markov chain {Y (t)},
the stochastic process {Ym(t)} is also a Markov chain (see, e.g., Brémaud [9, Chapter 8,
Theorem 4.1]).

For any m ∈ N, let Qm := (qm(i, j))i,j∈Z+ denote the infinitesimal generator of {Ym(t)}.
It then follows from (B.1) that

qm(i, j) =

{
q(i, j), i = 0, 1, . . . ,m− 1, j ∈ Z+,
0, i = m,m+ 1, . . . , j ∈ Z+.

(B.2)

Furthermore, since {Y (t)} is non-explosive, so is {Ym(t)} and thus

Pi

(
lim

m→∞
τm = ∞

)
= 1 for all i ∈ Z+, (B.3)

where Pi( · ) represents P( · | Y (0) = i) or P( · | Ym(0) = i). For later use, let Ei[ · ] denote
E[ · | Y (0) = i] or E[ · | Ym(0) = i].

Let τ̂m = min(m, τm, τ) for m ∈ N, where τ denotes an arbitrary stopping time for the
Markov chain {Y (t)}. It then follows from (B.1) and Dynkin’s formula (see, e.g., Meyn and
Tweedie [48, Equation (8)]) that, for any real-valued column vector x := (x(i))i∈Z+ ,

Ei[x(Y (τ̂m))] = Ei[x(Ym(τ̂m))]

= x(i) + Ei

[∫ τ̂m

0

(Qmx)(Y (u))du

]
, i = 0, 1, . . . ,m− 1, (B.4)

where (Qmx)(i) is the ith element of the vector Qmx. Using (B.4), we obtain Lemma B.1
below, which is a continuous analogue of the comparison Theorem for discrete-time Markov
chains (see Glynn and Meyn [20, Theorem 2.1]).

Lemma B.1 Suppose that {Y (t); t ≥ 0} is an irreducible regular-jump Markov chain. If
there exist nonnegative column vectors v := (v(i))i∈Z+, f := (f(i))i∈Z+ and w := (w(i))i∈Z+

such that

Qv ≤ −f +w, (B.5)
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then, for any t ≥ 0 and stopping time τ ,

Ei

[∫ t

0

f(Y (u))du

]
≤ v(i) + Ei

[∫ t

0

w(Y (u))du

]
, i ∈ Z+, (B.6)

Ei

[∫ τ

0

f(Y (u))du

]
≤ v(i) + Ei

[∫ τ

0

w(Y (u))du

]
, i ∈ Z+. (B.7)

Proof. It follows from (B.2) and (B.5) that, for m ∈ N,

(Qmv)(i) ≤ −f(i) + w(i), i = 0, 1, . . . ,m− 1, (B.8)

(Qmv)(i) = 0, i = m,m+ 1, . . . . (B.9)

Substituting (B.8) and (B.9) into (B.4) with x = v yields

0 ≤ Ei[v(Y (τ̂m))]

≤ v(i) + Ei

[∫ τ̂m

0

w(Y (u))du

]
− Ei

[∫ τ̂m

0

fm(Y (u))du

]
, i ∈ Z+, (B.10)

where

fm(i) =

{
f(i), i = 0, 1, . . . ,m− 1,
f(i) ∧ w(i), i = m,m+ 1, . . . .

Adding Ei[
∫ τ̂m
0

fm(Y (u))du] to both sides of (B.10), we obtain

Ei

[∫ τ̂m

0

fm(Y (u))du

]
≤ v(i) + Ei

[∫ τ̂m

0

w(Y (u))du

]
≤ v(i) + Ei

[∫ τ

0

w(Y (u))du

]
, i ∈ Z+, (B.11)

where the second inequality follows from τ̂m = min(m, τm, τ) ≤ τ . Note here that (B.3)
yields Pi(limm→∞m ∧ τm = ∞) = 1 and thus Pi(limm→∞ τ̂m = τ) = 1. Therefore, letting
m → ∞ in (B.11) and using the monotone convergence theorem, we have (B.7). Further-
more, replacing τ by t and proceeding as in the derivation of (B.11), we obtain

Ei

[∫ t∧(m∧τm)

0

fm(Y (u))du

]
≤ v(i) + Ei

[∫ t

0

w(Y (u))du

]
, i ∈ Z+.

Letting m→ ∞ in the above inequality, we have (B.6). 2

Next we discuss a Poisson equation associated with Q. To this end, we assume that
the Markov chain {Y (t)} is ergodic and has the unique stationary distribution vector π :=
(π(i))i∈Z+ . We then define g‡ := (g‡(i))i∈Z+ as g‡ = g − (πg)e, i.e.,

g‡(i) = g(i)− πg, i ∈ Z+,

where g := (g(i))i∈Z+ is a given real-valued column vector. In this setting, we consider a
Poisson equation:

−Qh = g‡. (B.12)

Using Lemma B.1, we prove the following result on a solution of (B.12).
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Lemma B.2 Suppose that {Y (t); t ≥ 0} is an irreducible regular-jump Markov chain, and
there exist some b > 0, K ∈ Z+, column vectors v ≥ 0 and f ≥ e such that

Qv ≤ −f + b1FK
.

For any fixed j∗ ∈ Z+ and |g| ≤ f , let hj∗ := (hj∗(i))i∈Z+ denote

hj∗(i) = Ei

[∫ τ(j∗)

0

g‡(Y (t))dt

]
, i ∈ Z+, (B.13)

where τ(j∗) = inf{t ≥ 0 : Y (t) = j∗}. Under these conditions, the vector hj∗ is a solution
of the Poisson equation (B.12). In addition, hj∗(j∗) = 0.

Proof. According to Theorem 7 of Meyn and Tweedie [47], the Markov chain {Y (t)} is
ergodic under the conditions of this lemma. It follows from Lemma B.1 with τ = τ(j∗) and
w = 1FK

that

Ei

[∫ τ(j∗)

0

|g(Y (u))|du

]
≤ Ei

[∫ τ(j∗)

0

f(Y (u))du

]

≤ v(i) + Ei

[∫ τ(j∗)

0

1FK
(Y (u))du

]
≤ v(i) + Ei[τ(j∗)] <∞, i, j ∈ Z+,

where the last inequality is due to the ergodicity of the Markov chain {Y (t)}. Therefore,
hj∗ is well-defined. Furthermore, given Y (0) = j∗, we have τ(j∗) = 0 and thus hj∗(j∗) = 0.

In what follows, we confirm that hj∗ is a solution of (B.12). For this purpose, we consider

the embedded Markov chain {Ỹn := Y (tn);n ∈ Z+} of the Markov chain {Y (t); t ≥ 0} (see,
e.g., Brémaud [9, Chapter 8, Section 4.2]), where {tn;n ∈ Z+} denotes a sequence of time
points such that t0 = 0 and

tn = inf{t > tn−1 : Y (t) ̸= Y (tn−1)}, n ∈ N.

The transition probability matrix of {Ỹn}, denoted by P̃ := (p̃(i, j))i,j∈Z+ , is given by

p̃(i, j) =

 0, j = i,
q(i, j)

|q(i, i)|
, j ̸= i.

(B.14)

We also define τ̃(j) = inf{n ∈ Z+ : Ỹn = j} for j ∈ Z+ and ∆tn = tn − tn−1 for n ∈ N. It
then follows from (B.13) that

hj∗(i) = Ei

τ̃(j∗)−1∑
n=0

∆tn+1g
‡(Ỹn)


=

∞∑
n=0

Ei[∆tn+1g
‡(Ỹn)I(n < τ̃(j∗))]

=
∞∑
n=0

∑
ν∈Z+

g‡(ν)Ei[∆tn+1I(n < τ̃(j∗))I(Ỹn = ν)]

=
∞∑
n=0

∑
ν∈Z+

g‡(ν)Ei[∆tn+1 | n < τ̃(j∗), Ỹn = ν] · Ei[I(n < τ̃(j∗))I(Ỹn = ν)], (B.15)
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where I( · ) denotes the indicator function of the event in the brackets. Since τ̃(j∗) is

a stopping time for {Ỹn}, the event {n < τ̃(j∗)} is determined by the set {Ỹm;m =

0, 1, . . . ,m} = {Y (tm);m = 0, 1, . . . ,m}. Thus, given that Ỹn = Y (tn) = ν, the random
variable ∆tn+1 = tn+1 − tn is independent of the event {n < τ̃(j∗)}, which leads to

Ei[∆tn+1 | n < τ̃(j∗), Ỹn = ν] = E[∆tn+1 | Ỹn = ν] =
1

|q(ν, ν)|
, ν ∈ Z+. (B.16)

Substituting (B.16) into (B.15) yields

hj∗(i) =
∞∑
n=0

∑
ν∈Z+

g‡(ν)

|q(ν, ν)|
Ei[I(n < τ̃(j∗))I(Ỹn = ν)]

= Ei

τ̃(j∗)−1∑
n=0

∑
ν∈Z+

g‡(ν)

|q(ν, ν)|
I(Ỹn = ν)

 = Ei

τ̃(j∗)−1∑
n=0

g̃(Ỹn)

 , (B.17)

where g̃(ν) = g‡(ν)/|q(ν, ν)| for ν ∈ Z+. From (B.17), p̃(i, i) = 0 and the Markov property

of {Ỹn}, we have

hj∗(i) = g̃(i) + Ei

τ̃(j∗)−1∑
n=1

g̃(Ỹn) · I(τ̃(j∗) ≥ 2)


= g̃(i) +

∑
ν∈Z+\{i,j∗}

p̃(i, ν)E

τ̃(j∗)−1∑
n=1

g̃(Ỹn) · I(τ̃(j∗) ≥ 2) | Ỹ1 = ν


= g̃(i) +

∑
ν∈Z+\{i,j∗}

p̃(i, ν)hj∗(ν), i ∈ Z+. (B.18)

Combining (B.18) with g̃(i) = g‡(i)/|q(i, i)|, hj∗(j∗) = 0 and (B.14) leads to

hj∗(i) =
g‡(i)

|q(i, i)|
+

∑
ν∈Z+\{i}

q(i, ν)

|q(i, i)|
hj∗(ν), i ∈ Z+.

Multiplying both sides of the above equation by |q(i, i)| results in

−
∑
ν∈Z+

q(i, ν)hj∗(ν) = g‡(i), i ∈ Z+,

which shows that (B.12) holds. 2
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