SUPER-STRONG REPRESENTATION THEOREMS FOR NONDETERMINISTIC SEQUENTIAL DECISION PROCESSES

Yukihiro Maruyama
Nagasaki University

(Received March 1, 2016; Revised November 16, 2016)

Abstract

This paper studies the relation between a given nondeterministic discrete decision process (ndddp) and a nondeterministic sequential decision process (nd-sdp), which is a finite nondeterministic automaton with a cost function, and its subclasses (nd-msdp, nd-pmsdp, nd-smsdp). We show super-strong representation theorems for nd-sdp and its subclasses, for which the functional equations of nondeterministic dynamic programming are obtainable. The super-strong representation theorems provide necessary and sufficient conditions for the existence of the nd-sdp and its subclasses with the same set of feasible policies and the same cost value for every feasible policy as the given process nd-ddp.

Keywords: Dynamic programming, nondeterministic automaton, nondeterministic sequential decision process, super-strong representation theorem

1. Introduction

By using automata theory, Karp and Held [4] and Ibaraki [1] derived the relation between a given discrete decision process (ddp) and sequential decision process (sdp), and its subclasses, namely monotone $s d p(m s d p)$ and strictly monotone $s d p$ ($s m s d p$). For the process msdp, the functional equations of regular dynamic programming are obtainable. Ibaraki [1] also proved the relation between ddp and subclasses of msdp's for which simpler solution methods are available; in particular, he defined a sequential decision process named positively msdp, shortly, pmsdp. The process pmsdp is important because the Dijkstra's algorithm can be applied to the process. Moreover, Ibaraki [2] introduced a nondeterministic sdp (nd-sdp) and its subclasses, and investigated properties of the sets accepted by nd-sdp and its subclasses, where nondeterministic finite automaton M in nd-sdp accepts input string x if x sends M into one of the final states and the resulting cost \bar{h} is not greater than a given threshold θ.

Further, Maruyama $[6,7]$ defined a bitone sequential decision process (bsdp) and subclasses (strictly bitone sdp (sbsdp) and loop-free bitone sdp (lbsdp)) of bsdp's. The bsdp admits a system of functional equations in bynamic programming proposed by Iwamoto [3] and contains the class of msdp's as a special case. In [8], he has also introduced an associative sequential decision process (assdp) whose objective function is defined through associative binary operations; the process assdp is a subclass of bsdp, which has the simplest structure of all bsdp. By using automata theory, he also made clear the relation between a given ddp and the process assdp.

In this paper, we will consider a different nd-sdp and its subclasses from those in Ibaraki [2], which correspond to nd-msdp, nd-pmsdp, nd-smsdp; but objective functions in this paper are of min-Max type. We will show super-strong representation theorems for the processes, which are necessary and sufficient conditions for the existence of the nd-sdp and
its subclasses, that is, nd-msdp, nd-smsdp, nd-pmsdp with the same set of feasible policies and the same cost value for every feasible policy as the given process nd-ddp. In Section 2, the process nd-sdp and its subclasses are defined. In Section 3, we will prove a super-strong representation theorem for the nd-sdp on which super-strong representation theorems for its subclasses are based. Further, nondeterministic shortest path problem will be considered as a concrete example of nd-sdp. In Section 4, super-strong representation theorems for nd-msdp and nd-pmsdp will be shown by using some partial ordering and a directed graph. An egg-dropping problem will be discussed as an example of nd-pmsdp. In Section 5, we will give super-strong representation theorem for nd-smsdp and nondeterministic assdp.

2. Definitions

A nondeterministic discrete decision process (nd-ddp) $\Upsilon_{\text {min }}$ is defined by a system (Σ, S, f, \min), where,

$$
\begin{aligned}
& \Sigma: \text { a finite nonempty alphabet (a set of primitive decisions); } \\
& \Sigma^{*}: \text { the set of all strings (policies) composed of symbols of } \Sigma ; \\
& I: \text { a finite set of indices; } I^{*}: \text { the set of all sequences of indices of } I \text {; } \\
& \Sigma^{*} \ni \epsilon: \text { the null string; } I^{*} \ni \mu: \text { the null index; } \\
& \Sigma^{*} \supset S: \text { the set of feasible policies, defined by } \\
& S=\left\{x \in \Sigma^{*} \mid \exists i \in A(x) \text { s.t. } \pi(i) \in A_{F}\right\} \text {, where } \\
& I^{*} \supset A\left(x=a_{1} \cdots a_{n}\right): \text { the set of indicies for a given } x, \\
& \text { satisfying that } i_{x} \in A(x), i_{z} \in A(z) \Longrightarrow i_{x} i_{z} \in A(x z), \\
& \pi(i)=i_{n}: \text { final index of } i, A_{F} \text { : the set of final indices; } \\
& f_{i}(x) \in R^{1}: \text { defined for each } x \text { and index } i \in A(x) \text {, that is, } \\
& \Sigma^{*} \ni x \rightarrow f_{A(x)}(x)=\left\{f_{i}(x) \mid i \in A(x)\right\}: \text { set-valued function, } \\
& f: S \longrightarrow R^{1} \cup\{\infty\}: \text { the cost function which is minimized: } \\
& f(x)=\left\{\begin{array}{rr}
\operatorname{Max}\left\{f_{i}(x) \mid i \in \bar{A}(x)=A(x)\right\} & \text {, if } \bar{A}(x)=A(x), \\
\infty & \text {,if } \bar{A}(x) \neq A(x) \\
\Longrightarrow & \text { minimize for } x \in S, \text { where }
\end{array}\right. \\
& \bar{A}(x)=\left\{i \in A(x) \mid \pi(i) \in A_{F}\right\} \subset A(x) .
\end{aligned}
$$

A nondeterministic finite automaton (nd-fa) M is defined by a system $\left(Q, \Sigma, q_{0}, S T, Q_{F}\right)$, where Σ is the same as defined above, and
Q : a finite nonempty set of states; $Q \ni q_{0}$: an initial state;
$Q \times Q \times \Sigma \supset S T$: permitted state transitions, i.e., $(q, r, a) \in S T$ if and only if after taking policy $a \in \Sigma$, state transition from $q \in Q$ to $r \in Q$ is permitted;
$Q \supset Q_{F}$: the set of final states.
We note that after taking a policy a for a state $q,(q, r, a) \in S T$ means that the next state is not only one but some states r can be permitted.

Further, nondeterministic sequential decision process (nd-sdp) is a nondeterministic finite automaton with objective function and defined as follows: $\Pi_{\min }=\left(M, h, \xi_{0}, \min \right)$,
where

$$
M=\left(Q, \Sigma, q_{0}, S T, Q_{F}\right): \mathbf{n d} \mathbf{- f a} ;
$$

$h: R^{1} \times S T \rightarrow R^{1}:$ a cost function, i.e., $h(\xi, q, r, a)$ is the cost value at r after the state transition $q \rightarrow r$ by taking policy a for $(q, r, a) \in S T$ and cost ξ at q;
$R^{1} \ni \xi_{0}$: initial cost of initial state $q_{0} ; \bar{h}_{q_{0} ; \mu}(\epsilon)=\xi_{q_{0}}, \mu$ denotes the path of length 0, $\bar{h}_{q_{0} ; \sigma r}(x a)=h\left(\bar{h}_{q_{0} ; \sigma}(x), \pi(\sigma), r, a\right), \sigma \in Y\left(q_{0}, x\right),(\pi(\sigma), r, a) \in S T \quad\left(\sigma r \in Y\left(q_{0}, x a\right)\right)$,
where, $\pi(\sigma)$:the final state of path σ, and
$Y\left(q_{0}, x\right)=\left\{r_{1} r_{2} \ldots r_{k} \mid\left(q_{0}, r_{1}, a_{1}\right) \in S T,\left(r_{1}, r_{2}, a_{2}\right) \in S T, \ldots\left(r_{k-1}, r_{k}, a_{k}\right) \in S T\right\}:$
the set of sequence of states generated by $x=a_{1} a_{2} \cdots a_{k}$ applied to q_{0};
$\bar{h}_{q_{0}}: \Sigma^{*} \rightarrow R^{1} \cup\{\infty\}$: the cost function which is minimized:
$\bar{h}_{q_{0}}(x)= \begin{cases}\operatorname{Max} \begin{array}{l}\bar{h}_{q_{0} ; Y\left(q_{0}, x\right)}(x)=\operatorname{Max}\left\{\bar{h}_{q_{0} ; \sigma}(x) \mid \sigma \in Y\left(q_{0}, x\right), \pi(\sigma) \in Q_{F}\right\}, \\ \\ \\ \text { if } Y\left(q_{0}, x\right)=\bar{Y}\left(q_{0}, x\right), \\ \infty, \\ \text { otherwise. }\end{array}\end{cases}$
\Longrightarrow minimize for $x=a_{1} a_{2} \cdots a_{k}$, where
$\bar{Y}\left(q_{0}, x\right)=\left\{\sigma \in Y\left(q_{0}, x\right) \mid \pi(\sigma) \in Q_{F}\right\}$.
We denote by $F(M)$ the set of strings accepted by the nd-fa M, namely, $F(M)=\{x \in$ $\Sigma^{*} \mid \exists \sigma \in Y\left(q_{0}, x\right)$ s.t. $\left.\pi(\sigma) \in Q_{F}\right\}$. Further, the set of all feasible policies of $\Pi_{\text {min }}$ is denoted by $F\left(\Pi_{\min }\right)(=F(M))$.

Next, let us introduce subclasses of nd-sdp. Let $\Pi_{\text {min }}$ be an nd-sdp. If h satisfies the monotonicity condition:

$$
\xi_{1} \leq \xi_{2} \Longrightarrow h\left(\xi_{1}, q, r, a\right) \leq h\left(\xi_{2}, q, r, a\right) \text { for } \forall(q, r, a) \in S T
$$

then, $\Pi_{\min }$ is called a monotone nd-sdp(nd-msdp).
An nd-sdp $\Pi_{\text {min }}$ is called a strictly monotone nd-sdp(nd-smsdp) if

$$
\xi_{1}<\xi_{2} \Longrightarrow h\left(\xi_{1}, q, r, a\right)<h\left(\xi_{2}, q, r, a\right) \text { for } \forall(q, r, a) \in S T
$$

An nd-msdp $\Pi_{\min }$ is called a positively monotone nd-sdp(nd-pmsdp) if

$$
h(\xi, q, r, a) \geq \xi \text { for } \forall \xi \in R^{1}, \forall(q, r, a) \in S T
$$

An nd-msdp $\Pi_{\text {min }}$ is called a loop-free nd-msdp(nd-lmsdp) if

$$
\left|F\left(\Pi_{\min }\right)\right|<\infty\left(\text { that is, } F\left(\Pi_{\min }\right) \text { is a finite set }\right) .
$$

These subclasses were introduced by Ibaraki [2], where the definition of $\Pi_{\text {min }}$ in this paper is slightly different from those of Ibaraki [2].

Further, let us introduce a new subclass of nd-smsdp which is called associative nd-sdp (nd-assdp).

Definition 2.1 (associative nondeterministic sequential decision process). Let $\Pi_{\text {min }}$ be a nd-sdp: $\left(M, h, \xi_{0}, \min \right)$. We call $\Pi_{\min }$ an associative nd-sdp, if $h(\xi, q, a)=\xi \circ \psi(q, r, a)$, where the binary operation o satisfies the following:
(i) (A, \circ) is a semi group: $\circ: A \times A \longrightarrow A$, where $A \subset R^{1}$, and it satisfies the associative law, that is, $(a \circ b) \circ c=a \circ(b \circ c) \forall a, b, c \in A$;
(ii) there exists an unit element $e(\circ) \in A$, that is, $a \circ e(\circ)=e(\circ) \circ a=a \quad \forall a \in A$;
(iii) there exists an inverse element a^{-1} for each $a \in A$, that is, $a \circ a^{-1}=a^{-1} \circ a=e(\circ)$;
(iv) the binary operation satisfies the commutative law, that is, $a \circ b=b \circ a \quad \forall a, b \in A$;
(v) the binary operation satisfies the strict monotonicity,
that is, $a_{1}, a_{2} \in A, a_{1}<a_{2} \Longrightarrow a \circ a_{1}<a \circ a_{2} \forall a \in A$.
Example 2.1 (additive process). $\circ=+, A=R^{1}, e(\circ)=0, a^{-1}=-a \quad\left(a \in R^{1}\right)$.
Example 2.2 (multiplicative process). $\circ=\times, A=\{a \mid a>0\}, e(\circ)=1$, $a^{-1}=\frac{1}{a}(a \neq 0)$.
Example 2.3 (multiplicative additive process). $a \circ b=a+b-a b, \quad A=\{a \mid a<1\}$, $e(\circ)=0, \quad a^{-1}=\frac{a}{a-1}(a \neq 1)$.
Example 2.4 (fractional process). $a \circ b=\frac{a+b}{1+a b}, \quad A=(-1,1), e(\circ)=0$, $a^{-1}=-a(a \in(-1,1))$.

Let $\Pi_{\text {min }}$ be an nd-assdp and let

$$
F(p)=\min _{x \in S}\left\{\operatorname{Max}\left[\bar{h}_{p ; \sigma}(x) \mid \sigma \in Y(p ; x), \pi(\sigma) \in Q_{F}\right]\right\}
$$

for $p \in Q$. Then we have

$$
\begin{aligned}
& F(p)=\min _{a \in \Sigma}\left\{\operatorname{Max}[\psi(p, q, a) \circ F(q) \mid(p, q, a) \in S T\} \quad \text { if } p \notin Q_{F},\right. \\
& F(p)=0 \text { if } p \in Q_{F} .
\end{aligned}
$$

These are the recursive functional equations of nondeterministic dynamic programming (see [5]).

Let us consider an nd-ddp: $\Upsilon_{\text {min }}=(\Sigma, S, f, \min), f(x)=\operatorname{Max} f_{\bar{A}(x)}(x)$ and an nd-sdp: $\Pi_{\min }=\left(M, h, \xi_{0}, \min \right)$. Then $\Pi_{\min }$ super-strongly represents $\Upsilon_{\min }$ if

$$
\begin{aligned}
& \left.F\left(\Pi_{\min }\right)=S, \quad \bar{Y}\left(q_{0}, x\right) \equiv \bar{A}(x) \text { (i.e. } \delta_{x} \in \bar{Y}\left(q_{0}, x\right) \Longleftrightarrow i_{x} \in \bar{A}(x)\right) \forall x \in S, \\
& \bar{h}_{q_{0} ; \delta_{x}}(x)=f_{i_{x}}(x) \quad \forall x, \forall \delta_{x}, \forall i_{x} ;\left(x, \delta_{x}\right) \in \bar{F}\left(\Pi_{\min }\right),\left(x, i_{x}\right) \in S_{\bar{A}}, \\
& \text { where } \bar{F}\left(\Pi_{\text {min }}\right)=\underset{x \in F\left(\Pi_{\text {min }}\right)}{\cup}\left\{(x, \delta) \mid \delta \in \bar{Y}\left(q_{0}, x\right)\right\}, \quad S_{\bar{A}}=\cup_{x \in S}\{(x, i) \mid i \in \bar{A}(x)\} .
\end{aligned}
$$

Next, $\Pi_{\text {min }}$ strongly represents $\Upsilon_{\text {min }}$ if

$$
F\left(\Pi_{\min }\right)=S, \bar{h}(x)=\operatorname{Max} \bar{h}_{q_{0} ; \bar{Y}\left(q_{0}, x\right)}(x)=\operatorname{Max} f_{\bar{A}(x)}(x)=f(x) \forall x \in S
$$

hold. Finally, $\Pi_{\text {min }}$ weakly represents $\Upsilon_{\text {min }}$ if

$$
\begin{aligned}
O\left(\Pi_{\min }\right) & =\left\{x \in F\left(\Pi_{\min }\right) \mid \bar{h}(x) \leq \bar{h}(y) \forall y \in F\left(\Pi_{\min }\right)\right\} \\
& =\{x \in S \mid f(x) \leq f(y) \forall y \in S\}=O\left(\Upsilon_{\min }\right)
\end{aligned}
$$

hold. It is noted that (nd-sdp) $\Pi_{\text {min }}$ strongly represents $\Upsilon_{\text {min }}$ if it super-strongly represents $\Upsilon_{\text {min }}$. Further, it weakly represents $\Upsilon_{\text {min }}$, if it strongly represents $\Upsilon_{\text {min }}$.

3. Super-strong Representation of an nd-ddp by an nd-sdp

Firstly, define some equivalence relations, which play an important role in super-strong representation theorems. For a given nd-ddp $\Upsilon_{\text {min }}=(\Sigma, S, f, \min), f(x)=\operatorname{Max}\left\{f_{i}(x) \mid i \in\right.$ $A(x)\}$, let us denote $\Sigma_{A}^{*}=\underset{x \in \Sigma^{*}}{\cup}\{(x, i) \mid i \in A(x)\} \subset \Sigma^{*} \times I^{*}$.
Definition 3.1 (equivalence relations). For a given nd-ddp $\Upsilon_{\text {min }}$, let us define the equivalence relations on $\Sigma^{*} \times I^{*}$ as follows:

$$
\begin{aligned}
\left(x, i_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, i_{y}\right) & \Longleftrightarrow\left\{\left(z, i_{z}\right) \mid\left(x z, i_{x} i_{z}\right) \in S_{\bar{A}}\right\}=\left\{\left(z, i_{z}\right) \mid\left(y z, i_{y} i_{z}\right) \in S_{\bar{A}}\right\}, \\
\left(x, i_{x}\right) \hat{R}_{f_{i}}\left(y, i_{y}\right) & \Longleftrightarrow f_{i_{x}}(x)=f_{i_{y}}(y) \wedge\left(i_{x} \in \bar{A}(x), i_{y} \in \bar{A}(y)\right), \\
\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right) & \Longleftrightarrow\left(x, i_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, i_{y}\right) \wedge\left(\forall\left(x z, i_{x} i_{z}\right) \in S_{\bar{A}}\right)\left(f_{i_{x} i_{z}}(x z)=f_{i_{y} i_{z}}(y z)\right) .
\end{aligned}
$$

An equivalence relation \hat{R} on Σ_{A}^{*} is right invariant if $\left(x, i_{x}\right) \hat{R}\left(y, i_{y}\right) \Longrightarrow$ $\left(x z, i_{x} i_{z}\right) \hat{R}\left(y z, i_{y} i_{z}\right) \quad \forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}$. The equivalence relation \hat{R} refines the set $S_{\bar{A}}$ if $\left(x, i_{x}\right) R\left(y, i_{y}\right) \Longrightarrow\left(\left(x, i_{x}\right) \in S_{\bar{A}} \Longleftrightarrow\left(y, i_{y}\right) \in S_{\bar{A}}\right)$. Then $\Lambda\left(S_{\bar{A}}\right)$ stands for all the right invariant equivalence relations which refine $S_{\bar{A}}$. In particular, $\Lambda\left(\Sigma_{A}^{*}\right)$ is the set of right invariant equivalence relations. We note that $\hat{R}=\hat{R}_{S_{\bar{A}}}, \hat{R}_{\Upsilon_{f_{i}}} \in \Lambda\left(S_{\bar{A}}\right)$. Further define $\Lambda_{F}\left(S_{\bar{A}}\right)=\left\{\hat{T} \in \Lambda\left(S_{\bar{A}}\right)| | \Sigma_{A}^{*} / \hat{T} \mid<\infty\right\}$.

Then the following lemma will be used in deriving super-strong representation.
Lemma 3.1 (implementation of h^{\prime} by nd-sdp). For a given $x \in \Sigma^{*}$, let $A(x)$ be the set of sequences of index defined in $\Upsilon_{\text {min }}$. For each x and each $i \in A(x), h_{i}^{\prime}(x)$ be given. That is, $x \rightarrow h_{A(x)}^{\prime}(x)=\left\{h_{i}^{\prime}(x) \mid i \in A(x)\right\}$; set-valued function. For $A(x), h_{i}^{\prime}(x)$, the equivalence relation $\hat{R}_{h^{\prime}}$ on Σ_{A}^{*} is defined by

$$
\left(x, i_{x}\right) \hat{R}_{h^{\prime}}\left(y, i_{y}\right) \Longleftrightarrow h_{i_{x}}^{\prime}(x)=h_{i_{y}}^{\prime}(y), i_{x} \in A(x), i_{y} \in A(y)
$$

Then there exists an nd-sdp $\Pi_{\text {min }}=\left(M, h, \xi_{0}, \min \right)$ satisfying that

$$
\begin{equation*}
\bar{h}_{q_{0} ; \delta_{x}}(x)=h_{i_{x}}^{\prime}(x), \quad \forall\left(x, \delta_{x}\right) \in \Sigma_{Y}^{*}, \forall\left(x, i_{x}\right) \in \Sigma_{A}^{*}, \tag{3.1}
\end{equation*}
$$

where, $\Sigma_{Y}^{*}=\underset{x \in \Sigma^{*}}{ }\left\{(x, \delta) \mid \delta \in Y\left(q_{0}, x\right)\right\}$, if and only if there exists $\hat{T} \in \Lambda_{F}\left(\Sigma_{A}^{*}\right)$ such that $\hat{T} \wedge \hat{R}_{h^{\prime}} \in \Lambda\left(\Sigma_{A}^{*}\right)$.
Proof. Necessity. Let an nd-sdp $\Pi_{\min }$ satisfy the equation (3.1). Put $Q=I, Y\left(q_{0}, x\right)=$ $A(x)$ for each $x \in \Sigma^{*}$ and define \hat{T} on Σ_{A}^{*} by

$$
\begin{equation*}
\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \Longleftrightarrow \pi\left(\delta_{x}\right)=\pi\left(\delta_{y}\right), \text { where } \delta_{x} \in Y\left(q_{0}, x\right), \delta_{y} \in Y\left(q_{0}, y\right) \tag{3.2}
\end{equation*}
$$

Then we can show that $\hat{T} \in \Lambda_{F}\left(\Sigma_{A}^{*}\right)$. Further, define $\hat{R}_{\bar{h}_{\delta}}$, by

$$
\left(x, i_{x}\right) \hat{R}_{\bar{h}_{\delta}}\left(y, i_{y}\right) \Longleftrightarrow \bar{h}_{q_{0} ; \delta_{x}}(x)=\bar{h}_{q_{0} ; \delta_{y}}(y), \delta_{x} \in Y\left(q_{0}, x\right), \delta_{y} \in Y\left(q_{0}, y\right)
$$

Then, we see that. for $\forall(a, r) \in \Sigma \times Q$

$$
\begin{aligned}
& \left(x, \delta_{x}\right)\left(\hat{T} \wedge \hat{R}_{\bar{h}_{\delta}}\right)\left(y, \delta_{y}\right) \\
& \Longrightarrow\left(\pi\left(\delta_{x}\right)=\pi\left(\delta_{y}\right), \delta_{x} \in Y\left(q_{0}, x\right), \delta_{y} \in Y\left(q_{0}, y\right)\right) \wedge\left(\bar{h}_{q_{0} ; \delta_{x}}(x)=\bar{h}_{q_{0} ; \delta_{y}}(y)\right) \\
& \Longrightarrow\left(\pi\left(\delta_{x a}\right)=\pi\left(\delta_{x} r\right)=\pi\left(\delta_{y} r\right)=\pi\left(\delta_{y a}\right)=r, \delta_{x} r \in Y\left(q_{0}, x a\right), \delta_{y} r \in Y\left(q_{0}, y a\right)\right) \\
& \wedge\left(\bar{h}_{q_{0} ; \delta_{x} r}(x a)=h\left(\bar{h}_{q_{0} ; \delta_{x}}(x), \pi\left(\delta_{x}\right), r, a\right)=h\left(\bar{h}_{q_{0} ; \delta_{y}}(y), \pi\left(\delta_{y}\right), r, a\right)=\bar{h}_{q_{0} ; \delta_{y} r}(y a)\right) \\
& \Longleftrightarrow\left(x a, \delta_{x} r\right)\left(\hat{T} \wedge \hat{R}_{\bar{h}_{\delta}}\right)\left(y a, \delta_{y} r\right) .
\end{aligned}
$$

Hence, $\hat{T} \wedge \hat{R}_{\bar{h}_{\delta}} \in \Lambda\left(\Sigma_{A}^{*}\right)$, which implies that $\hat{T} \wedge \hat{R}_{h^{\prime}} \in \Lambda\left(\Sigma_{A}^{*}\right)$.
Sufficiency. Let $\hat{T} \wedge \hat{R}_{h^{\prime}} \in \Lambda\left(\Sigma_{A}^{*}\right)$, and let $M=\left(Q, \Sigma, q_{0}, S T, Q_{F}\right)$ be defined as follows: $Q=\left\{\left[\left(x, i_{x}\right)\right] \mid\left(x, i_{x}\right) \in C_{i}, i=1,2, \cdots, n\right\}$ and $\Sigma_{A}^{*} / \hat{T}=\left\{C_{1}, C_{2}, \cdots C_{n}\right\}$, where $\left[\left(x, i_{x}\right)\right]$ denotes the state corresponding to the equivalence class of Σ_{A}^{*} / \hat{T} containing $\left(x, i_{x}\right)$, and $q_{0}=$ $[(\epsilon, \mu)] . Q_{F}$ is not explicitly specified. $\delta\left(\left[\left(x, i_{x}\right)\right], a\right)=\left\{\left[\left(x a, i_{x} j\right)\right] \mid\left(x, i_{x}\right) \in C_{i},\left(x a, i_{x} j\right) \in\right.$ $\left.C_{j}\right\}, S T=\left\{\left(\left[\left(x, i_{x}\right)\right], \delta\left(\left[\left(x, i_{x}\right)\right], a\right), a\right) \mid\left(x, i_{x}\right) \in C_{i} \in \Sigma_{A}^{*} / \hat{T}, a \in \Sigma\right\}$.
Next, for $\xi \in R^{1}, q \in Q, r \in Q, a \in \Sigma$, define a function h as follows:

$$
h(\xi, q, r, a)=\left\{\begin{align*}
h_{i_{x} j}^{\prime}(x a), & \text { if } \exists\left(x, i_{x}\right) \in \Sigma_{A}^{*} \text { such that } \xi=h_{i_{x}}^{\prime}(x), \tag{3.3}\\
& q=\left[\left(x, i_{x}\right)\right] \in Q, r=\left[\left(x a, i_{x} j\right)\right] \in Q, \\
\text { any real number, } & \text { otherwise } .
\end{align*}\right.
$$

Then h is well-defined, since, if there exists some $\left(y, i_{y}\right) \in \Sigma_{A}^{*}$ such that $\xi=h_{i_{y}}^{\prime}(y), q=$ $\left[\left(y, i_{y}\right)\right] \in Q, r=\left[\left(y a, i_{y} j\right)\right] \in Q$, then we obtain

$$
\begin{aligned}
\xi & =h_{i_{x}}^{\prime}(x)=h_{i_{y}}^{\prime}(y), i_{x} \in A(x), i_{y} \in A(y), \\
q & =\left[\left(x, i_{x}\right)\right]=\left[\left(y, i_{y}\right)\right] \Longrightarrow\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right), \\
r & =\left[\left(x a, i_{x} j\right)\right]=\left[\left(y a, i_{y} j\right)\right] \Longrightarrow\left(x a, i_{x} j\right) \hat{T}\left(y a, i_{y} j\right),
\end{aligned}
$$

which implies that $\left(x, i_{x}\right)\left(\hat{T} \wedge \hat{R}_{h^{\prime}}\right)\left(y, i_{y}\right)$. From $\hat{T} \wedge \hat{R}_{h^{\prime}} \in \Lambda\left(\Sigma_{A}^{*}\right)$, it follows that $\left(x a, i_{x} j\right)\left(\hat{T} \wedge \hat{R}_{h^{\prime}}\right)\left(y a, i_{y j} j\right)$. Hence we have $h_{i_{x} j}^{\prime}(x a)=h_{i_{y} j}^{\prime}(y a)$.

Finally, put $\xi_{0}=h_{\mu}^{\prime}(\epsilon)$. Consequently, the resulting $\Pi_{\min }=\left(M, h, \xi_{0}, \mathrm{~min}\right)$ satisfies the equation (3.1).

From this lemma, we have the next super-strong representation theorem by nd-sdp.
Theorem 3.1 (super-strong representation of nd-sdp). For a given nd-ddp $\Upsilon_{\min }=$ (Σ, S, f, \min), there exists an nd-sdp $\Pi_{\min }=\left(M, h, \xi_{0}, \min \right)$ which super-strongly represents $\Upsilon_{\text {min }}$ if and only if there exists $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$ satisfying that

$$
\begin{equation*}
\left(\forall\left(x, i_{x}\right),\left(y, i_{y}\right) \in S_{\bar{A}}\right)\left(\left(x, i_{x}\right)\left(\hat{T} \wedge \hat{R}_{f_{i}}\right)\left(y, i_{y}\right) \Longrightarrow\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)\right. \tag{3.4}
\end{equation*}
$$

Proof. Necessity. Let an nd-sdp $\Pi_{\min }$ super-strongly represent nd-ddp $\Upsilon_{\min }$. Put $Q=$ $I, Y\left(q_{0}, x\right)=A(x)$, for each $x \in \Sigma^{*}$ and $Q_{F}=A_{F}$, and define \hat{T} on Σ_{A}^{*} by (3.2) in Lemma 3.1. Then $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$, since $\hat{T} \in \Lambda_{F}\left(\Sigma_{A}^{*}\right)$ and it refines the set $S_{\bar{A}}$ because

$$
\begin{aligned}
& \left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge\left(\left(x, \delta_{x}\right) \in S_{\bar{A}}=\bigcup_{x \in S}\{(x, i) \mid i \in \bar{A}(x)\}=\bigcup_{x \in F\left(\Pi_{\min }\right)}^{\cup}\left\{(x, \delta) \mid \delta \in \bar{Y}\left(q_{0}, x\right)\right\}\right) \\
& \Longrightarrow \pi\left(\delta_{x}\right)=\pi\left(\delta_{y}\right) \in Q_{F}=A_{F} \Longrightarrow\left(y, \delta_{y}\right) \in S_{\bar{A}} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \left(\left(x, \delta_{x}\right),\left(y, \delta_{y}\right) \in S_{\bar{A}}\right) \wedge\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge\left(f_{\delta_{x}}(x)=f_{\delta_{y}}(y), \delta_{x} \in \bar{A}(x), \delta_{y} \in \bar{A}(y)\right) \\
& \Longrightarrow\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge\left(\bar{h}_{q_{0} ; \delta_{x}}(x)=\bar{h}_{q_{0} ; \delta_{y}}(y)\right) \\
& \Longrightarrow\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge\left(\forall\left(z, \delta_{z}\right) \in \Sigma_{A}^{*}\right)\left(\bar{h}_{q_{0} ; \delta_{x} \delta_{z}}(x z)=\bar{h}_{q_{0} ; \delta_{\delta_{z}}}(y z)\right) \\
& \Longrightarrow\left(x, \delta_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, \delta_{y}\right) \wedge\left(\forall\left(x z, \delta_{x} \delta_{z}\right) \in S_{\bar{A}}\right)\left(f_{\delta_{x} \delta_{z}}(x z)=\bar{h}_{q_{0} ; \delta_{y} \delta_{z}}(y z)=f_{\delta_{y} \delta_{z}}(y z)\right) \\
& \Longrightarrow\left(x, \delta_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, \delta_{y}\right) .
\end{aligned}
$$

Sufficiency. Let $M=\left(Q, \Sigma, q_{0}, S T, Q_{F}\right)$ be defined by the same way as in Lemma 3.1, where $Q_{F}=\left\{\left[\left(x, i_{x}\right)\right] \mid\left(x, i_{x}\right) \in S_{\bar{A}}=\bigcup_{x \in S}\{(x, i) \mid i \in \bar{A}(x)\}\right\}$. Then we have
$F\left(\Pi_{\min }\right)=F(M)=S, \bar{Y}\left(q_{0}, x\right) \equiv \bar{A}(x)$ for $\forall x \in S$, since

$$
\begin{aligned}
& x \in F\left(\Pi_{\min }\right) \wedge \delta_{x} \in \bar{Y}\left(q_{0}, x\right) \\
& \Longleftrightarrow\left(\exists \delta_{x} \in Y\left(q_{0}, x\right) \text { s.t. } \pi\left(\delta_{x}\right) \in Q_{F}\right) \wedge\left(\pi\left(\delta_{x}\right) \in Q_{F}\right) \\
& \Longleftrightarrow(x \in S) \wedge\left(\pi\left(\delta_{x}\right)=\pi\left(i_{x}\right) \in A_{F}\right) \\
& \Longleftrightarrow(x \in S) \wedge\left(i_{x} \in \bar{A}(x)\right) .
\end{aligned}
$$

Further, define a function, $x \rightarrow h_{A(x)}^{\prime}(x)=\left\{h_{i}^{\prime}(x) \mid i \in A(x)\right\}$: the set-valued function as follows:
(1) $h_{i_{x}}^{\prime}(x)=f_{i_{x}}(x)$ if $\left(x, i_{x}\right) \in S_{\bar{A}}$;
(2) $\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x)=h_{i_{y}}^{\prime}(y)\right) \Longleftrightarrow\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)$, which is possible since it follows from the condition (3.4) that

$$
\begin{aligned}
& \left(\forall\left(x, i_{x}\right), \forall\left(y, i_{y}\right) \in S_{\bar{A}}\right)\left(h_{i_{x}}^{\prime}(x)=h_{i_{y}}^{\prime}(y) \wedge\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right)\right) \\
& \Longrightarrow\left(f_{i_{x}}(x)=f_{i_{y}}(y) \wedge\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right)\right) \Longrightarrow\left(\left(x, i_{x}\right) \hat{R_{f_{i}}}\left(y, i_{y}\right) \wedge\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right)\right) \\
& \Longrightarrow\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right) .
\end{aligned}
$$

Next, define $\hat{R}_{h^{\prime}}$ by the same way as in Lemma 3.1. Then, from the condition (2), we have

$$
\begin{equation*}
\hat{T} \wedge \hat{R}_{h^{\prime}}=\hat{T} \wedge \hat{R}_{\Upsilon_{f_{i}}} \tag{3.5}
\end{equation*}
$$

Hence, from (3.5) and $\hat{T}, \hat{R}_{\Upsilon_{f_{i}}} \in \Lambda\left(\Sigma_{A}^{*}\right)$, it follows that $\hat{T} \wedge \hat{R}_{h^{\prime}} \in \Lambda\left(\Sigma_{A}^{*}\right)$. From Lemma 3.1, there exists an nd-sdp $\Pi_{\text {min }}$ such that $\bar{h}_{q_{0} ; \delta_{x}}(x)=h_{i_{x}}^{\prime}(x), \quad \forall\left(x, \delta_{x}\right) \in \Sigma_{Y}^{*}, \forall\left(x, i_{x}\right) \in \Sigma_{A}^{*}$. So, from the condition (1), it follows that

$$
\bar{h}_{q_{0} ; \delta_{x}}(x)=f_{i_{x}}(x) \forall\left(x, \delta_{x}\right) \in \bar{F}\left(\Pi_{\min }\right), \forall\left(x, i_{x}\right) \in S_{\bar{A}}(x),
$$

that is, $\Pi_{\text {min }}$ super strongly represents $\Upsilon_{\text {min }}$.
Example 3.1 (nondeterministic shortest path problem). Let us consider an nondeterministic associative shortest path problem. Firstly, this problem can be formulated as a nondeterministic discrete decision process as follows (see Figure 1): nd-ddp $\Upsilon_{\text {min }}=$ $(\Sigma, S, f, \min), \Sigma=\{1,2, \ldots, N\} \ni j:$ next move to node $j, S=\left\{x \in \Sigma^{*} \mid x=y N, y \in\right.$ $\left.\Sigma^{*}\right\}, A\left(x=j_{1} j_{2} \cdots j_{k}\right)=\left\{i \mid i=i_{0} i_{1} i_{2} \cdots i_{k}, i_{0}=[1,-], i_{1}=\left[j_{1}, l_{1}\right], i_{2}=\left[j_{2}, l_{2}\right], \ldots, i_{k}=\right.$ $\left.\left[j_{k}, l_{k}\right]\right\}$, where $l_{1}, l_{2}, \ldots, l_{k}$ denotes the scenarios, $1,2,3$; for example, scenario 1 : heavy traffic, scenario 2: ordinary traffic, scenario 3: light traffic, respectively, and each index $i=[j, l]$ means that one meets to a scenario i after taking policy j. According to the scenarios, 1 , 2,3 , arc lengths, $t_{j_{k} j_{l}}^{1}, t_{j_{k j l}}^{2}, t_{j_{k} j_{l}}^{3} \in A \subset R^{1}$ are associated with each arc $\left(j_{k}, j_{l}\right)$, respectively. $A_{F}=\{[N, 3]\}, A\left(x=j_{1} j_{2} \cdots j_{k}\right)=\left\{i \mid i=i_{0} i_{1} i_{2} \cdots i_{k}, \pi(i)=i_{k}=[N, 3]\right\}$. For each $i_{x}=i_{0} i_{1} i_{1} \cdots i_{k-1} i_{k} \in A\left(x=j_{1} j_{2} \cdots j_{k} N\right)$, where $i_{0}=[1,-], i_{1}=\left[j_{1}, l_{1}\right], i_{2}=$ $\left[j_{2}, l_{2}\right], \ldots, i_{k-1}=\left[j_{k-1}, l_{k-1}\right], i_{k}=[N, 3]$, the value $f_{i_{x}}(x)$ is defined by $f_{i_{x}}\left(x=j_{1} j_{2} \cdots j_{k}\right)=$ $t_{1_{j}}^{l_{1}} \circ t_{j_{1} j_{2}}^{l_{2}} \circ \cdots \circ t_{j_{k-2} j_{k-1}}^{l_{k-1}} \circ t_{j_{k-1} N}^{3}$, where $\circ: A \times A \longrightarrow A$: binary operation satisfies the associative law. $f\left(x=j_{1} j_{2} \cdots j_{k} N\right)=\operatorname{Max}\left\{f_{i}(x) \mid i \in \bar{A}(x)\right\}=\operatorname{Max} f_{\bar{A}(x)}(x) \Longrightarrow$ minimize.

Figure 1: Nondeterministic shortest path problem (nd-ddp $\Upsilon_{\text {min }}$)
For this problem, define an equivalent relation \hat{T} by

$$
\begin{aligned}
\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \Longleftrightarrow & x=j_{1} j_{2} \cdots j, y=j_{1}^{\prime} j_{2}^{\prime} \cdots j \\
& i_{x}=i_{0} i_{1} i_{2} \cdots i, i_{y}=i_{0} i_{1}^{\prime} i_{2}^{\prime} \cdots i
\end{aligned}
$$

then, $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$. Further, since the assumption (3.4) in Theorem 3.1 is satisfied, $\Upsilon_{\text {min }}$ is super-strongly represented by nd-sdp $\Pi_{\text {min }}=\left(M\left(Q, \Sigma, q_{0}, S T, Q_{F}\right), h, \xi_{0}, \mathrm{~min}\right)$:

$$
\begin{aligned}
& Q=\left\{[1,-],\left[j_{1}, l_{1}\right],\left[j_{2}, l_{2}\right], \ldots,\left[j_{k}, l_{k}\right], \ldots[N, 3] \mid j_{k}: \text { node, } l_{k}=1 \text { or } 2 \text { or } 3\right\}, \\
& q_{0}=[1,-]: \text { initial node }, Q_{F}=\{[N, 3]\}, \\
& h\left(\xi,\left[j_{k}, l_{k}\right],\left[j_{m}, l_{m}\right], j_{m}\right)=\xi \circ t_{j_{k} j_{m}}^{l_{m}}, t_{j_{k} j_{m}}^{l_{m}} \in T_{j_{k} j_{m}}, \\
& \xi_{0}=e(\circ): \text { unit element of the binary operation } \circ .
\end{aligned}
$$

In fact, for $x=j_{1} j_{2} \ldots j_{k-1} N \in S$, and $r_{m}=\left[j_{m}, l_{m}\right], m=1,2, \cdots, k-1, r_{k}=[N, 3]$, it holds that

$$
\begin{aligned}
& \bar{h}_{q_{0} ; \mu r_{1}}\left(j_{1}\right)=h\left(\xi_{0}, q_{0},\left[j_{1}, l_{1}\right], j_{1}\right)=\xi_{0} \circ t_{1 j_{1}}^{l_{1}}=t_{1 j_{1}}^{l_{1}}, \\
& \bar{h}_{q_{0} ; \mu r_{1} r_{2}}\left(j_{1} j_{2}\right)=h\left(\bar{h}_{q_{0} ; \mu r_{1}}\left(j_{1}\right),\left[j_{1}, l_{1}\right],\left[j_{2}, l_{2}\right], j_{2}\right) \\
& \quad=\bar{h}_{q_{0} ; \mu r_{1}}\left(j_{1}\right) \circ t_{j_{1} j_{2}}^{l_{2}}=t_{1 j_{1}}^{l_{1}} \circ t_{j_{1} j_{2}}^{l_{2}}, \\
& \quad \cdots \\
& \bar{h}_{q_{0} ; \mu r_{1} r_{2} \ldots . r_{k-1} r_{k}}\left(j_{1} j_{2} \ldots j_{k-1} N\right)=\bar{h}_{q_{0} ; \mu r_{1} r_{2} \ldots r_{k-1}}\left(j_{1} j_{2} \ldots j_{k-1}\right) \circ t_{j_{k-1} N}^{3} \\
& \quad=t_{1 j_{1}}^{l_{1}} \circ t_{j_{1} j_{2}}^{l_{2}} \circ \cdots \circ t_{j_{k-2} j_{k-1}}^{l_{k-1}} \circ t_{j_{k-1} N}^{3}=f_{i}\left(x=j_{1} j_{2} \cdots j_{k-1} N\right),
\end{aligned}
$$

which implies that for $\forall\left(x, \delta_{x}\right) \in \bar{F}\left(\Pi_{\text {min }}\right), \forall\left(x, i_{x}\right) \in S_{\bar{A}}$,

$$
\bar{h}_{q_{0} ; \delta_{x}}(x)=f_{i_{x}}(x),
$$

that is, $\Pi_{\text {min }}$ super-strongly represents $\Upsilon_{\min }$. It is noted that this $\Pi_{\text {min }}$ is also nd-assdp.

4. Super-strong Representation of an nd-ddp by an nd-msdp and nd-pmsdp

The following lemma will be used in deriving super-strong representation theorem by ndmsdp and nd-pmsdp.

Lemma 4.1 (implementation of h^{\prime} by nd-msdp). Let $A(x), h_{i}^{\prime}(x)$ and $\hat{R}_{h^{\prime}}$ be defined as in Lemma 3.1. Then there exists an nd-msdp $\Pi_{\min }=\left(M, h, \xi_{0}\right.$, min) satisfying the equation (3.1), if and only if there exists $\hat{T} \in \Lambda_{F}\left(\Sigma_{A}^{*}\right)$ satisfying that

$$
\begin{equation*}
\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x) \leq h_{i_{y}}^{\prime}(y)\right) \Longrightarrow h_{i_{x} i_{z}}^{\prime}(x z) \leq h_{i_{y} i_{z}}^{\prime}(y z)\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right) . \tag{4.1}
\end{equation*}
$$

Proof. Necessity. Let an nd-msdp $\Pi_{\text {min }}$ satisfy the equation (3.1). Put $Q=I, Y\left(q_{0}, x\right)=$ $A(x) \forall x \in \Sigma^{*}$ and define \hat{T} by (3.2) in Lemma 3.1. Then $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$, and it follows from the monotonicity of h and (3.1) that

$$
\begin{aligned}
& \left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge h_{\delta_{x}}^{\prime}(x) \leq h_{\delta_{y}}^{\prime}(y) \\
\Longrightarrow \quad & \pi\left(\delta_{x}\right)=\pi\left(\delta_{y}\right), \text { where } \delta_{x} \in Y\left(q_{0}, x\right)=A(x), \delta_{y} \in Y\left(q_{0}, y\right)=A(y) \\
& \wedge \bar{h}_{q_{0} ; \delta_{x}}(x)=h_{\delta_{x}}^{\prime}(x) \leq h_{\delta_{y}}^{\prime}(y)=\bar{h}_{q_{0} ; \delta_{y}}(y) \\
\Longrightarrow \quad & \pi\left(\delta_{x} r_{1}\right)=\pi\left(\delta_{y} r_{1}\right), \text { where } \exists a_{1} \in \Sigma \text { s.t. } \delta_{x} r_{1} \in Y\left(q_{0}, x a_{1}\right), \delta_{y} r_{1} \in Y\left(q_{0}, y a_{1}\right) \\
& \wedge \bar{h}_{q_{0} ; \delta_{x} r_{1}}\left(x a_{1}\right)=h\left(\bar{h}_{q_{0} ; \delta_{x}}(x), \pi\left(\delta_{x}\right), r_{1}, a_{1}\right) \leq h\left(\bar{h}_{q_{0} ; \delta_{y}}(y), \pi\left(\delta_{y}\right), r_{1}, a_{1}\right)=\bar{h}_{q_{0} ; \delta_{y} r_{1}}\left(y a_{1}\right) \\
\Longrightarrow & \left(x a_{1}, \delta_{x} r_{1}\right) \hat{T}\left(y a_{1}, \delta_{y} r_{1}\right) \wedge h_{\delta_{x} r_{1}}^{\prime}\left(x a_{1}\right) \leq h_{\delta_{y} r_{1}}^{\prime}\left(y a_{1}\right) \Longrightarrow \cdots \\
\Longrightarrow & h_{\delta_{x} r_{1} \cdots r_{n}}^{\prime}\left(x a_{1} \cdots a_{n}\right) \leq h_{\delta_{y} r_{1} \cdots r_{n}}^{\prime}\left(y a_{1} \cdots a_{n}\right) .
\end{aligned}
$$

Put $z=a_{1} \cdots a_{n} \in \Sigma^{*}, \delta_{z}=r_{1} \cdots r_{n} \in Y\left(\pi\left(\delta_{x}\right), z\right)=Y\left(\pi\left(\delta_{y}\right), z\right) \subset I^{*}$. Then we have (4.1).
Sufficiency. The condition (4.1) implies that $\hat{T} \wedge \hat{R}_{h_{a}^{\prime}} \in \Lambda\left(\Sigma_{A}^{*}\right)$, where $\hat{R}_{h_{a}^{\prime}}$ is defined by the same way as in Lemma 3.1, since

$$
\begin{aligned}
& \left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x)=h_{i_{y}}^{\prime}(y)\right) \\
& \Longleftrightarrow\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x) \leq h_{i_{y}}^{\prime}(y)\right) \wedge\left(h_{i_{y}}^{\prime}(y) \leq h_{i_{x}}^{\prime}(x)\right) \\
& \Longrightarrow\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right)\left(\left(x z, i_{x} i_{z}\right) \hat{T}\left(y z, i_{y} i_{z}\right) \wedge\left(h_{i_{x} i_{z}}^{\prime}(x z) \leq h_{i_{y} i_{z}}^{\prime}(y z)\right) \wedge\left(h_{i_{y} i_{z}}^{\prime}(y z) \leq h_{i_{x} i_{z}}^{\prime}(x z)\right)\right) \\
& \Longleftrightarrow\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right)\left(\left(x z, i_{x} i_{z}\right) \hat{T}\left(y z, i_{y} i_{z}\right) \wedge\left(h_{i_{x} i_{z}}^{\prime}(x z)=h_{i_{y} i_{z}}^{\prime}(y z)\right)\right) \\
& \Longrightarrow \hat{T} \wedge R_{h_{a}^{\prime}} \in \Lambda\left(\Sigma_{A}^{*}\right) .
\end{aligned}
$$

Let $M=\left(Q, \Sigma, q_{0}, S T, Q_{F}\right)$ and h be defined in the same way as in the proof of the sufficiency of Lemma 3.1. If there exist $x, y \in \Sigma^{*}$ such that $q=\left[\left(x, i_{x}\right)\right]=\left[\left(y, i_{y}\right)\right]$ (i.e. $\left.\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right)\right), r=$ $\left[\left(x a, i_{x} j\right)\right]=\left[\left(y a, i_{y} j\right)\right]$ (i.e. $\left.\left(x a, i_{x} j\right) \hat{T}\left(y a, i_{y} j\right)\right)$ and $h_{i_{x}}^{\prime}(x)=\xi_{1} \leq h_{i_{y}}^{\prime}(y)=\xi_{2}$, then we have

$$
h\left(\xi_{1}, q, r, a\right)=h_{i_{x} r}^{\prime}(x a) \leq h_{i_{y} r}^{\prime}(y a)=h\left(\xi_{2}, q, r, a\right)
$$

For the case that there exists no $x \in \Sigma^{*}$ such that $\xi=h_{i_{x}}^{\prime}(x)\left(i_{x} \in A(x)\right), q=\left[\left(x, i_{x}\right)\right], r=$ $\left[\left(x a, i_{x} j\right)\right]\left(i_{x} j \in A(x a)\right)$, we can re-define the function h so that $h\left(\xi_{1}, q, r, a\right) \leq h(\xi, q, r, a) \leq$ $h\left(\xi_{2}, q, r, a\right)$ holds for all ξ such that $\xi_{1}=h_{i_{x}}^{\prime}(x) \leq \xi \leq h_{i_{y}}^{\prime}(y)=\xi_{2}$. Consequently, the resulting $\Pi_{\text {min }}$ is an nd-msdp.

Definition 4.1 (partial ordering relation). For nd-ddp $\Upsilon_{\text {min }}=\left(\Sigma, S, f, A_{F}, \min \right), f(x)=$ $\operatorname{Max}\left\{f_{i}(x) \mid i \in \bar{A}(x)\right\}$, define a partial ordering relation $\preceq \Upsilon_{f_{i}}$ on $S_{\bar{A}}$ as the following:

$$
\left(x, i_{x}\right) \preceq \Upsilon_{f_{i}}\left(y, i_{y}\right) \Longleftrightarrow\left(x, i_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, i_{y}\right) \wedge\left(\forall\left(x z, i_{x} i_{z}\right) \in S_{\bar{A}}\right) \quad\left(f_{i_{x} i_{z}}(x z) \leq f_{i_{y} i_{z}}(y z)\right)
$$

Proposition 4.1. The partial ordering relation $\preceq_{\Upsilon_{f_{i}}}$ is right invariant, and the following relation holds:

$$
\left(x, i_{x}\right) \preceq_{\Upsilon_{f_{i}}}\left(y, i_{y}\right) \wedge\left(y, i_{y}\right) \preceq_{\Upsilon_{f_{i}}}\left(x, i_{x}\right) \Longleftrightarrow\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)
$$

From Lemma 4.1, the following super-strong representation theorem for nd-msdp is derived.

Theorem 4.1 (super-strong representation of nd-msdp). For a given nd-ddp $\Upsilon_{\min }=$ (Σ, S, f, \min), there exists an nd-msdp $\Pi_{\min }=\left(M, h, \xi_{0}, \min \right)$ which super-strongly represents $\Upsilon_{\text {min }}$ if and only if there exists $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$ satisfying the following two conditions:
(i) $\left(\forall\left(x, i_{x}\right),\left(y, i_{y}\right) \in S_{\bar{A}}\right)\left(\left(x, i_{x}\right)\left(\hat{T} \wedge \hat{R}_{f_{i}}\right)\left(y, i_{y}\right) \Longrightarrow\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)\right)$;
(ii) $\left(x, i_{x}\right),\left(y, i_{y}\right) \in C_{i} \in \Sigma_{A}^{*} / \hat{T} \Longrightarrow\left(x, i_{x}\right) \preceq \Upsilon_{f_{i}}\left(y, i_{y}\right)$ or $\left(y, i_{y}\right) \preceq \Upsilon_{f_{i}}\left(x, i_{x}\right)$.

Proof. Necessity. Let an nd-msdp $\Pi_{\min }$ super-strongly represent nd-ddp $\Upsilon_{\min }$. Put $Q=I, Y\left(q_{0}, x\right)=A(x) \forall x \in \Sigma^{*}$ and $Q_{F}=A_{F}$, and define \hat{T} by the same way as in the proof of Lemma 3.1. Then $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$ and satisfy the condition (i) by Theorem 3.1. Furthermore,

$$
\begin{aligned}
& \left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge\left(\bar{h}_{q_{0} ; \delta_{x}}(x) \leq \bar{h}_{q_{0} ; \delta_{y}}(y)\right) \\
& \Longrightarrow\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge\left(\forall\left(z, \delta_{z}\right) \in \Sigma_{A}^{*}\right)\left(\bar{h}_{q_{0} ; \delta_{x} \delta_{z}}(x z) \leq \bar{h}_{q_{0} ; \delta_{y} \delta_{z}}(y z)\right) \\
& \Longrightarrow\left(x, \delta_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, \delta_{y}\right) \wedge\left(\forall\left(x z, \delta_{x} \delta_{z}\right) \in S_{\bar{A}}=\bigcup_{x \in F\left(\Pi_{\min }\right)}\left\{(x, \sigma) \mid \sigma \in \bar{Y}\left(q_{0}, x\right)\right\}\right) \\
& \quad\left(f_{\delta_{x} \delta_{z}}(x z) \leq f_{\delta_{y} \delta_{z}}(y z)\right) \Longleftrightarrow\left(x, \delta_{x}\right) \preceq \Upsilon_{f_{i}}\left(y, \delta_{y}\right) .
\end{aligned}
$$

Since $\bar{h}_{q_{0} ; \delta_{x}}(x) \leq \bar{h}_{q_{0} ; \delta_{y}}(y)$ or $\bar{h}_{q_{0} ; \delta_{y}}(y) \leq \bar{h}_{q_{0} ; \delta_{x}}(x)$ holds for each $\left(x, \delta_{x}\right),\left(y, \delta_{y}\right) \in \Sigma_{A}^{*} / \hat{T}$, so, we have the condition (ii).

Sufficiency. Let $M=\left(Q, \Sigma, q_{0}, S T, Q_{F}\right)$ be defined by the same way as in the proof of the sufficiency of Theorem 3.1. Then we have $F\left(\Pi_{\min }\right)=F(M)=S, \bar{Y}\left(q_{0} ; x\right) \equiv \bar{A}(x)$ for $\forall x \in$ S. Further, define the function $h_{i_{x}}^{\prime}(x)$ on Σ_{A}^{*} as follows:
(1) $h_{i_{x}}^{\prime}(x)=f_{i_{x}}(x)$ if $\left(x, i_{x}\right) \in S_{\bar{A}}$;
(2) $\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(\left(x, i_{x}\right) \preceq_{\Upsilon_{i}}\left(y, i_{y}\right)\right) \Longleftrightarrow\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x) \leq h_{i_{y}}^{\prime}(y)\right)$,
which is possible since $\preceq_{\Upsilon_{f_{i}}}$ is a total ordering on each $C_{i} / \hat{R}_{\Upsilon_{f_{i}}}$ by Proposition 4.1 and condition (ii), where $C_{i} \in \Sigma_{A}^{*} / \hat{T}$, and

$$
A_{k} \preceq \Upsilon_{f_{i}} A_{l} \Longleftrightarrow f_{i_{x}}(x) \leq f_{i_{y}}(y)
$$

for $\forall\left(x, i_{x}\right) \in A_{k},\left(y, i_{y}\right) \in A_{l}$, where $A_{k}, A_{l} \in C_{i} / \hat{R}_{\Upsilon_{f_{i}}}$, and $C_{i} \subset S_{\bar{A}}$; hence (1) does not contradict to (2).

Let $\left[\left(x, i_{x}\right)\right]$ represent the equivalent class in $\Sigma_{A}^{*} / \hat{R}_{\Upsilon_{f_{i}}}$, which contains $\left(x, i_{x}\right) \in \Sigma_{A}^{*}$. Then, from the condition (2), we obtain

$$
\begin{aligned}
& \left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge h_{i_{x}}^{\prime}(x) \leq h_{i_{y}}^{\prime}(y) \\
& \Longleftrightarrow\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left[\left(x, i_{x}\right)\right] \preceq \Upsilon_{f_{i}}\left[\left(y, i_{y}\right)\right] \\
& \Longleftrightarrow\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right)\left(x z, i_{x} i_{z}\right) \hat{T}\left(y z, i_{y} i_{z}\right) \wedge\left[\left(x z, i_{x} i_{z}\right)\right] \preceq \Upsilon_{f_{i}}\left[\left(y z, i_{y} i_{z}\right)\right] \\
& \Longleftrightarrow\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right)\left(x z, i_{x} i_{z}\right) \hat{T}\left(y z, i_{y} i_{z}\right) \wedge h_{i_{x} i_{z}}^{\prime}(x z) \leq h_{i_{y} i_{z}}^{\prime}(y z) .
\end{aligned}
$$

Hence, by Lemma 4.1, there exists an nd-msdp $\Pi_{\text {min }}$ such that $\bar{h}_{q_{0} ; \delta_{x}}(x)=h_{i_{x}}^{\prime}(x), \forall\left(x, \delta_{x}\right) \in$ $\Sigma_{Y}^{*}, \forall\left(x, i_{x}\right) \in \Sigma_{A}^{*}$. So, it follows from the condition (1) that

$$
\bar{h}_{q_{0} ; \delta_{x}}(x)=f_{i_{x}}(x) \forall\left(x, \delta_{x}\right) \in \bar{F}\left(\Pi_{\min }\right), \forall\left(x, i_{x}\right) \in S_{\bar{A}}(x),
$$

that is, nd-msdp $\Pi_{\text {min }}$ super strongly represents $\Upsilon_{\text {min }}$.

In order to derive a super-strong representation by nd-pmsdp, let us introduce a directed graph $\hat{\Gamma}_{\gamma ; \hat{T}}$ for nd-ddp and $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$. Denote the set of equivalence classes of $\hat{R}_{\Upsilon_{f_{i}}} \wedge \hat{T}$ by $\hat{Y}=\Sigma_{A}^{*} / \hat{R}_{\Upsilon_{f_{i}}} \wedge \hat{T}$. Then, based on \hat{Y}, a directed graph $\hat{\Gamma}_{\gamma ; \hat{T}}$ is defined as follows:
(1) $\hat{Y} \ni \hat{A}_{i}$: a node in $\hat{\Gamma}_{\Upsilon_{m} ; T}$;
(2) $\left(\hat{A}_{i}, \hat{A}_{j}\right)$: an arc in $\hat{\Gamma}_{\gamma ; \hat{T}}$ which has the following three types:
(a) arc of type A:

$$
\begin{aligned}
& \hat{A}_{i} \neq \hat{A}_{j} \wedge \hat{A}_{i} \hat{T}_{A_{j}} \wedge \hat{A}_{i} \preceq_{\Upsilon_{f_{i}}} \hat{A}_{j} \text { or } \\
& \hat{A}_{i} \neq \hat{A}_{j} \wedge\left(\hat{A}_{i}, \hat{A}_{j} \subset S_{\bar{A}}\right) \wedge f_{i_{x}}(x)<f_{i_{y}}(y)\left(\forall\left(x, i_{x}\right) \in \hat{A}_{i}, \forall\left(y, i_{y}\right) \in \hat{A}_{j}\right)
\end{aligned}
$$

(b) arc of type B:

$$
\hat{A}_{i} \neq \hat{A}_{j} \wedge\left(\hat{A}_{i}, \hat{A}_{j} \subset S_{\bar{A}}\right) \wedge f_{i_{x}}(x)<f_{i_{y}}(y)\left(\forall\left(x, i_{x}\right) \in \hat{A}_{i}, \forall\left(y, i_{y}\right) \in \hat{A}_{j}\right)
$$

(c) arc of type C: $\exists\left(a, i_{a}\right) \in \Sigma \times I$ s.t. $\left(x a, i_{x} i_{a}\right) \in \hat{A}_{j}\left(\forall\left(x, i_{x}\right) \in \hat{A}_{i}\right)$.

A cycle in $\hat{\Gamma}_{\gamma ; \hat{T}}$ is inconsisitent if it includes an arc of type A.
Theorem 4.2 (super-strong representation of nd-pmsdp). An nd-ddp $\Upsilon_{\min }=(\Sigma, S, f, \mathrm{~min})$ is super-strongly representable by a nd-pmsdp $\Pi_{\min }=\left(M, h, \xi_{0}, \min \right)$ if and only if $\inf \{f(x) \mid$ $x \in S\}>-\infty$ and there exists $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$ satisfying the following three conditions:
(i) $\left(\forall\left(x, i_{x}\right),\left(y, i_{y}\right) \in S_{\bar{A}}\right)\left(\left(x, i_{x}\right)\left(\hat{T} \wedge \hat{R}_{f_{i}}\right)\left(y, i_{y}\right) \Longrightarrow\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)\right)$;
(ii) $\left(x, i_{x}\right),\left(y, i_{y}\right) \in C_{i} \in \Sigma_{A}^{*} / \hat{T} \Longrightarrow$

$$
\left(x, i_{x}\right) \preceq_{\Upsilon_{f_{i}}}\left(y, i_{y}\right) \text { or }\left(y, i_{y}\right) \preceq_{\Upsilon_{f_{i}}}\left(x, i_{x}\right) \text {; }
$$

(iii) graph $\hat{\Gamma}_{\gamma ; \hat{T}}$ contains no inconsistent cycle.

Proof. Necessity. Let an nd-pmsdp $\Pi_{\text {min }}$ super-strongly represent nd-ddp $\Upsilon_{\text {min }}$. Put $Q=I, Y\left(q_{0}, x\right)=A(x) \forall x \in \Sigma^{*}$ and $Q_{F}=A_{F}$, and define \hat{T} by (3.2) in Lemma 3.1. Then $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$ and satisfy the conditions (i), (ii) since it is nd-msdp by Theorem 4.1. Furthermore, from the condition, $h(\xi, q, r, a) \geq \xi$ for $\forall \xi, \forall(q, r, a) \in S T$, we have $\bar{h}_{q_{0} ; \delta_{x}}(x) \geq$ $\cdots \geq \bar{h}_{q_{0} ; \mu r_{1}}\left(a_{1}\right)=h\left(\xi_{q_{0}}, \mu, r_{1}, a_{1}\right) \geq \xi_{q_{0}}=\bar{h}_{q_{0} ; \mu}(\epsilon)$ for $\forall x, \forall \delta_{x} \in Y\left(q_{0}, x\right)$, which implies that $f(x)=\operatorname{Max} f_{A(x)}(x)=\operatorname{Max} \bar{h}_{q_{0} ; Y\left(q_{0}, x\right)}(x) \geq \xi_{q_{0}}>-\infty \Longrightarrow \inf \{f(x) \mid s \in S\}>-\infty$. Next, in order to prove the condition (iii), let

$$
\beta=\left\{\left(\hat{A}_{i_{1}}, \hat{A}_{i_{2}}\right),\left(\hat{A}_{i_{2}}, \hat{A}_{i_{3}}\right), \ldots,\left(\hat{A}_{i_{k-1}}, \hat{A}_{i_{k}}\right)\right\}, \hat{A}_{i_{1}}=\hat{A}_{i_{k}}
$$

be an inconsistent cycle in the graph $\hat{\Gamma}_{\gamma ; \hat{T}}$. Without loss of generality, we can assume that $\left(\hat{A}_{i_{1}}, \hat{A}_{i_{2}}\right)$ is of type A. For a directed arc of type A, it holds that

$$
\begin{equation*}
\left(\forall\left(x, \delta_{x}\right) \in \hat{A}_{i}, \forall\left(y, \delta_{y}\right) \in \hat{A}_{j}\right)\left(\bar{h}_{q_{0} ; \delta_{x}}(x)<\bar{h}_{q_{0} ; \delta_{y}}(y)\right), \tag{4.2}
\end{equation*}
$$

since, in case, $\hat{A}_{i} \neq \hat{A}_{j} \wedge \hat{A}_{i} \hat{T} \hat{A}_{j} \wedge \hat{A}_{i} \preceq_{\Upsilon_{f_{i}}} \hat{A}_{j} \Longrightarrow \hat{A}_{i} \hat{T} \hat{A}_{j} \wedge\left(\sim \hat{A}_{i} \hat{R}_{\Upsilon_{f_{i}}} \hat{A}_{j}\right) \wedge \hat{A}_{i} \preceq \Upsilon_{f_{i}} \hat{A}_{j} \Longrightarrow$ (4.2), in case, $\hat{A}_{i} \neq \hat{A}_{j} \wedge\left(A_{i}, \hat{A}_{j} \in S_{\bar{A}}\right) \wedge\left(f_{i_{x}}(x)=\bar{h}_{q_{0} ; \delta_{x}}(x)<f_{i_{y}}(y)=\bar{h}_{q 0} ; \delta_{y}(y), \forall\left(x, i_{x}\right) \in\right.$ $\left.\hat{A}_{i},\left(y, i_{y}\right) \in \hat{A}_{j}\right) \Longrightarrow(4.2)$. In the same way, we can show that for an arc $\left(\hat{A}_{i_{1}}, \hat{A}_{i_{2}}\right)$ of type $\mathrm{B},\left(\forall\left(x, \delta_{x}\right) \in \hat{A}_{i}, \forall\left(y, \delta_{y}\right) \in \hat{A}_{j}\right)\left(\bar{h}_{q_{0} ; \delta_{x}}(x)=\bar{h}_{q_{0} ; \delta_{y}}(y)\right)$, and for an $\operatorname{arc}\left(\hat{A}_{i_{1}}, \hat{A}_{i_{2}}\right)$ of type C, $\forall\left(x, \delta_{x}\right), \exists\left(y, \delta_{y}\right)=\left(x a, \delta_{x} r\right)$ such that $\bar{h}_{q_{0} ; \delta_{x}}(x) \leq \bar{h}_{q_{0} ; \delta_{x} r}(x a)=\bar{h}_{q_{0} ; \delta_{y}}(y)$. Consequently, for the inconsisitent cycle β, it is possible to select $\left(x^{i_{j}}, \delta_{x^{i_{j}}}\right) \in A_{i_{j}}, j=1,2, \cdots, k-1$ satisfying

$$
\bar{h}_{q_{0} ; \delta_{x^{i}} i_{1}}\left(x^{i_{1}}\right)<\bar{h}_{q_{0} ; \delta_{x} i_{2}}\left(x^{i_{2}}\right) \leq \bar{h}_{q_{0} ; \delta_{x} i_{3}}\left(x^{i_{3}}\right) \leq \cdots \leq \bar{h}_{q_{0} ; \delta_{x^{i_{k-1}}}}\left(x^{i_{k-1}}\right) \leq \bar{h}_{q_{0} ; \delta_{x^{i_{1}}}}\left(x^{i_{1}}\right),
$$

which is a contradiction.
Sufficiency. Let us define an equivalence relation \doteq on $\hat{Y}=\Sigma_{A}^{*} / \hat{T}$ by

$$
\hat{A}_{i} \doteq \hat{A}_{j} \Longleftrightarrow\left(\exists \text { paths both from } \hat{A}_{i} \text { to } \hat{A}_{j} \text { and from } \hat{A}_{j} \text { to } \hat{A}_{i} \text { in } \hat{\Gamma}_{\gamma_{f_{i}}, \hat{T}}\right)
$$

For equivalent classes $\hat{K}_{p}, \hat{K}_{q} \in \hat{Y} / \doteq$, define a partial ordering \ll on \hat{Y} / \doteq by

$$
\hat{K}_{p} \ll \hat{K}_{q} \Longleftrightarrow\left(\exists \text { path from } \hat{A}_{i} \in \hat{K}_{p} \text { to } \hat{A}_{j} \in \hat{K}_{q} \text { in } \hat{\Gamma}_{\gamma_{f_{i}} ; \hat{T}}\right)
$$

Let $\hat{W}^{\prime}=\left\{\hat{K}_{p} \mid \hat{A}_{i} \backslash S_{\bar{A}} \neq \emptyset\right.$ for $\left.\forall \hat{A}_{i} \in \hat{K}_{p}\right\}, \hat{W}=\left\{\left(x, i_{x}\right) \in \Sigma_{A}^{*} \mid\left(x, i_{x}\right) \backslash S_{\bar{A}} \neq \emptyset\right\}$, where $\left(x, i_{x}\right) \backslash S_{\bar{A}}=\left\{\left(z, i_{z}\right) \in \Sigma_{A}^{*} \mid\left(x z, i_{x} i_{z}\right) \in S_{\bar{A}}\right\}$ and $\hat{A}_{i} \backslash S_{\bar{A}}=\left\{\left(z, i_{z}\right) \in \Sigma_{A}^{*} \mid \exists\left(x, i_{x}\right) \in\right.$ \hat{A}_{i} s.t. $\left.\left(x z, i_{x} i_{z}\right) \in S_{\bar{A}}\right\}$. It is noted that $\exists \hat{A}_{i} \in \hat{K}_{p}$ such that $\hat{A}_{i} \backslash S_{\bar{A}} \neq \emptyset \Longleftrightarrow \hat{A}_{i} \backslash S_{\bar{A}} \neq$ \emptyset for $\forall \hat{A}_{i} \in \hat{K}_{p}$, and $\left(x, i_{x}\right) \in \hat{W} \Longleftrightarrow\left(\left(x, i_{x}\right) \in \hat{A}_{i}, \hat{A}_{i} \in \hat{K}_{p} \Longrightarrow \hat{K}_{p} \in \hat{W}^{\prime}\right)$. Then consider a mapping $\gamma: \hat{W}_{p}^{\prime} \rightarrow R^{1}$ such that
(a) $\gamma\left(\hat{K}_{p}\right)=f_{i_{x}}(x) \forall\left(x, i_{x}\right) \in C_{i}$ if $\exists \hat{A}_{i} \in \hat{K}_{p}$ s.t. $\hat{A}_{i} \subset S_{\bar{A}}$;
(b) $\hat{K}_{p} \ll \hat{K}_{q} \wedge \hat{K}_{p} \neq \hat{K}_{q} \Longrightarrow \gamma\left(\hat{K}_{p}\right)<\gamma\left(\hat{K}_{q}\right)$;
(c) $\gamma\left(\hat{K}_{0}\right)<\gamma\left(\hat{K}_{p}\right)$ for all $\hat{K}_{p} \in \hat{Y} / \doteq$, where $\exists \hat{A}_{0} \in \hat{K}_{0}$ s.t. $(\epsilon, \mu) \in \hat{A}_{0}$.

It can be shown in the same way as in Theorem 12.5 of Ibaraki [1] that the above γ exists. Next define the function $h_{i_{x}}^{\prime}(x)$ on Σ_{A}^{*} by:

$$
h_{i_{x}}^{\prime}(x)= \begin{cases}\gamma\left(\hat{K}_{p}\right), & \text { if } \exists \hat{A}_{i} \in \hat{K}_{p} \text { such that }\left(x, i_{x}\right) \in \hat{A}_{i} \text { and } \hat{K}_{p} \in \hat{W}^{\prime}, \tag{4.3}\\ h_{i_{y}}^{\prime}(y), & \text { otherwise, where }\left(x, i_{x}\right)=\left(y z, i_{y} i_{z}\right), \text { and }\left(y, i_{y}\right) \text { is the longest } \\ & \text { prefix of }\left(x, i_{x}\right) \text { satisfying }\left(y, i_{y}\right) \in W^{\prime} .\end{cases}
$$

Then the function $h_{i_{x}}^{\prime}(x)$ satisfies the following:
(1) $h_{i_{x}}^{\prime}(x)=f_{i_{x}}(x)$ if $\left(x, i_{x}\right) \in S_{\bar{A}}$;
(2) $\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x) \leq h_{i_{y}}^{\prime}(y)\right) \Longrightarrow h_{i_{x} i_{z}}^{\prime}(x z) \leq h_{i_{y} i_{z}}^{\prime}(y z)\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right)$;
(3) $h_{i_{x}}^{\prime}(x) \leq h_{i_{x} i_{y}}^{\prime}(x y)$ for $\forall\left(x, i_{x}\right), \forall\left(y, i_{y}\right) \in \Sigma_{A}^{*}$.

From the properties, (a), (b), and (c), we can show (1) and (2) in the same way as in Theorem 12.5 of Ibaraki[2]. The last statement is proved as follows. Let $\left(x, i_{x}\right) \in \hat{A}_{i} \in$ $\hat{K}_{p},\left(x y, i_{x} i_{y}\right) \in \hat{A}_{j} \in \hat{K}_{q}$. Then, since there exists an directed arc of type C from \hat{A}_{i} to \hat{A}_{j}, it holds that $\hat{K}_{p} \ll \hat{K}_{q}$. So, from the the property (b), $h_{i_{x}}^{\prime}(x)=\gamma\left(\hat{K}_{p}\right)<\gamma\left(\hat{K}_{q}\right)=h_{i_{x} i_{y}}^{\prime}(x y)$ if $\left(x, i_{x}\right),\left(x y, i_{x} i_{y}\right) \in \hat{W}$. In case $\left(x, i_{x}\right) \in \hat{W},\left(x y, i_{x} i_{y}\right) \notin \hat{W}$, putting $\left(x y, i_{x} i_{y}\right)=\left(x z z^{\prime}, i_{x} i_{z} i_{z}^{\prime}\right)$ where $\left(x z, i_{x} i_{z}\right) \in \hat{W}$, we have $h_{i_{x}}^{\prime}(x) \leq h_{i_{x} i_{z}}^{\prime}(x z)=h_{i_{x} i_{z} i_{z}}^{\prime}\left(x z z^{\prime}\right)=h_{i_{x} i_{y}}^{\prime}(x y)$.

Hence, by (2) and Lemma 4.1, we obtain that there exists an nd-msdp $\Pi_{\text {min }}$ such that $Y\left(q_{0}, x\right) \equiv A(x)$ and $\bar{h}_{q_{0} ; Y\left(q_{0} ; x\right)}(x)=h_{A(x)}^{\prime}(x), \forall x \in \Sigma^{*}$. So, from (1), it follows that

$$
\bar{h}_{q_{0} ; \bar{Y}\left(q_{0} ; x\right)}(x)=h_{\bar{A}(x)}^{\prime}(x)=f_{\bar{A}(x)}(x) \quad \forall x \in S
$$

Finally, from (3) it concludes that the nd-msdp $\Pi_{\min }$ is a nd-pmsdp, since

$$
\xi=\bar{h}_{q_{0} ; \delta_{x}}(x) \leq \bar{h}_{q_{0} ; \delta_{x} r}(x a)=h\left(\xi, \pi\left(\delta_{x}\right), r, a\right) .
$$

Example 4.1 (egg dropping problem). Suppose that we wish to know which windows in a k-story building are safe to drop eggs from, and which will cause the eggs to break on landing. Suppose m eggs are available. What is the least number of eggs-droppings that is guaranteed to work in all cases ? Let us assume that we can reuse an unbroken egg and can not use the broken eggs. Further, assume that we can not decide the minimum story and the least number of eggs-droppings if we can not find the minimum story although we have egg. First, this problem can be formulated by the following nd-ddp $\Upsilon_{\min }=$ $(\Sigma, S, f, \min) ; \Sigma=\{1,2, \ldots, k\} \ni j:$ next drop an egg from j story, $\Sigma^{*} \ni x=23$: sequence of stories from which we drop eggs, $\quad S=\left\{x \in \Sigma^{*} \mid \exists i_{x} \in \bar{A}(x)\right.$ after $\left.x\right\}, \quad A(x=$ $\left.j_{1} j_{2} \cdots j_{n}\right)=\left\{i_{x} \mid i_{x}=i_{0} i_{1} \cdots i_{n}, i_{0}=([m],\{1,2, \ldots, k\}), \quad i_{1}=\left(\left[m_{1}\right],\{i, \cdots, l\}\right), \ldots, i_{n}=\right.$ $\left.\left(\left[m_{n}\right],\{i, \cdots, l\}\right)\right\}$, where $\left[m_{i}\right]$ denotes the number of unbroken eggs, $\{i, \cdots, l\}$ represents the set of unconfirmed stories. Further, $\bar{A}\left(x=j_{1} j_{2} \cdots j_{n}\right)=\left\{i_{x} \mid i_{x}=i_{0} i_{1} i_{2} \cdots i_{n}, i_{n}=\right.$ $\left.\left(\left[m_{n}\right], \emptyset\right)\right\}, f_{i_{x}}\left(x=j_{1} j_{2} \cdots j_{n}\right)=n, \quad i_{x} \in \bar{A}(x), x \in S, f(x)=\operatorname{Max}\left\{f_{i_{x}}(x) \mid i_{x} \in A(x)=\right.$ $\bar{A}(x)\}=\operatorname{Max} f_{\bar{A}(x)}(x),=\infty$ if $A(x) \neq \bar{A}(x)$. In case of 2 eggs and, 3 -story building, see the Figure 2.

Figure 2: Egg-dropping problem formulated as nd-ddp

Note that $S=\{x=3,12,21,11,111,121,311\} f(3)=f(12)=f(11)=\infty, \quad f(21)=2$, $f(111)=f(121)=f(311)=3, \quad \min \{f(x) \mid x \in S\}=2$. Further, define

$$
\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \Longleftrightarrow i_{x}=i_{1} i_{2} \cdots i \in A(x), i_{y}=j_{1}^{\prime} j_{2}^{\prime} \cdots i \in A(y)
$$

Then, $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$ and this equivalent relation \hat{T} satisfies the condition of Theorem 4.2. Consequently, $\Upsilon_{\min }$ is super-strongly represented by the following positively nd-msdp (see Figure 3 and Figure 4):

$$
\begin{aligned}
& \text { nd-pmsdp } \Pi_{\min }=\left(M\left(Q, \Sigma, q_{0}, S T, Q_{F}\right), h, \xi_{0}, \min \right) \\
& Q=\left\{\left(\left[m^{\prime}\right],\left\{j_{1}, j_{2}, \ldots, j_{n}\right\}\right)\right\} \\
& q_{0}=([2],\{1,2,3\}), \quad Q_{F}=\left\{\left(\left[m^{\prime}\right], \emptyset\right)\right. \\
& h(\xi, q, r, j)=\xi+1>\xi(\forall \xi), \quad \xi_{0}=0 .
\end{aligned}
$$

It holds that

$$
\bar{h}_{q_{0} ; \delta_{x}}(x)=f_{i_{x}}(x), \quad \forall\left(x, i_{x}\right) \in S_{\bar{A}} .
$$

Figure 3: Graph $\hat{\Gamma}_{\gamma ; \hat{T}}$

Here we note that $F\left(\Pi_{\min }\right)=\{x=3,12,21,11,111,121,311\} \bar{h}(3)=\bar{h}(12)=\bar{h}(11)=$ $\infty, \quad \bar{h}(21)=2, \bar{h}(111)=\bar{h}(121)=\bar{h}(311)=3, \quad \min \left\{\bar{h}(x) \mid x \in F\left(\Pi_{\text {min }}\right)\right\}=2$.

Figure 4: egg-dropping problem formulated as nd-pmsdp

5. Super-strong Representation of an nd-ddp by an nd-smsdp

The following lemma will be used in deriving super-strong representation theorem by ndsmsdp.
Lemma 5.1 (implementation of h^{\prime} by nd-smsdp). Let $A(x), h_{i}^{\prime}(x)$ and $\hat{R}_{h^{\prime}}$ be defined as in Lemma 3.1. Then there exists an nd-smsdp $\Pi_{\min }=\left(M, h, \xi_{0}, \min \right)$ satisfying the equation (3.1), if and only if there exists $\hat{T} \in \Lambda_{F}\left(\Sigma_{A}^{*}\right)$ satisfying the following two conditions:
(i) $\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x) \leq h_{i_{y}}^{\prime}(y)\right) \Longrightarrow$

$$
h_{i_{x} i_{z} j}^{\prime}(x z)=h_{i_{y} i_{z}}^{\prime}(y z)\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right) ;
$$

(ii) $\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x)<h_{i_{y}}^{\prime}(y)\right) \Longrightarrow$

$$
h_{i_{x} i_{z} j}^{\prime}(x z)<h_{i_{y} i_{z}}^{\prime}(y z)\left(\forall\left(z, i_{z}\right) \in \sum_{A}^{*}\right) .
$$

Proof. Necessity. Let an nd-smsdp $\Pi_{\min }$ satisfy the equation (3.1). Put $Q=I, Y\left(q_{0}, x\right)=$ $A(x) \forall x \in \Sigma^{*}$ and define \hat{T} on Σ_{A}^{*} in the same way as in Lemma 3.1. Then we have $\hat{T} \in \Lambda_{F}\left(\Sigma_{A}^{*}\right)$, and it follows from (3.1) that

$$
\begin{aligned}
& (\mathrm{i})\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge h_{\delta_{x}}^{\prime}(x)=h_{\delta_{y}}^{\prime}(y) \\
\Longrightarrow & \pi\left(\delta_{x}\right)=\pi\left(\delta_{y}\right), \text { where } \delta_{x} \in Y\left(q_{0}, x\right)=A(x), \delta_{y} \in Y\left(q_{0}, y\right)=A(y) \\
& \wedge \bar{h}_{q_{0} ; \delta_{x}}(x)=h_{\delta_{x}}^{\prime}(x)=h_{\delta_{y}}^{\prime}(y)=\bar{h}_{q_{0} ; \delta_{y}}(y) \\
\Longrightarrow & \pi\left(\delta_{x} r_{1}\right)=\pi\left(\delta_{y} r_{1}\right), \text { where } \exists a_{1} \in \Sigma \text { s.t. } \delta_{x} r_{1} \in Y\left(q_{0}, x a_{1}\right), \delta_{y} r_{1} \in Y\left(q_{0}, y a_{1}\right) \\
& \wedge \bar{h}_{q_{0} ; \delta_{x} r_{1}}\left(x a_{1}\right)=h\left(\bar{h}_{q_{0} ; \delta_{x}}(x), \pi\left(\delta_{x}\right), r_{1}, a_{1}\right)=h\left(\bar{h}_{q_{0} ; \delta_{y}}(y), \pi\left(\delta_{y}\right), r_{1}, a_{1}\right)=\bar{h}_{q_{0} ; \delta_{y} r_{1}}\left(y a_{1}\right) \\
\Longrightarrow & \left(x a_{1}, \delta_{x} r_{1}\right) \hat{T}\left(y a_{1}, \delta_{y} r_{1}\right) \wedge h_{\delta_{x} r_{1}}^{\prime}\left(x a_{1}\right)=h_{\delta_{y} r_{1}}^{\prime}\left(y a_{1}\right) \Longrightarrow \cdots \\
\Longrightarrow & h_{\delta_{x} r_{1} \cdots r_{n}}^{\prime}\left(x a_{1} \cdots a_{n}\right)=h_{\delta_{y} r_{1} \cdots r_{n}}^{\prime}\left(y a_{1} \cdots a_{n}\right) .
\end{aligned}
$$

Further, from the strict monotonicity of h, we have

$$
\begin{aligned}
& (\mathrm{ii})\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge h_{\delta_{x}}^{\prime}(x) \leq h_{\delta_{y}}^{\prime}(y) \\
\Longrightarrow & \pi\left(\delta_{x}\right)=\pi\left(\delta_{y}\right), \text { where } \delta_{x} \in Y\left(q_{0}, x\right)=A(x), \delta_{y} \in Y\left(q_{0}, y\right)=A(y) \\
& \wedge \bar{h}_{q_{0} ; \delta_{x}}(x)=h_{\delta_{x}}^{\prime}(x)<h_{\delta_{y}}^{\prime}(y)=\bar{h}_{q_{0} ; \delta_{y}}(y) \\
\Longrightarrow & \pi\left(\delta_{x} r_{1}\right)=\pi\left(\delta_{y} r_{1}\right), \text { where } \delta_{x} r_{1} \in Y\left(q_{0}, x a_{1}\right)=A\left(x a_{1}\right), \delta_{y} r_{1} \in Y\left(q_{0}, y a_{1}\right)=A\left(y a_{1}\right) \\
& \wedge \bar{h}_{q_{0} ; \delta_{x} r_{1}}\left(x a_{1}\right)=h\left(\bar{h}_{q_{0} ; \delta_{x}}(x), \pi\left(\delta_{x}\right), r_{1}, a_{1}\right)<h\left(\bar{h}_{q_{0} ; \delta_{y}}(y), \pi\left(\delta_{y}\right), r_{1}, a_{1}\right)=\bar{h}_{q_{0} ; \delta_{y} r_{1}}\left(y a_{1}\right) \\
\Longrightarrow & \left(x a_{1}, \delta_{x} r_{1}\right) \hat{T}\left(y a_{1}, \delta_{y} r_{1}\right) \wedge h_{\delta_{x} r_{1}}^{\prime}\left(x a_{1}\right)<h_{\delta_{y} r_{1}}^{\prime}\left(y a_{1}\right) \Longrightarrow \cdots \\
\Longrightarrow & h_{\delta_{x} r_{1} \cdots r_{n}}^{\prime}\left(x a_{1} \cdots a_{n}\right)<h_{\delta_{y} r_{1} \cdots r_{n}}^{\prime}\left(y a_{1} \cdots a_{n}\right) .
\end{aligned}
$$

Put $z=a_{1} \cdots a_{n} \in \Sigma^{*}, \delta_{z}=r_{1} \cdots r_{n} \in Y\left(\pi\left(\delta_{x}\right), z\right)=Y\left(\pi\left(\delta_{y}\right), z\right) \in I^{*}$, which implies that the conditions (i) and (ii).

Sufficiency. The condition (i) implies that $\hat{T} \wedge \hat{R}_{h_{a}^{\prime}} \in \Lambda\left(\Sigma_{A}^{*}\right)$, which is defined in the same way as in Lemma 3.1, since $(\mathrm{i}) \Longleftrightarrow \hat{T} \wedge \hat{R}_{h_{a}^{\prime}} \in \Lambda\left(\Sigma_{A}^{*}\right)$.

Let $M=\left(Q, \Sigma, q_{0}, S T, Q_{F}\right)$ and the function h be defined in the same way as in the proof of the sufficiency of Lemma 3.1, then h is well-defined. If there exist $x, y \in \Sigma^{*}$ such that $q=\left[\left(x, i_{x}\right)\right]=\left[\left(y, i_{y}\right)\right]\left(\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right)\right)$, $r=\left[\left(x a, i_{x} j\right)\right]=\left[\left(y a, i_{y} j\right)\right]\left(\left(x a, i_{x} j\right) \hat{T}\left(y a, i_{y} j\right)\right)$ and $h_{i_{x}}^{\prime}(x)=\xi_{1}<h_{i_{y}}^{\prime}(y)=\xi_{2}$, then, by assumption (ii), we have

$$
h\left(\xi_{1}, q, r, a\right)=h_{i_{x j}}^{\prime}(x a)<h_{i_{y} j}^{\prime}(y a)=h\left(\xi_{2}, q, r, a\right)
$$

For the case that there exists no $x \in \Sigma^{*}$ such that $\xi=h_{i_{x}}^{\prime}(x)\left(i_{x} \in A(x)\right), q=\left[\left(x, i_{x}\right)\right], r=$ $\left[\left(x a, i_{x} j\right)\right]\left(i_{x} j \in A(x a)\right)$, we can re-define the function h so that $h\left(\xi_{1}, q, r, a\right)<h(\xi, q, r, a)<$ $h\left(\xi_{2}, q, r, a\right)$ holds for all ξ such that $\xi_{1}=h_{i_{x}}^{\prime}(x)<\xi<h_{i_{y}}^{\prime}(y)=\xi_{2}$. Consequently, the resulting $\Pi_{\min }$ is an nd-smsdp.

Definition 5.1 (partial ordering relation). For nd-ddp $\Upsilon_{\min }=(\Sigma, S, f, \min), f(x)=$ $\operatorname{Max}\left\{f_{i}(x) \mid i \in \bar{A}(x)\right\}$, define a partial ordering relation $\sqsubseteq_{\Upsilon_{f_{i}}}$ on $S_{\bar{A}}$ as follows:

$$
\begin{aligned}
&\left(x, i_{x}\right) \sqsubseteq \Upsilon_{f_{i}}\left(y, i_{y}\right) \Longleftrightarrow \quad\left(x, i_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, i_{y}\right) \wedge\left(\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)\right) \\
& \vee\left(\forall\left(x z, i_{x} i_{z}\right) \in S_{\bar{A}}\right)\left(f_{i_{x} i_{z}}(x z)<f_{i_{y} i_{z}}(y z)\right)
\end{aligned}
$$

Proposition 5.1. The partial ordering relation $\sqsubseteq_{\Upsilon_{f_{i}}}$ is right invariant, and the following relation holds:

$$
\left(x, i_{x}\right) \sqsubseteq \Upsilon_{f_{i}}\left(y, i_{y}\right) \wedge\left(y, i_{y}\right) \sqsubseteq \Upsilon_{f_{i}}\left(x, i_{x}\right) \Longleftrightarrow\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)
$$

From the Lemma 5.1, we obtain the following super-strong representation theorem for nd-smsdp:

Theorem 5.1 (super-strong representation of nd-smsdp). For a given nd-ddp $\Upsilon_{\min }=$ (Σ, S, f, \min), there exists an nd-smsdp $\Pi_{\min }=\left(M, h, \xi_{0}, \min \right)$ which super-strongly represents $\Upsilon_{\text {min }}$ if and only if there exists $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$ satisfying the following two conditions:
(i) $\left(\forall\left(x, i_{x}\right),\left(y, i_{y}\right) \in S_{\bar{A}}\right)\left(\left(x, i_{x}\right)\left(\hat{T} \wedge \hat{R}_{f_{i}}\right)\left(y, i_{y}\right) \Longrightarrow\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)\right)$;
(ii) $\left(x, i_{x}\right),\left(y, i_{y}\right) \in C_{i} \times I_{i} \in \Sigma_{A}^{*} / \hat{T} \Longrightarrow\left(x, i_{x}\right) \sqsubseteq_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)$ or $\left(y, i_{y}\right) \sqsubseteq_{\Upsilon_{f_{i}}}\left(x, i_{x}\right)$.

Proof. Necessity. Let an nd-smsdp $\Pi_{\text {min }}$ super-strongly represent nd-ddp $\Upsilon_{\min }$ and \hat{T} be defined by the same way as in Lemma 3.1. Then $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$ and satisfy the condition (i) by Theorem 3.1. Furthermore,

$$
\begin{aligned}
&\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge \bar{h}_{q_{0} ; \delta_{x}}(x) \leq \bar{h}_{q_{0} ; \delta_{y}}(y) \\
& \Longrightarrow\left(\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge\left(\bar{h}_{q_{0} ; \delta_{x}}(x)=\bar{h}_{q_{0} ; \delta_{y}}(y)\right) \vee\left(\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \wedge \bar{h}_{q_{0} ; \delta_{x}}(x)<\bar{h}_{q_{0} ; \delta_{y}}(y)\right)\right. \\
& \Longrightarrow\left(\left(x, \delta_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, \delta_{y}\right) \wedge\left(\forall\left(x z, \delta_{x} \delta_{z}\right) \in S_{\bar{A}}\right)\right)\left(\bar{h}_{q_{0} ; \delta_{x} \delta_{z}}(x z)=\bar{h}_{q_{0} ; \delta_{y} \delta_{z}}(y z)\right) \\
& \vee\left(\left(x, \delta_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, \delta_{y}\right) \wedge\left(\forall\left(x z, \delta_{x} \delta_{z}\right) \in S_{\bar{A}}\right)\right)\left(\bar{h}_{q_{0} ; \delta_{x} \delta_{z}}(x z)<\bar{h}_{q_{0} ; \delta_{y} \delta_{z}}(y z)\right) \\
& \Longleftrightarrow\left(x, \delta_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, \delta_{y}\right) \vee\left(\left(x, \delta_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, \delta_{y}\right) \wedge\left(\forall\left(x z, \delta_{x} \delta_{z}\right) \in S_{\bar{A}}\right)\left(f_{\delta_{x} \delta_{z}}(x z)<f_{\delta_{y} \delta_{z}}(y z)\right)\right) \\
& \Longleftrightarrow\left(\left(x, \delta_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, \delta_{y}\right) \vee\left(x, \delta_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, \delta_{y}\right)\right) \\
& \wedge\left(\left(x, \delta_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, \delta_{y}\right) \vee\left(\forall\left(x z, \delta_{x} \delta_{z}\right) \in S_{\bar{A}}\right)\left(f_{\delta_{x} \delta_{z}}(x z)<f_{\delta_{y} \delta_{z}}(y z)\right)\right) \\
& \Longrightarrow\left(x z, \delta_{x} \delta_{z}\right) \hat{R}_{S_{\bar{A}}}\left(y z, \delta_{y} \delta_{z}\right) \\
& \wedge\left(\left(x, \delta_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, \delta_{y}\right) \vee\left(\forall\left(x z, \delta_{x} \delta_{z}\right) \in S_{\bar{A}}\right)\left(f_{\delta_{x} \delta_{z}}(x z)<f_{\delta_{y} \delta_{z}}(y z)\right) \Longrightarrow\left(x, \delta_{x}\right) \sqsubseteq \Upsilon_{f_{i}}\left(y, \delta_{y}\right) .\right.
\end{aligned}
$$

Since $\bar{h}_{q_{0} ; \delta_{x}}(x) \leq \bar{h}_{q_{0} ; \delta_{y}}(y)$ or $\bar{h}_{q_{0} ; \delta_{y}}(y) \leq \bar{h}_{q_{0} ; \delta_{x}}(x)$ holds for each $\left(x, \delta_{x}\right),\left(y, \delta_{y}\right) \in \Sigma_{A}^{*} / \hat{T}$, so, we obtain the condition (ii).

Sufficiency. Let $M=\left(Q, \Sigma, q_{0}, S T, Q_{F}\right)$ be defined by the same way as in the proof of the sufficiency of Lemma 3.1. Then we have $F\left(\Pi_{\min }\right)=F(M)=S, \bar{Y}\left(q_{0}, x\right) \equiv \bar{A}(x)$ for $\forall x \in S$.

Further, define the function $h_{i_{x}}^{\prime}(x)$ on Σ_{A}^{*} as follows:
(1) $h_{i_{x}}^{\prime}(x)=f_{i_{x}}(x)$ if $\left(x, i_{x}\right) \in S_{\bar{A}}$;
(2) $\left.\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)\right) \Longleftrightarrow\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x)=h_{i_{y}}^{\prime}(y)\right)$;
(3) $\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(\left(\sim\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)\right) \wedge\left(x, i_{x}\right) \sqsubseteq_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)\right)$

$$
\Longleftrightarrow\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x)<h_{i_{y}}^{\prime}(y)\right),\left(i_{x} \in A(x), i_{y} \in A(y)\right)
$$

which is possible since $\sqsubseteq_{\Upsilon_{f_{i}}}$ is a total ordering on each $C_{i} / \hat{R}_{\Upsilon_{f_{i}}}$ by Proposition 5.1 and condition (ii), where $C_{i} \in \Sigma_{A}^{*} / \hat{T}$, and

$$
A_{k} \sqsubseteq_{\Upsilon_{f_{i}}} A_{l} \Longleftrightarrow f_{i_{x}}(x) \leq f_{i_{y}}(y) \quad \forall\left(x, i_{x}\right) \in A_{k}, \quad\left(y, i_{y}\right) \in A_{l}
$$

for $A_{k}, A_{l} \in C_{i} / \hat{R}_{\Upsilon_{f_{i}}}$, where $C_{i} \subset S_{\bar{A}}$; hence (1) does not contradict to (2) and (3).

From the condition (2), we obtain

$$
\begin{aligned}
& \left(x, i_{x}\right) \hat{T}\left(x, i_{x}\right) \wedge h_{i_{x}}^{\prime}(x)=h_{i_{y}}^{\prime}(y)\left(i_{x} \in A(x), i_{y} \in A(y)\right) \\
& \Longrightarrow\left(x, i_{x}\right) \hat{T}\left(x, i_{x}\right) \wedge\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right) \\
& \Longrightarrow\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right)\left(\left(x z, i_{x} i_{z}\right) \hat{T}\left(y z, i_{y} i_{z}\right) \wedge\left(x z, i_{x} i_{z}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y z, i_{y} i_{z}\right)\right) \\
& \Longleftrightarrow\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right)\left(\left(x z, i_{x} i_{z}\right) \hat{T}\left(y z, i_{y} i_{z}\right) \wedge h_{i_{x} i_{z}}^{\prime}(x z)=h_{i_{y} i_{z}}^{\prime}(y z)\right) .
\end{aligned}
$$

From (3) and Proposition 5.1, it follows that

$$
\begin{aligned}
& \left(x, i_{x}\right) \hat{T}\left(x, i_{x}\right) \wedge h_{i_{x}}^{\prime}(x)<h_{i_{y}}^{\prime}(y)\left(i_{x} \in A(x), i_{y} \in A(y)\right) \\
& \Longrightarrow\left(x, i_{x}\right) \hat{T}\left(x, i_{x}\right) \wedge\left(\left(\sim\left(x, i_{x}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)\right) \wedge\left(x, i_{x}\right) \sqsubseteq_{\Upsilon_{f_{i}}}\left(y, i_{y}\right)\right) \\
& \Longrightarrow\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right)\left(\left(x z, i_{x} i_{z}\right) \hat{T}\left(y z, i_{y} i_{z}\right)\right. \\
& \left.\quad \wedge\left(\sim\left(x z, i_{x} i_{z}\right) \hat{R}_{\Upsilon_{f_{i}}}\left(y z, i_{y} i_{z}\right)\right) \wedge\left(x z, i_{x} i_{z}\right) \sqsubseteq_{\Upsilon_{f_{i}}}\left(y z, i_{y} i_{z}\right)\right) \\
& \Longleftrightarrow\left(\forall\left(z, i_{z}\right) \in \Sigma_{A}^{*}\right)\left(\left(x z, i_{x} i_{z}\right) \hat{T}\left(y z, i_{y} i_{z}\right) \wedge h_{i_{x} i_{z}}^{\prime}(x z)<h_{i_{y} i_{z}}^{\prime}(y z)\right) .
\end{aligned}
$$

Therefore, by Lemma 5.1, we obtain that there exists an nd-smsdp $\Pi_{\text {min }}$ satisfying that (3.1). So, from the condition (1), it follows that

$$
\bar{h}_{q_{0} ; \delta_{x}}(x)=f_{i_{x}}(x) \forall\left(x, \delta_{x}\right) \in \bar{F}\left(\Pi_{\min }\right), \forall\left(x, i_{x}\right) \in S_{\bar{A}}(x),
$$

that is, $n d-$ smsdp $\Pi_{\text {min }}$ super strongly represents $\Upsilon_{\text {min }}$.
Definition 5.2 (equivalence relation $D_{\Upsilon_{f_{i}}}^{\circ}$). For nd-ddp $\Upsilon_{\min }=(\Sigma, S, f, \min), f(x)=$ $\operatorname{Max}\left\{f_{i}(x) \mid i \in \bar{A}(x)\right\}$, let us define an equivalence relation $D_{\Upsilon_{f_{i}}}^{\circ}$ on $S_{\bar{A}}$ as the following:

$$
\begin{aligned}
\left(x, i_{x}\right) D_{\Upsilon_{f_{i}}}^{\circ}\left(y, i_{y}\right) \Longleftrightarrow\left(x, i_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, i_{y}\right) \wedge\left(\forall\left(x w, i_{x} i_{w}\right),\left(x z, i_{x} i_{z}\right) \in S_{\bar{A}}\right) \\
\left(f_{i_{x} i_{w}}(x w) \circ f_{i_{y} i_{w}}(y w)^{-1}=f_{i_{x} i_{z}}(x z) \circ f_{i_{y} i_{z}}(y z)^{-1}\right) .
\end{aligned}
$$

It is noted that if $\Upsilon_{\min }$ is an nd-ddp, then $D_{\Upsilon_{f_{i}}}^{\circ} \in \Lambda\left(S_{\bar{A}}\right)$. By using this equivalence relation, we can derive the following super-strong representation theorem by nd-assdp:
Theorem 5.2 (super-strong representation of nd-assdp). A given nd-ddp $\Upsilon_{\min }=$ ($\Sigma, S, f, \min)$ is super-strongly representable by an nd-assdp $\Pi_{\min }=\left(M, h, \xi_{0}, \min \right)$ if and only if it holds that

$$
D_{\Upsilon_{f_{i}}}^{\circ} \in \Lambda_{F}\left(S_{\bar{A}}\right)
$$

Proof. Necessity. Let an nd-assdp $\Pi_{\text {min }}$ super-strongly represent nd-ddp $\Upsilon_{\text {min }}$ and \hat{T} be defined by (3.2) in Lemma 3.1. Then $\hat{T} \in \Lambda_{F}\left(S_{\bar{A}}\right)$ and it follows that

$$
\begin{aligned}
& \left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \Longrightarrow\left(x, \delta_{x}\right) \hat{R}_{S_{\bar{A}}}\left(y, \delta_{y}\right) \wedge\left(\forall\left(x w, \delta_{x} \delta_{w}\right), \forall\left(x z, \delta_{x} \delta_{z}\right) \in S_{\bar{A}}\right) \\
& \left(f_{\delta_{x} \delta_{w}}(x w) \circ f_{\delta_{y} \delta_{w}}(y w)^{-1}=\bar{h}_{q_{0} ; \delta_{x} \delta_{w}}(x w) \circ \bar{h}_{q_{0} ; \delta_{y} \delta_{w}}(y w)^{-1}\right. \\
& \left.\quad=\bar{h}_{q_{0} ; \delta_{x}}(x) \circ \bar{h}_{q_{0} ; \delta_{y}}(y)^{-1}=\bar{h}_{q_{0} ; \delta_{x} \delta_{z}}(x z) \circ \bar{h}_{q_{0} ; \delta_{y} \delta_{z}}(y z)^{-1}=f_{\delta_{x} \delta_{z}}(x z) \circ f_{\delta_{y} \delta_{z}}(y z)^{-1}\right) \\
& \Longleftrightarrow\left(x, \delta_{x}\right) D_{\Upsilon_{f_{i}}}^{\circ}\left(y, \delta_{y}\right),
\end{aligned}
$$

that is, it holds that $\left(x, \delta_{x}\right) \hat{T}\left(y, \delta_{y}\right) \Longrightarrow\left(x, \delta_{x}\right) D_{\Upsilon_{f_{i}}}^{\circ}\left(y, \delta_{y}\right)$. Hence we have $\left|\Sigma_{A}^{*} / D_{\Upsilon_{f_{i}}}^{\circ}\right| \leq$ $\left|\Sigma_{A}^{*} / \hat{T}\right|<\infty$. Consequently, we see that $D_{\Upsilon_{f_{i}}}^{\circ} \in \Lambda_{F}\left(S_{\bar{A}}\right)$.

Sufficiency. Put $\hat{T}=D_{\Upsilon_{f_{i}}}^{\circ}$ and define a function $h_{i_{x}}^{\prime}(x)$ on Σ_{A}^{*} as the following:
(1) $h_{i_{x}}^{\prime}(x)=f_{i_{x}}(x)$ if $\left(x, i_{x}\right) \in S_{\bar{A}}$;
(2) $\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(\left(x, i_{x}\right),\left(y, i_{y}\right) \in \hat{W}\right) \Longrightarrow\left(\forall\left(x w, i_{x} i_{w}\right) \in S_{\bar{A}}\right)\left(h_{i_{x}}^{\prime}(x) \circ h_{i_{y}}^{\prime}(y)^{-1}=\right.$ $\left.f_{i_{x} i_{w}}(x w) \circ f_{i_{y} i_{w}}(y w)^{-1}\right)$, where $\hat{W}=\left\{\left(w, i_{w}\right) \in \Sigma_{A}^{*} \mid\left(w, i_{w}\right) \backslash S_{\bar{A}} \neq \emptyset\right\} ;$
(3) $\quad\left(x, i_{x}\right) \notin \hat{W} \Longrightarrow h_{i_{x}}^{\prime}(x)=h_{i_{y}}^{\prime}(y)$, where $\left(y, i_{y}\right) \in \Sigma_{A}^{*}$ is the longest policy such that $\left(x, i_{x}\right)=\left(y z, i_{y} i_{z}\right),\left(y, i_{y}\right) \in \hat{W},\left(z, i_{z}\right) \in \Sigma_{A}^{*}$. Then, we can easily show that $\hat{T} \in \Lambda_{F}(\hat{W})$ and $h_{i_{x}}^{\prime}(x)$ is well defined. Furthermore, for $h_{i_{x}}^{\prime}(x)$ satisfy (1), (2) and (3), we have

$$
\begin{aligned}
& \left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x) \leq h_{i_{y}}^{\prime}(y)\right), i_{x} \in A(x), i_{y} \in A(y) \Longrightarrow \\
& \quad\left(\forall\left(x z, i_{x} i_{z}\right), \forall\left(y z, i_{y} i_{z}\right) \in \hat{W}\right) \\
& \quad\left(h_{i_{y}}^{\prime}(y) \circ h_{i_{x}}^{\prime}(x)^{-1}=f_{i_{y} i_{z} i_{w}}(y z w) \circ f_{i_{x} i_{z} i_{w}}(x z w)^{-1}=h_{i_{y} i_{z}}^{\prime}(y z) \circ h_{i_{x} i_{z}}^{\prime}(x z)^{-1}\right)(\operatorname{by}(2)) \\
& \quad\left(\forall\left(x z, i_{x} i_{z}\right), \forall\left(y z, i_{y} i_{z}\right) \notin \hat{W}\right) \\
& \quad\left(h_{i_{y} i_{z}}^{\prime}(y z) \circ h_{i_{x} i_{z}}^{\prime}(x z)^{-1}=h_{i_{v}}^{\prime}(v) \circ h_{i_{u}}^{\prime}(u)^{-1}=h_{i_{y}}^{\prime}(y) \circ h_{i_{x}}^{\prime}(x)^{-1}\right)(\operatorname{by}(2),(3)),
\end{aligned}
$$

where $\left(u, i_{u}\right),\left(v, i_{v}\right)$ are the longest policy and indices such that $\left(x z, i_{x} i_{z}\right)=\left(u u^{\prime}, i_{u} i_{u^{\prime}}\right)$, $\left(y z, i_{y} i_{z}\right)=\left(v v^{\prime}, i_{v} i_{v^{\prime}}\right),\left(u, i_{u}\right) \in \hat{W},\left(v, i_{v}\right) \in \hat{W},\left(u^{\prime}, i_{u^{\prime}}\right),\left(v^{\prime}, i_{v^{\prime}}\right) \in \Sigma_{A}^{*}$. Hence, if $\left(x, i_{x}\right) \hat{T}\left(y, i_{y}\right) \wedge\left(h_{i_{x}}^{\prime}(x) \leq h_{i_{y}}^{\prime}(y)\right), i_{x} \in A(x), i_{y} \in A(y)$, then, for all $\left(z, i_{z}\right) \in \Sigma_{A}^{*}$,

$$
\begin{equation*}
h_{i_{y}}^{\prime}(y) \circ h_{i_{x}}^{\prime}(x)^{-1}=h_{i_{y} i_{z}}^{\prime}(y z) \circ h_{i_{x} i_{z}}^{\prime}(x z)^{-1} . \tag{5.1}
\end{equation*}
$$

It follows from (5.1) that $h_{i_{y} i_{z}}^{\prime}(y z) \circ h_{i_{y}}^{\prime}(y)^{-1}=h_{i_{x} i_{z}}^{\prime}(x z) \circ h_{i_{x}}^{\prime}(x)^{-1}$, which implies that

$$
h_{i_{y} i_{z}}^{\prime}(y z)-h_{i_{x} i_{z}}^{\prime}(x z)=h_{i_{x} i_{z}}^{\prime}(x z) \circ h_{i_{x}}^{\prime}(x)^{-1} \circ h_{i_{y}}^{\prime}(y)^{-1}-h_{i_{x} i_{z}}^{\prime}(x z) \circ h_{i_{x}}^{\prime}(x)^{-1} \circ h_{i_{x}}^{\prime}(x) \geq 0,
$$

that is, $h_{i_{x} i_{z}}^{\prime}(x z) \leq h_{i_{y} i_{z}}^{\prime}(y z)$ for all $\left(z, i_{z}\right)$. Hence from Lemma 4.1, we have that there exists an nd-msdp $\Pi_{\min }=\left(M, h, \xi_{0}\right.$, min) satisfying the equation (3.1). Finally, we will show that the nd-msdp $\Pi_{\min }$ is an nd-assdp; that is, $h(\xi, q, r, a)=\xi \circ \psi(q, r, a)$. For this purpose, let us prove that the value of $\psi(q, r, a)=h_{i_{x} i_{a}}^{\prime}(x a) \circ h_{i_{x}}^{\prime}(x)^{-1}$ is independent of x satisfying that $\pi\left(i_{x}\right)=q, \pi\left(i_{x} i_{a}\right)=r$. Let $\left(x a, i_{x} i_{a}\right),\left(y a, i_{y} i_{a}\right) \in \hat{W}, \pi\left(i_{x}\right)=\pi\left(i_{y}\right)=q,\left(x a w, i_{x} i_{a} i_{w}\right) \in S_{\bar{A}}$. Then from the condition (2) we have

$$
\begin{align*}
h_{i_{x} i_{a}}^{\prime}(x a) \circ h_{i_{x}}^{\prime}(x)^{-1}= & h_{i_{y} i_{a}}^{\prime}(y a) \circ f_{i_{x} i_{a} i_{w}}(x a w) \circ f_{i_{y} i_{a} i_{w}}(y a w)^{-1} \circ h_{i_{y}}^{\prime}(y)^{-1} \\
& \circ f_{i_{y} i_{a} i_{w}}(y a w) \circ f_{i_{x} i_{a} i_{w}}(x a w)^{-1}=h_{i_{y} i_{a}}^{\prime}(y a) \circ h_{i_{y}}^{\prime}(y)^{-1} . \tag{5.2}
\end{align*}
$$

In the same way, we can prove that (5.2) holds for the case, $\left(x a, i_{x} i_{a}\right),\left(y a, i_{y} i_{a}\right) \notin \hat{W}$.

Acknowledgements

The author would like to thank the referees for their several suggestions, very helpful comments and advices, which improve the first manuscript.

References

[1] T. Ibaraki: Representation theorems for equivalent optimization problems. Information and Control, 21 (1972), 397-435.
[2] T. Ibaraki: Finite automata having cost functions: Nondeterministic models. Information and Control, 37 (1978), 40-69.
[3] S. Iwamoto: From dynamic programming to bynamic programming. Journal of Mathematical Analysis and Applications, 177 (1993), 56-74.
[4] R.M. Karp and M. Held: Finite-state processes and dynamic programming. SIAM Journal on Applied Mathematics, 15 (1967), 693-718.
[5] A. Lew: Nondeterministic dynamic programming on a parallel coprocessing system. Applied Mathematics and Computation, 120 (2001), 139-147.
[6] Y. Maruyama: Strong representation of a discrete decision process by a bitone sequential decision process. In W. Takahashi and T. Tanaka (eds.): Nonlinear Analysis and Convex Analysis (Proceedings of the International Conference, Yokohama Publishers, 2003), 263-273.
[7] Y. Maruyama: Strong representation theorems for bitone sequential decision processes. Optimization Methods and Software, 18-4 (2003), 475-489.
[8] Y. Maruyama: Associative sequential decision process. In W. Takahashi and T. Tanaka (eds.): Nonlinear Analysis and Convex Analysis (Proceedings of the International Conference, Yokohama Publishers, 2004), 255-264.

Yukihiro Maruyama
Department of General Economics
Faculty of Economics, Nagasaki University 4-2-1 Katafuchi
Nagasaki 850-8506, Japan
E-mail: maruyama@nagasak-u.ac.jp

