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Abstract Any positive semi-definite function defined on Z (resp. R) can be represented as the Fourier
transform of a positive Radon measure on T (resp. R). We give a proof of this celebrated result due to
Herglotz and Bochner from the viewpoint of Schwartz’s theory of distributions.
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1. Introduction

Any complex-valued function defined on Z (resp. R) can be represented as the Fourier
transform of a positive Radon measure on T (resp. R) if and only if it is positive semi-
definite.1 This classical theorem due to Herglotz[5] and Bochner[1] has been providing
various fields of analysis with a powerful apparatus. For instance, a periodic or almost
periodic behavior of a weakly stationary stochastic process can be characterized in terms
of the discreteness of its spectral measure, the Fourier transform of which represents the
covariance (cf. section 6).

On the other hand, much interests have been attracted to clarify the mathematical
structure of the Herglotz-Bochner theorem itself. Several different approaches to the proof
of the theorem were explored in the course of the investigations :

Approach 1 – having recourse to the Féjer-Poisson summation method in classical Fourier
analysis.

Approach 2 – building a bridge from Stone’s representation theorem of one-parameter
semi-group of operators.

Approach 3 – making use of abstract theories of normed algebra.

In any case, there seems no easy and quick way leading to the Herglotz-Bochner theorem.
However we should remind of the fourth approach based upon the theory of distributions

due to Schwartz[11]. Although we can not say that this approach is very elementary, we may
assume that the distribution theory is a common knowledge among most mathematicians.
Comparing with other approaches, the distribution approach seems to supply a relatively
simple and transparent proof, provided that Schwartz’s theory is a common knowledge.

The purpose of this paper is to present a systematic exposition of this approach to the
Herglotz-Bochner theorem. I do not intend to claim any novelty taking account of the outline

1Throughout this paper, N,Z,R and C denote the sets of natural numbers, integers, real numbers and
complex numbers, respectively. T is the torus R/2πZ.
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Herglotz-Bochner Theorem 123

of reasonings described by Katznelson[6] , pp.48-49 and Lax[7], pp.141-147. Nevertheless,
there seems no coherent exposition of the approach as far as I know. I expect this brief note
to fill the gap and benefit the readers to some extent.

2. Periodic Distributions

A locally integrable function f ∈ L1
loc.(R,C) defines a distribution Tf by the relation2

Tf (φ) =

∫ ∞

−∞
f(x)φ(x)dx, φ ∈ D(R).

Translating f(x) by τ ∈ R, the function f(x− τ) defines a distribution Tf(x−τ) by

Tf(x−τ)(φ) =

∫ ∞

−∞
f(x− τ)φ(x)dx

=

∫ ∞

−∞
f(x)φ(x+ τ)dx, φ ∈ D(R).

Hence, if f is a periodic function with period τ (or simply, τ - periodic), we must have∫ ∞

−∞
f(x)φ(x)dx =

∫ ∞

−∞
f(x)φ(x+ τ)dx

for all φ ∈ D(R)．Generalizing this reasoning, the concept of periodic distribution is defined
as follows. 3

Definition 2.1. A distribution T ∈ D(R)′ is called a periodic distribution with period
τ if

T (φ(x)) = T (φ(x+ τ))

for all φ ∈ D(R).

We denote by Dτ (R)′ the set of τ - periodic distributions. For the sake of simplicity, we
assume τ = 2π from now on.

To start with, let me confirm that D2π(R)′ can be identified with C∞(T,C)′.
Assume that S ∈ C∞(T,C)′ is given. We associate to each φ ∈ D(R) a new function

φ̃(x) =
∞∑

n=−∞

φ(x+ 2nπ) (2.1)

The value φ̃(x) is defined without any ambiguity because the support of φ is compact
and so the right-hand side of (2.1) is actually a finite sum for each x. Since φ̃ is 2π- periodic
and infinitely differentiable, it can be regarded as an element of C∞(T,C). If we define an
operator T on D(R) by

T (φ) = S(φ̃), φ ∈ D(R). (2.2)

2We denote by L1
loc.(R,C) the space of locally integrable complex-valued functions defined on R. D(R) is

the space of test functions.
3D(R)′ denotes the dual space of D(R). Each element of D(R)′ is called a distribution.
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124 T. Maruyama

T is a continuous linear operator and so T ∈ D(R)′. Since it is obvious that T (φ(x)) =
T (φ(x+ 2π)), T is a 2π- periodic distribution; i.e. T ∈ D2π(R)′.

Conversely, let T be an element of D2π(R)′. It can be shown that T ∈ C∞(T,C)′. We
prepare a lemma due to Yosida-Kato[12], §7.

Lemma 2.1. For any a > 0, there exists some θ ∈ D(R) which satisfies4

(i) supp θ = [−a, a], and

(ii)
∞∑

n=−∞

θ(x+ na) = 1.

Proof. Define a function θ : R → C by

θ(x) =


∫ a

|x|
exp

(
− 1

w(a− w)

)
dw

/∫ a

0

exp

(
− 1

w(a− w)

)
dw for |x| ≦ a,

0 for |x| > a.

Then it is clear that θ ∈ D(R) and (i) is satisfied. Computing θ(x − a) for |x| ≦ a, we
obtain that

θ(x− a) =

∫ a

|x−a|
exp

(
− 1

w(a− w)

)
dw

/∫ a

0

exp

(
− 1

w(a− w)

)
dw.

Changing the variable by z = a− w, we can rewrite it as

θ(x− a) = −
∫ 0

x

exp

(
− 1

z(a− z)

)
dz

/∫ a

0

exp

(
− 1

w(a− w)

)
dw

=

∫ x

0

exp

(
− 1

z(a− z)

)
dz

/∫ a

0

exp

(
− 1

w(a− w)

)
dw

if x ∈ [0, a]. Consequently it follows that

θ(x) + θ(x− a) = 1 for x ∈ [0, a].

We also obtain the same relation for x ∈ [−a, 0) by a similar argument.

There exists, for each x ∈ R, a unique integer k ∈ Z such that

ka ≦ x < (k + 1)a.

Therefore we must have

∞∑
n=−∞

θ(x+ na) = θ(x− ka) + θ(x− (k + 1)a) = 1.

This proves (ii)．　　

4supp θ means the support of the function θ.
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Herglotz-Bochner Theorem 125

Let us go back to prove that T ∈ D2π(R)′ can be regarded as an element of C∞(T,C)′.
Any ψ ∈ C∞(T,C) can be regarded as a 2π- periodic smooth function defined on R. If

θ ∈ D(R) is a function which satisfies (i) and (ii) of Lemma 1 for a = π, then ψθ ∈ D(R).
Define an operator U on C∞(T,C) by

U(ψ) = T (ψθ). (2.3)

It is well-defined in the sense that U does not depend upon the choice of θ. In fact, if
η ∈ D(R) satisfies

∞∑
n=−∞

η(x+ 2nπ) = 0,

we have 5

T (ψη) = T (ψ(x)η(x)
∞∑

n=−∞

θ(x+ 2nπ))

=
∞∑

n=−∞

T (ψ(x− 2nπ)η(x− 2nπ)θ(x)) （by the periodicity of T）

=
∞∑

n=−∞

T (η(x− 2nπ) · ψ(x)θ(x)) （by the periodicity of ψ）

= T

(( ∞∑
n=−∞

η(x− 2nπ)

)
ψ(x)θ(x)

)
= 0.

This confirms that U is well-defined.

U is continuous on C∞(T,C). In fact, for any net {ψα} in C∞(T,C) which converges to
some ψ ∈ C∞(T,C), we have 6

ψαθ → ψθ in D(R).

Consequently it follows that

U(ψα) = T (ψαθ) → T (ψθ) = U(ψ).

Thus we established the chain:

S T U.
(2.2) (2.3)

∈ C∞(T,C)′ ∈ D2π(R)′ ∈ C∞(T,C)′

5

p∑
k=−p

θ(x+ 2kπ) →
∞∑

n=−∞
θ(x+ 2nπ) （in C∞）on supp ψη．

6We should note that supp ψαθ ⊂ supp θ.
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126 T. Maruyama

It is a natural question to ask if S is identical with U . The answer is positive as confirmed
by the following calculation:

U(ψ) = T (ψθ)

= S

(
∞∑

n=−∞

ψ(x+ 2nπ)θ(x+ 2nπ)

)

= S

(
∞∑

n=−∞

ψ(x)θ(x+ 2nπ)

)
（by the periodicity of ψ）

= S

(
ψ(x)

∞∑
n=−∞

θ(x+ 2nπ)

)
= S(ψ) for any ψ ∈ C∞(T,C).

Summing up, we obtain the following result.

Theorem 2.1. There is a one-to-one correspondence between C∞(T,C)′ and D2π(R)′．

The operators defined by (2.2) and (2.3) are the inverse operators to each other.

3. Fourier Coefficients of a Periodic Distribution

Let T be a 2π- periodic distribution; i.e. T ∈ D2π(R)′. The Fourier coefficients of T are
defined by

cn =
1√
2π
T (e−inx), n ∈ Z.

The formal series

1√
2π

∞∑
n=−∞

cne
inx

is called the Fourier series of T .

Remark. Assume that a trigonometric series

1√
2π

∞∑
n=−∞

Cne
inx (3.1)

simply converges to a distribution T ; i.e.

1√
2π

∫ π

−π

p∑
k=−p

Cke
ikx · φ(x)dx→ T (φ) for any φ ∈ D2π(R). (3.2)

If we consider a special case where φ = e−inx, the left-hand side of (3.2) converges to
√
2πCn.

On the other hand, T (e−inx) =
√
2πcn. Hence we must have Cn = cn, and so the series (3.1) is

nothing other than the Fourier series of T .
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Herglotz-Bochner Theorem 127

The following several facts are well-known in the theory of distributions.
1◦ If a sequence {Tn} ∈ D(R)′ simply converges to some T ∈ D(R)′, then the sequence

{T ′
n} of the derivatives (in the sense of distribution) also simply converges to T ′. (More

generally, the sequence {DpTn} of the p-th derivatives simply converges to DpT .)
2◦ A sequence {Tn} in S(R)′ (the space of tempered distributions) 7 simply converges

to T ∈ S(R)′ if and only if the sequence {T̂n} of the Fourier transforms simply converges
to T̂ .

3◦ The Fourier transforms of δ and einx are computed as follows:

δ̂ : φ 7→ 1√
2π

∫ ∞

−∞
φ(x)dx, φ ∈ S(R). êinx =

√
2πδn.

4◦

n∑
k=−n

ckδk simply converges ⇐⇒
n∑

k=−n

ckêikx simply converges

⇐⇒
n∑

k=−n

cke
ikx simply converges.

These relations can be confirmed by combining 2◦ and 3◦.

Theorem 3.1. Consider a sequence {cn}n∈Z of complex numbers. cn’s are the Fourier
coefficients of some 2π-periodic distribution if and only if there exists some N ∈ N ∪ {0}
such that

cn = O(|n|N); (3.3)

i.e. |cn| ≦ K|n|N for some K > 0.

Proof. 8 Assume first that {cn} satisfies (3.3). We write formally

u(x) =
∑
n ̸=0

1

(in)N+2
cne

inx, x ∈ R. (3.4)

Since ∑
n ̸=0

1

|n|N+2
|cn||einx| ≦

∑
n ̸=0

K

n2

by the assumption (3.3), the right-hand side of (3.4) is absolutely, uniformly convergent.
Hence u(x) is a continuous function which satisfies

|u(x)| ≦ K
∑
n ̸=0

1

n2
. (3.5)

7S(R) denotes the space of rapidly decreasing functions. S(R)′ is its dual space, each element of which is
called a tempered distribution.
8See Folland[4], pp.320-322 and Lax[7], p.570 for outline.
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128 T. Maruyama

Consequently, u(x) defines a distribution, and

un(x) =
n∑

k=−n
k ̸=0

1

(ik)N+2
cke

ikx

simply converges to u(x)
(
exactly speaking, to the distribution defined by un(x)

)
. In fact,

it can be verified by∣∣∣∣ ∫ ∞

−∞
(un(x)− u(x))φ(x)dx

∣∣∣∣ ≦ ∫ ∞

−∞
|un(x)− u(x)| · |φ(x)|dx

→ 0 as n→ ∞ for any φ ∈ D(R).

It follows that, taking account of 1◦,

DN+2u(x)(φ) = lim
n→∞

n∑
k=−n
k ̸=0

1

(ik)N+2
ck(ik)

N+2eikx(φ) = lim
n→∞

n∑
k=−n
k ̸=0

cke
ikx(φ).

Hence we must have

1√
2π

n∑
k=−n

cke
ikx → 1√

2π
(c0 +DN+2u(x)) simply as n→ ∞.

By the remark stated at the beginning of this section, cn’s are the Fourier coefficient of the
2π- periodic distribution defined by ( 1√

2π
)(c0 +DN+2u(x)).

Let us go over to the converse. Assume that

1√
2π

n∑
k=−n

cke
ikx

simply converges to some distribution. If cn’s do not satisfy (3.3), there exists a sequence
{nr} of integers such that

|cnr | > |nr|r, r = 1, 2, · · · (3.6)

Define a couple of functions λ(x) and φ(x) by

λ(x) =

{
e−x2/(1−x2) if |x| < 1,

0 if |x| ≧ 1
(3.7)

and

φ(x) =
∞∑
r=1

c−1
nr
λ(x− nr). (3.8)

The right-hand side of (3.8) is a finite sum for each x and φ(x) ∈ D(R). By definition of φ,
we have9

φ(n) =

{
0 if n ̸= nr,

c−1
nr

if n = nr

9n ̸= nr ⇒ λ(n− nr) = 0，n = nr ⇒ λ(nr − nr) = 1．
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Herglotz-Bochner Theorem 129

(r = 1, 2, · · · ).
It follows that

n∑
k=−n

ckδk(φ) =

∫ ∞

−∞

{ n∑
k=−n

ckδk

}
φ(t)dt

=
n∑

k=−n

ckφ(k) (3.9)

= the number of nr
′s between − n and n.

The right-hand side of (3.9) diverges to ∞ as n → ∞. Consequently, by 4◦,
n∑

k=−n

cke
ikt can

not be simply convergent. Contradiction.　

4. Herglotz’s Theorem

Definition 4.1. Let (G,+) be a commutative group. A function f : G → C is positive
semi-definite if

n∑
i,j=1

λiλ̄jf(xi − xj) ≧ 0

for any finite elements x1, x2, · · · , xn of G and any complex numbers λ1, λ2, · · · , λn.

A sequence {an}n∈Z of complex numbers can be regarded as a function of G = Z into C.
Hence {an}n∈Z is said to be positive semi-definite if

n∑
i,j

λiλ̄jai−j ≧ 0

for any finitely many complex numbers {λi}.

The following elementary properties of positive semi-definite functions are well-known.
1◦ f(0) ≧ 0.
2◦ f(x) = f(−x).
3◦ |f(x)| ≦ f(0).
4◦ If G = R and f is continuous at 0, then f is uniformly continuous on R.
5◦ In case of G = R, f is positive semi-definite if and only if∫

R

∫
R
f(x− y)θ(x)θ(y)dxdy ≧ 0

for any θ ∈ D(R).

We now state and prove the theorem due to Herglotz[5], which characterizes the Fourier
transform of a positive Radon measure on T as a positive semi-definite numerical sequence.10

10A similar result was obtained by Carathéodory[3].
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130 T. Maruyama

A Radon measure µ on T is a 2π- periodic distribution (i.e. µ ∈ D2π(R)′ ∼= C∞(T,C)′).
Hence its Fourier coefficients are defined by

an =
1√
2π

∫
T
e−inθdµ(θ), n ∈ Z. (4.1)

Theorem 4.1 (Herglotz). The following two statements are equivalent for a sequence {an}n∈Z
of complex numbers.

(i) {an}n∈Z is positive semi-definite.
(ii) an’s are the Fourier transforms of some positive Radon measure µ on T.

Proof. 11 The proof of “if” part is easy and well-known. So it is enough to show “only if”
part.

Assume that {an}n∈Z is positive semi-definite. By the property 3◦ above, we have

|an| ≦ a0 for all n ∈ Z. (4.2)

Hence it is obvious that |an| ≦ const. |n|N for some N ∈ N ∪ {0}. It follows from
Theorem 3.1 that an’s are the Fourier coefficients of some 2π- periodic distribution T ; i.e.

an =
1√
2π
T (e−inx). (4.3)

Let φ be any element of D2π(R) and φk’s its Fourier coefficients. By a simple computa-
tion, we have

Tφ = T

(
1√
2π

∑
φne

inx

)
=

1√
2π

∑
φnT (e

inx) =
∑

ānφn. (4.4)

Since φ is 2π-periodic and smooth, the series summing its Fourier coefficients is abso-
lutely convergent.12 Taking account of (4.2), we observe that the right-hand side of (4.4)
converges.

We now proceed to show that T is positive.
Let qN(x) be any trigonometric polynomial of order N ;

qN(x) =
N∑

n=−N

ϕne
inx (4.5)

If we adopt

|qN(x)|2 =
N∑

n,k=−N

ϕnϕ̄ke
i(n−k)x.

as φ ∈ D2π(R), (4.4) implies

T (|qN(x)|2) =
√
2π
∑

ak−nϕnϕ̄k ≧ 0. (4.6)

11I appreciate the priority of Lax[7], pp.142-143 for the ideas of proof.
12cf. Katznelson[6], p.26.
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Herglotz-Bochner Theorem 131

Any q(x) ∈ D2π(R) can be approximated by a sequence of trigonometric polynomials in
C∞- topology. Passing to the limit, (4.6) implies

T (|q(x)|2) ≧ 0 for any q(x) ∈ D2π(R). (4.7)

Let p(x) ∈ D2π(R) be non-negative (real-valued) and q(x) =
√
p(x). Then q(x) ∈

D2π(R) and

T (p(x)) ≧ 0

by (4.7). Consequently, the distribution T is positive and hence it is a positive measure;13

i.e.

T (φ) =

∫
T
φ(x)dµ for all φ ∈ C∞(T,C)

for some µ ∈ M+(T). So we must have the desired result:

an =
1√
2π
T (e−inx) =

1√
2π

∫
T
e−inxdµ.

5. Bochner’s Theorem

In this section, we discuss the celebrated theorem due to Bochner[1], which is an analogous
version of Herglotz’s Theorem in the case G = R rather than G = Z.

Remark. Since S(R) is a dense subspace of C∞(R,C) (space of continuous functions vanishing at
infinity), any µ ∈ M(space of Radon measures on R) can be regarded as a tempered distribution;
i.e.µ ∈ S(R)′. Here arises a question. Is the usual Fourier transform (Fourier-Stieltjes transform)
of µ coincide with its Fourier transform in the sense of distribution? Let us evaluate the Fourier
transform µ̂(θ) in the sense of distribution for θ ∈ S(R).

µ̂(θ) = µ(θ̂) = µ

[
1√
2π

∫
R
θ(x)e−iξxdx

]

=
1√
2π

∫
R

[ ∫
R
θ(x)e−iξxdx

]
dµ(ξ)

=

∫
R
θ(x)

[
1√
2π

∫
R
e−iξxdµ(ξ)

]
dx

=

∫
R
θ(x)µ̂(ξ)dx.

(µ̂(ξ)is the usual Fourier transform of µ.)

This equality holds true for any θ ∈ S(R). Consequently we conclude that the two definitions are
identical.

13See Schwartz[11], Chap.1, §4, Théorème 5.M+(T) denotes the set of all the positive Radon measures on
T.
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132 T. Maruyama

Theorem 5.1 (Bochner). The following two statements are equivalent for a function φ :
R → C.

(i) φ is positive semi-definite and continuous at 0.14

(ii) φ can be represented as the Fourier transform of a positive Radon measure on R.

Proof. 15 As in Theorem 4.1, (ii)⇒(i) is easy and well-known. So we have only to prove
(i)⇒(ii).

Assume(i). Then φ is bounded since

|φ(x)| ≦ φ(0) for all x ∈ R (5.1)

by the property 3◦ of positive semi-definite functions. Hence φ defines a tempered distribu-
tion (∈ S(R′)). We denote by φ̌ ∈ S(R)′ the inverse Fourier transform (as a distribution).
By Parseval’s theorem, we have 16

φ(s) = (φ̌)̂(s) = φ̌(ŝ), for s ∈ S(R). (5.2)

The positive semi-definiteness of φ implies (by the property 5◦)∫
R

∫
R
φ(x− y)θ(x)θ(y)dxdy ≧ 0 for any θ ∈ D(R),

which can be rewritten as (changing the variable z = x− y)∫
R

∫
R
φ(z)θ(x)θ(x− z)dxdz ≧ 0. (5.3)

If we define the function Θ ∈ D(R) by

Θ(z) =

∫
R
θ(x)θ(x− z)dx, (5.4)

(5.3) can be rewritten as ∫
R
φ(z)Θ(z)dz ≧ 0. (5.3’)

14By the property 4◦ of positive semi-definite functions, φ is uniformly continuous on R if it is continuous
at 0.
15The basic ideas are given in Lax [7], pp.144-146.
16Here φ denotes the tempered distribution defined by the bounded function φ. Hence

φ(s) =

∫
R
φ(x)s(x)dx, s ∈ S(R).
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Herglotz-Bochner Theorem 133

By (5.4),

Θ̂(w) =
1√
2π

∫
R

[ ∫
R
θ(x)θ(x− z)dx

]
e−iwzdz

=
1√
2π

∫
R

[ ∫
R
θ(x)θ(u)dx

]
e−iwxeiwudu (changing the variable u = x− z)

=
1√
2π

∫
R
θ(x)e−iwxdx ·

∫
R
θ̄(u)eiwudu

= θ̂(w) ·
√
2π

¯̂
θ(w)

=
√
2π|θ̂(w)|2.

It follows that

|θ̂(w)|2 = θ̂(w)
¯̂
θ(w) =

1√
2π
Θ̂(w). (5.5)

(5.2)，(5.3’) and (5.5) imply

φ(Θ) =
(5.2)

φ̌(Θ̂) =
(5.5)

φ̌(
√
2π|θ̂|2) ≧

(5.3′)

0. (5.6)

The inequality (5.6) holds true for any θ ∈ D(R). Since D(R) is dense in S(R), (5.6) is
also valid for any θ ∈ S(R).

Let p(w) ≧ 0 be an element of C∞
0 (R,R)(space of smooth functions with compact sup-

port). Then
√
p(w) is also an element of C∞

0 (R,R) ⊂ S(R). Using
√
p as |θ̂| in (5.6), we

obtain 17

φ̌(p) ≧ 0 for any 0 ≦ p ∈ C∞
0 (R,R). (5.7)

(5.7) tells us that φ̌ is a positive distribution, and so it is a positive measure; i.e.

φ̌(θ) =

∫
R
θ(x)dµ, θ ∈ D(R) (5.8)

for some positive measure µ.
Finally we claim that µ(R) <∞. Let g be an element of C∞

0 (R,R) which is non-negative
and satisfies

g(x) = 1 on [−1, 1]. (5.9)

Define a function gn by gn(x) = g(x/n). Let G and Gn be the inverse Fourier transforms of
g and gn, respectively. Taking account of Gn(y) = nG(ny), we apply (5.6) to get

φ̌(gn) =

∫
R
φ(y)nG(ny)dy. (5.10)

17We note that there exists a unique function in S(R), the Fourier transform of which is just
√
p.
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Since φ̌ is a positive distribution, the properties of g implies

φ̌(gn) ≧
∫
[−n,n]

dµ.

Furthermore, it follows from (5.1) that∫
R
φ(y)nG(ny) ≦ φ(0)

∫
R
n|G(ny)|dy = φ(0)

∫
R
|G(y)|dy. (5.11)

The right-hand side of (5.11) is independent of n. If we write

C = φ(0)

∫
R
|G(y)|dy,

we obtain ∫
[−n,n]

dµ ≦ C,

and so µ(R) ≦ C．
Looking at (5.8), we can conclude that φ is the Fourier transform of the distribution

defined by µ; i.e.

φ(s) = µ̂(s) for s ∈ D(R).

6. An Application

The main purpose of this article is to shed a new light on the mathematical structure of the
Herglotz-Bochner theorem from the viewpoint of Schwartz’s distribution theory. However,
in this final section, I dare make a digression to exemplify a typical way of its application.
Among numerous candidates, I would like to choose the problem to characterize the period-
icity (or almost-periodicity) of a weakly stationary stochastic process. It is well-known that
this problem plays a prominent role in time-series analysis, mathematical theory of business
cycles, and so on. I try to describe its outline as briefly as possible, keeping in mind that
this section is just a superfluous digression. Readers can find a systematic discussion (as
well as a detailed bibliography) of the problem in my recent article Maruyama [9].

Let (Ω, E ,P) be a probability space. X(t, ω) : R × Ω → C is assumed to be a weakly
stationary stochastic process which is (L ⊗ E ,B(C))- measurable, where L is the Lebesgue
σ-field on R. Then it is not difficult to show that the covariance function ρ(u) of X(t, ω) is
positive semi-definite. Thanks to the Bochner theorem, ρ(u) can be expressed as the Fourier
transform of certain positive Radon measure ν on R: i.e.

ρ(u) =
1√
2π

∫
R
e−iutdν(t).

Such a Radon measure ν is determined uniquely and is called the spectral measure of
X(t, ω).

We can characterize the periodicity ofX(t, ω) by showing the equivalence of the following
three statements.
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(i) ρ(u) is a periodic function with period τ .
(ii) X(t+ τ, ω)−X(t, ω) = 0 a.e.(ω) for all t ∈ R.
(iii) If E ∈ B(R) and E ∩ {2kπ/τ | k ∈ Z} = ∅, then ν(E) = 0.
If any one of the three statements holds true, the spectral measure concentrates on a

countable set in R such that the distance of any adjacent two points is some multiple of
2π/τ .

We obtain a similar result for a weakly stationary stochastic process X(n, ω) : Z×Ω → C
with discrete time. In this case, we should make use of the Herglotz theorem rather than
the Bochner theorem. As to the almost-periodicity, see also Maruyama [9].
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[5] G. Herglotz: Über Potenzreihen mit positiven reellen Teil in Einheitskreis. Berichte,
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