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Abstract Recently, a seating position can be often selected when a plane or bullet train ticket is reserved.
Specially, for theater and stadium, it is important to decide how to assign reservations to seats. This paper
proposes a dynamic model where seats’ resources are located at a single line with considering seats position
that have already been assigned. An analysis has been conducted and the results show that, 1) optimal
policy for an arriving request is to allocate it to one side of the edges of the adjacent vacancies, 2) if all of
the resources are vacant at beginning time for booking, then the model corresponds to a single-leg model
with multiple seat bookings and single fare class in Lee and Hersh (1993), 3) it is not necessarily optimal
that a request is allocated to the less adjacent seats’ vacancy. Finally, this paper proposes an algorithm to
solve the optimal policy using above results and conducts numerical examples.

Keywords: Decision making, revenue management, dynamic programming, Markov
decision process, seating position

1. Introduction

The revenue management is based on how to decide price and how to allocate capacity to
different customer segment to maximize revenue in the industries which have fixed capacity,
perishable products and fixed costs. The traditional applications of the revenue management
industries are airlines, hotels and rental cars.

A dynamic model in the revenue management that is formed by dynamic programming,
such as Markov decision process, has been mentioned in Sec.2.5 in [6]. This dynamic model
is used to decide whether a booking request should be accepted in a certain period to
maximize revenue over booking time. The dynamic model for airline industry have been
also extensively studied and summarized in [4]. McGill and Van Ryzin [4] itemized fac-
tors that complicate the revenue management models such as cancellation, overbooking,
walk-in, no-show, upgrade, and etc. Many models which include some of the factors have
been also intensively studied (for example, Lee and Hersh [9], Subramanian et al. [5] and
etc.). Recently, Steinhardt and Gönsch [1] presented a dynamic model with upgrade and
its structural properties.

The revenue management is applied to not only the traditional industries, but also
hospitalities’ services or entertainment industries, such as golf course, restaurant, casino,
and etc. [10, 11].

When we book a seat on a plane or bullet train, we can often choose seat location.
However, the assignment of seat location is more important if a facility is a theater or a
stadium. These facilities are shown as applications of revenue management in Kimes and
Wirtz [7]. Effects of the seating position and models with seats in a table have been studied in
restaurant revenue management which is a field of revenue management. Kimes and Robson
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[8] have been studied effects of type or position of tables for meal duration. Bertsimas and
Shioda [2] showed some models: an integer programming, a stochastic programming, and an
approximate dynamic programming model. Guerriero et al. [3] suggested a dynamic model
with reservation and meal duration. Ogasawara [12] presented structural properties of a
model in which the meal duration depends on exponential distribution. However, in the
revenue management, there is no model which considers reserving adjacent seats together
on a single line for group arrival, such as sushi bar.

This paper provides a dynamic model with batch requests, which are allocated to a
position in resources placed on a single line. As a result from investigating the model, some
features are obtained as the following 1) optimal policy for an arriving request is to allocate
it to one side of the edges of the adjacent vacancies, 2) if all of the resources are vacant at
beginning time for booking, then the model corresponds to a single-leg model with multiple
seat bookings and single booking class, 3) it is not necessarily optimal that a request is
allocated to the less adjacent seats’ vacancy. This paper demonstrates these results and an
algorithm to solve optimal policy using these results.

This paper is organized as follows, in Section 2, notation and formulation for the model
are introduced. Section 3 indicates properties of the model and the algorithm. Some
numerical examples are given and shown in Section 4.

2. Formulation

Batch request p = 1, · · · , P arrives for booking resources which are placed on a single line
during booking horizon, where the size of request p has same number of the index. The
resources can be regarded as seats at a counter in a restaurant, a part of seats on a plane or
bullet train or a part of seats in a theater or stadium. Let C be the number of the resources.
Suppose that the batch requests cannot be separated and need adjacent available resources
which are equal in size when the requests are allocated to the resources. Let the booking
horizon be sufficiently discrete into N time periods so that no more than one request arrives
in each period n = 1, · · · , N (see Appendix A in [5]). The time period progresses from N to
1, and 0 is terminal time on the booking horizon. Suppose that there is a single fare class.
The fare depends on the size of the request and the time period. Let rnp be a fare of the
request p in time period n. Arrival rates of the requests also depend on the size of requests
and the time period. Let λnp be an arrival rate of the request p in time period n. Rate of

no-event stands for λn0 = (1−
∑P

p=1 λ
n
p ). Cancellation, overbooking and walk-in are ignored.

2.1. State space and policy space

To simplify the state of the resources, we do not distinguish between left and right side
of the resources’ state. Further, if we identify every position on the resources, then it is
irrelevant because of generating various states to which the same requests can be accepted.
However, this redundancy of the states can be removed, as shown next. Let a1, a2, · · · , aC
be states of resources with size C where ak = 1 if the resource is booked and ak = 0 if the
resource is unbooked, a0 = 1 and aC+1 = 1. When there are ak, ak+1, · · · , al(1 ≤ k ≤ l ≤ C)
and ak−1 = 1, ak = ak+1 = · · · = al = 0, al+1 = 1, we call ak, ak+1, · · · , al a segment of size
l − k + 1. Let Xn be the state space at n which is defined as

Xn =

{
(t1, · · · , tC)|ti ≤ b

C

i
c,

C∑
i=1

iti ≤ C − P (N − n)

}
for each n = 0, · · · , N , where ti is the number of segments of size i. Note that the state
space is reduced by P (N−n) because no more than one request arrives in a period n. Figure
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Dynamic Single Line Seats Model 93

1 shows variations of booked positions of the state X = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0). A shaded
cell in the Figure 1 indicates a resource which is booked.

Figure 1: Variations of the state X = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0)

Let Ap(X) be the policy space for a request p, n = 1, · · · , N and X ∈ Xn which is
defined as

Ap(X) =

{
(i, a)|(a = 0) ∨ (ti > 0, p ≥ i, 0 < a ≤ i− p+ 2

2
)

}
(2.1)

where ∨ stands for “or”. The condition a > 0 in the policy space indicates an index of a
position in a segment i and a = 0 means to deny a request p. The condition 0 < a ≤ i−p+2

2
in

the policy space is briefly explained as follows. We can easily recognize 0 < a < i
2
+1 because

the right side and the left side of the resources are indistinguishable. If Ap = (i, a), a > 0,
then the range of index of the booked resources is from a to a + p − 1 and a relational
expression a+ p− 1 ≤ i− a+ 1 is established where i− a+ 1 is an inverted edge of a.

Figure 2 shows policies on which a request p = 1 is admitted to i = 4 for a state
X = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0). As shown the Figure 2, we can confirm that the state can be
modified if the policy is changed.

Figure 2: A1 = (4, 1) and A′
1 = (4, 2) for the state X = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0)

2.2. Maximum expected revenue and optimal policy

Let Un(X) be maximum expected revenue which a facility with the resources on initial state
X ∈ Xn can be obtained from optimally operating over the period n to 0. The Un(X) is
shown as following equation:
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Un(X) =
P∑
p=1

λnp max
(i,a)∈Ap(X)

{∑
a|a 6=0

(rnp + Un−1(X + ea−1 + ei−(p+a−1) − ei)) +
∑
a|a=0

Un−1(X)
}

+ λn0Un−1(X),

X ∈ Xn, n = 1, · · · , N
(2.2)

where ei = (ei1, · · · , eiC), i = 0, 1, · · · , C, eix = 1 if x = i and 1 ≤ i ≤ C, eix = 0 if x 6= i and
1 ≤ i ≤ C, and e01 = e02 = · · · = e0C = 0. Boundary conditions for the Equation (2.2) are
Un(X) = −∞, X /∈ Xn and U0(X) = 0.

3. Properties of the Model

It is difficult to solve optimal policies and the maximum expected revenue Un(X) due to
the curse of dimensionality. However, we can reduce the search range of the policy space by
using following Proposition 3.1.
Proposition 3.1. Given a request p and X ∈ Xn for n = 1, · · · , N , if there exists a policy
Ap = (i, a) ∈ Ap(X) such that a ≥ 1, then

max
(i,a)∈Ap(X)

∑
a|a6=0

(
rnp + Un−1(X + ea−1 + ei−(p+a−1) − ei)

)
= max

(i,1)∈Ap(X)

(
rnp + Un−1(X + ei−p − ei)

)
. (3.1)

Proof. Given a request p and X ∈ Xn for n = 0, · · · , N − 1, for Proposition 3.1, it should
be indicated that if there exists a policy Ap = (i, a) ∈ Ap(X) such that a ≥ 1, then

Un(X + eψ−1 + eδ−(p′+ψ−1) − eδ) ≤ Un(X + eδ−p′ − eδ)

by the inductive method. For case n = 0, it is obvious that U0(X+eψ−1+eδ−(p′+ψ−1)−eδ) =
U0(X + eδ−p′ − eδ) = 0 from the boundary condition. Then, assume that Un−1(X + eψ−1 +
eδ−(p′+ψ−1) − eδ) ≤ Un−1(X + eδ−p′ − eδ). To simplify notation, set X(ψ) = X + eψ−1 +
eδ−(p′+ψ−1) − eδ and X

(1) = X + eδ−p′ − eδ. It can be shown easily that

Un(X
(ψ)) =

P∑
p=1

λnp max
(i(ψ),a(ψ))∈Ap(X(ψ))

 ∑
a(ψ)|a(ψ) 6=0

(rnp + Un−1(X
(ψ) + ei(ψ)−p − ei(ψ)))

+
∑

a(ψ)|a(ψ)=0

Un−1(X
(ψ))

+ λn0Un−1(X
(ψ))

and

Un(X
(1)) =

P∑
p=1

λnp max
(i(1),a(1))∈Ap(X(1))

 ∑
a(1)|a(1) 6=0

(rnp + Un−1(X
(1) + ei(1)−p − ei(1)))

+
∑

a(1)|a(1)=0

Un−1(X
(1))

+ λn0Un−1(X
(1)).
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Dynamic Single Line Seats Model 95

Let A∗
p(X

(ψ)) = (i(ψ)∗, a(ψ)∗) be an optimal policy for a request p and X(ψ). Likewise, let

A∗
p(X

(1)) = (i(1)∗, a(1)∗) be an optimal policy for a request p and X(1).

i) a(ψ)∗ 6= 0, a(1)∗ 6= 0:
We should make a comparison between Un−1(X+eψ−1+eδ−(p′+ψ−1)−eδ+ei(ψ)∗−p−ei(ψ)∗)

and Un−1(X + eδ−p′ − eδ + ei(1)∗−p − ei(1)∗). Furthermore, this case is divided in two cases

because the case X(ψ) + ei(ψ)∗−p − ei(ψ)∗ /∈ Xn−1 exists if ψ − 1 and δ − (p′ + ψ − 1) are

changed in the case: i(ψ)∗ = ψ − 1 ∨ i(ψ)∗ = δ − (p′ + ψ − 1).
i-1) i(ψ)∗ 6= ψ − 1, i(ψ)∗ 6= δ − (p′ + ψ − 1):

From the condition of this case and the inductive hypothesis, Un−1(X+eψ−1+eδ−(p′+ψ−1)

− eδ + ei(ψ)∗−p − ei(ψ)∗) ≤ Un−1(X + eδ−p′ − eδ + ei(ψ)∗−p − ei(ψ)∗) ≤ Un−1(X + eδ−p′ − eδ +
ei(1)−p − ei(1)).

i-2) i(ψ)∗ = ψ − 1 ∨ i(ψ)∗ = δ − (p′ + ψ − 1):
Un−1(X + eψ−1 + eδ−(p′+ψ−1) − eδ + ei(ψ)∗−p − ei(ψ)∗)

∣∣
i(ψ)∗=ψ−1∨i(ψ)∗=δ−(p′+ψ−1)

≤ Un−1(X

+eδ−p′−gp−eδ) = Un−1(X+eδ−p′−eδ+eδ−p′−gp−eδ−p′) ≤ Un−1(X+eδ−p′−eδ+ei(1)∗−gp−
ei(1)∗).

Therefore, Un(X
(ψ)) ≤ Un(X

(1)) is obtained in the case i) from i-1) and i-2).
ii) a(ψ)∗ = 0, a(1)∗ 6= 0:

We should make a comparison between Un−1(X + eψ−1 + eδ−(p′+ψ−1) − eδ) and rnp +

Un−1(X + eδ−p′ − eδ + ei(1)∗−p− ei(1)∗). From the fact a(1)∗ 6= 0, rnp +Un−1(X + eδ−p′ − eδ +
ei(1)∗−p − ei(1)∗) ≥ Un−1(X + eδ−p′ − eδ) ≥ Un−1(X + eψ−1 + eδ−(p′+ψ−1) − eδ). Therefore,

Un(X
(ψ)) ≤ Un(X

(1)) is obtained in this case ii).
iii) a(ψ)∗ 6= 0, a(1)∗ = 0:

We should compare rnp + Un−1(X + eψ−1 + eδ−(p′+ψ−1) − eδ + ei(ψ)∗−p − ei(ψ)∗) with
Un−1(X + eδ−p′ − eδ). This case is divided in two cases from a reason which is the same to
the one in the case i).
iii-1) i(ψ) 6= ψ − 1, i(ψ) 6= δ − (p′ + ψ − 1):

rnp + Un−1(X + eψ−1 + eδ−(p′+ψ−1) − eδ + ei(ψ)∗−p − ei(ψ)∗) ≤ rnp + Un−1(X + eδ−p′ − eδ +
ei(ψ)∗−p − ei(ψ)∗) ≤ Un−1(X + eδ−p′ − eδ) is obtained.

iii-2) i(ψ) = ψ − 1 ∨ i(ψ) = δ − (p′ + ψ − 1):
rnp + Un−1(X + eψ−1 + eδ−(p′+ψ−1) − eδ + ei(ψ)∗−p − ei(ψ)∗)

∣∣
i(ψ)∗=ψ−1∨i(ψ)∗=δ−(p′+ψ−1)

≤ rnp
+Un−1(X+eδ−p′−gp−eδ) = Un−1(X+eδ−p′−eδ+eδ−p′−gp−eδ−p′) ≤ Un−1(X+eδ−p′−eδ).

Therefore, Un(X
(ψ)) ≤ Un(X

(1)) is obtained in the case iii) from the cases iii-1) and
iii-2).
iv) a(ψ)∗ = 0, a(1)∗ = 0:

Un(X
(ψ)) ≤ Un(X

(1)) is easily obtained from the inductive hypothesis.
Consequently, the Proposition 3.1 is indicated from the cases: i) - vi).

Note that Proposition 3.1 does not related to fares rnp . This fact shows that Proposition
3.1 is achieved in any orderings of the fares rnp among requests p. Proposition 3.1 also
indicates that we should deal with only (i, a) = Ap ∈ Ap(X), a = 1 ∨ a = 0 for a request p
and state X ∈ Xn to solve the maximum expected revenue. This leads to a remarkable fact
for the case XN = {eC} which is that all resources are not occupied with requests at the
beginning of the booking horizon. Details of this fact are explained in the following Remark
3.1.

Remark 3.1. Let X̂ ∈ X̂n, n = 0, · · · , N be the set of states which are obtained when the
maximum expected revenue is solved in the case XN = {eC}. From Proposition 3.1 and the
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96 Y. Ogasawara

condition of XN , X̂n = {ex|0 ≤ x ≤ C − P (N − n)}, n = 0, · · · , N . The x can be regarded
as the number of unbooked resources. Set Vn(x) = Un(ex) and A′

p(x) = {a|(p ≤ x, a =
1) ∨ a = 0}, x = 0, 1, · · · , C. Then, it follows that

Vn(x) =
P∑
p=1

λnp max
{
rnp + Vn−1(x− p), Vn−1(x)

}
+ λn0Vn−1(x),

0 ≤ x ≤ C, n = 1, · · · , N. (3.2)

Boundary conditions are V0(x) = 0 and Vn(x) = −∞, x < 0.
The Equation (3.2) can be regarded as a single-leg model with single booking class and

multiple seat booking in [9]. This fact indicates that the maximum expected revenue and
the optimal policy which is obtained by the single-leg model is the same as the ones which
is obtained by the model of this paper for the case XN = {eC}.

However, the Equation (3.2) cannot be applied to the case: XN 6= {eC}. From Proposi-
tion 3.1, the policy space can be rewritten in the following form because i in Ap(X) is only
decided if a booking request p is accepted.

Âp ∈ Âp(X) = {d|(d = i, ti ≥ 0, i ≥ p) ∨ (d = 0)} .

d = 0 in the policy space stands for denying a request. By using this Âp(X), the Equation
(2.2) can be rewritten as the following equation:

Un(X) =
P∑
p=1

λnp max
d∈ ˆAp(X)

∑
d|d6=0

(rnp + Un−1(X + ed−p − ed)) +
∑
d|d=0

Un−1(X)


+λn0Un−1(X),

X ∈ Xn, n = 1, · · · , N. (3.3)

Further, the Equation (3.3) is rewritten in the following equation

Un(X) =
P∑
p=1

λnp

(
rnp − min

d∈ ˆAp(X)

∆d
pUn−1(X)

)+

+ Un−1(X),

X ∈ Xn, n = 1, · · · , N. (3.4)

where (k)+ = max{k, 0}, ∆d
pUn−1(X) = Un−1(X)−Un−1(X+ed−p−ed) and ∆0

pUn(X) =∞.
min

d∈ ˆAp(X)
∆d
pUn−1(X) can be seen as threshold price so that a request is accepted if a price

which is obtained from the request exceeds the threshold price and rejected if the price is
less than the threshold price (referring pp.32-33 in [6]). From the the Equation (3.4), it is
obvious to acquire the following Theorem 3.1.

Theorem 3.1. For a given X ∈ X0, Un(X) is non-decreasing in n.

Then, an algorithm is shown as below. Algorithm 1 is to solve an optimal policy d∗ for
a given p, n and X ∈ Xn by using the threshold price. Âp(X)\0 in Algorithm 1 stands for

Âp(X)\{0}.

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



Dynamic Single Line Seats Model 97

If arg min

d∈Âp(X)\0

∆d
pUn−1(X) is not unique, then without loss of generality, the smallest d is

selected in Algorithm 1. Note that we cannot reduce the search range for segments i of
Ap(X) in Algorithm 1.

We might expect that there is a structural property of upgrade model which is seen in
Steinhardt and Gönsch [1] and Ogasawara [12]. This means that, for all n and X ∈ Xn,
if there exist d ∈ Âp(X) and d′ ∈ Âp(X) such that d 6= 0, d′ 6= 0 and d ≤ d′, then
∆d
pUn(X) ≤ ∆d′

p Un(X). Indeed, the monotonicity does not exist. To indicate the non-
monotonicity, a counter-example is shown in next section.

Algorithm 1

Input n,X ∈ Xn and p.
d∗ ← 0
if Âp(X)\0 6= φ then
calculate min

d∈Âp(X)\0
∆d
pUn−1(X) and

mind{ arg min

d∈Âp(X)\0

∆d
pUn−1(X)}.

d
∗ ← mind{ arg min

d∈Âp(X)\0

∆d
pUn−1(X)}

if rnp ≥ min
d∈Âp(X)\0

∆d
pUn−1(X) then

d∗ ← d
∗

end if
end if

4. Numerical Examples

This section shows numerical examples in which maximum expected revenues and optimal
policies are calculated by using Algorithm 1 on a small scale. One of the examples is the
counter-example which was mentioned in the previous section.

4.1. Numerical example using Algorithm 1

A data-set is C = 6, N = 4, P = 3, X4 = {(0, 1, 1, 0, 0, 0)}. Arrival rates and fares are
shown in Table 1. From maxn |Xn| = 9, to simplify notation, elements of the state space are
X1 = (0, 1, 1, 0, 0, 0), X2 = (1, 0, 1, 0, 0, 0), X3 = (0, 0, 1, 0, 0, 0), X4 = (0, 2, 0, 0, 0, 0), X5 =
(1, 1, 0, 0, 0, 0), X6 = (2, 0, 0, 0, 0, 0), X7 = (0, 1, 0, 0, 0, 0), X8 = (1, 0, 0, 0, 0, 0), X9 = (0, 0, 0,
0, 0, 0).

The maximum expected revenues and the optimal policies which are calculated from the
data-set are shown in Table 2 and Table 3, respectively. Specifically, a calculation process
for p = 1 and X2 ∈ X3 in the Table 3 is explained as follows.

Suppose that calculations are terminated at n = 2 by backward induction. We calculate
for d = 1 because of Â1(X

2)\0 6= φ. For a policy Â1(X
2) 3 d = 1, ∆1

1U2(X
2) = U2(X

2)−
U2(X

3) = 28.8−24.4 = 4.4. Applying Â1(X
2) 3 d = 3 to ∆d

1U2(X
2), ∆3

1U2(X
2) = U2(X

2)−
U2(X

5) = 28.8 − 16.2 = 12.6. Therefore, from min
d∈Â1(X2)\0

∆d
1U2(X

2) = 4.4 ≤ r31 = 10,

d∗ = 1 is indicated. Accordingly, the maximum expected revenues and the optimal policies
for all states in all time periods can be calculated.
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98 Y. Ogasawara

Table 1: Arrival rate and fare for p in n

λnp rnp
n\p 1 2 3 1 2 3
1 0.2 0.3 0.5 10 20 30
2 0.4 0.3 0.2 10 20 30
3 0.4 0.3 0.2 10 20 30
4 0.3 0.2 0.1 10 20 30

Table 2: The maximum expected revenues Un(X
k) for n and k

k\n 4 3 2 1 0
1 41.61 41.08 36.00 23.00 0.00
2 - 32.32 28.80 23.00 0.00
3 - 19.40 24.40 23.00 0.00
4 - 25.84 18.00 8.00 0.00
5 - 21.70 16.20 8.00 0.00
6 - - 6.00 2.00 0.00
7 - 16.04 13.20 8.00 0.00
8 - - 5.20 2.00 0.00
9 0.00 0.00 0.00 0.00 0.00

Table 3: The optimal policies for n and Xk

p = 1 p = 2 p = 3
k\n 4 3 2 1 4 3 2 1 4 3 2 1
1 2 2 2 2 2 2 2 2 3 3 3 3
2 - 1 1 1 - 0 0 3 - 3 3 3
3 - 0 0 3 - 3 0 3 - 3 3 3
4 - 2 2 2 - 2 2 2 - 0 0 0
5 - 1 1 1 - 2 2 2 - 0 0 0
6 - - 1 1 - - 0 0 - - 0 0
7 - 2 2 2 - 2 2 2 - 0 0 0
8 - - 1 1 - - 0 0 - - 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0

4.2. Counter-example

Note that if request p is accepted, then all optimal policies in Table 3 take the smallest
d for each p. However, this feature is not held in the counter-example which is shown in
this subsection. A data-set of this counter-example is C = 6, N = 3, P = 3 and X4 =
{(0, 1, 1, 0, 0, 0)}. Arrival rates and fares of this counter-example are shown in Table 4.
Notations of elements of the state space are the same to the ones that was mentioned in the
previous example.

Notice that the booking request p = 2 is accepted for all states in n = 1, 2 because
the request p = 2 must arrive. Therefore, the maximum expected revenues can be easily
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Dynamic Single Line Seats Model 99

calculated until n = 2. Since ∆2
1U2(X

1) = U2(X
1)−U2(X

2) = 40−20 = 20 and ∆3
1U2(X

1) =
U2(X

1) − U2(X
4) = 40 − 40 = 0, the optimal policy for p = 1 and X1 ∈ X3 is d∗ = 3.

Thus, it shows non-monotonicity of ∆d
pUn(X) in d(6= 0). This counter-example indicates

that Algorithm 1 is needed for solving optimal policies and maximum expected revenues.

Table 4: Arrival rate and fare for p in n

λnp rnp
n\p 1 2 3 1 2 3
1 0.0 1.0 0.0 10 20 30
2 0.0 1.0 0.0 10 20 30
3 0.4 0.3 0.2 10 20 30

5. Conclusion

This paper proposed a dynamic model with batch requests which are required to be placed
together on a single line’s resources. For the model, this study presented an algorithm
by which the optimal policies can be effectively solved. Our future issues are to extended
this model for multiple fare classes, to consider group-reservation which can be set across
multiple lines and take into account of a reservation which selects its position of resources.
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