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Abstract This paper deals with a refinement of the Laplace-Carson transform (LCT) approach to option
pricing, with a special emphasis on valuing defaultable and non-callable convertible bonds (CBs), but not
limited to it. What we are actually aiming at is refining the plain LCT approach to meet possibly general
American derivatives. The setup is a standard Black-Scholes-Merton framework where the underlying firm
value evolves according to a geometric Brownian motion. The valuation of CBs can be formulated as an
optimal stopping problem, due to the possibility of voluntary conversion prior to maturity. We begin with
the plain LCT approach that generates a complex solution with little prospect of further analysis. To
improve this solution, we introduce the notion of premium decomposition, which separates the CB value
into the associated European CB value and an early conversion premium. By the LCT approach combined
with the premium decomposition, we obtain a much simpler and closed-form solution for the CB value and
an optimal conversion boundary. By virtue of the simplified solution, we can easily characterize asymptotic
properties of the early conversion boundary. Finally, we show that our refined LCT approach is broadly
applicable to a more general class of claims with optimal stopping structure.

Keywords: Finance, valuation, Laplace-Carson transform, premium decomposition,
convertible bonds, early conversion

1. Introduction

Convertible bond (abbreviated to CB) is the most popular hybrid security with debt and
equity-like features: A CB holder is entitled to receive fixed coupon payments as well as
the principal repayment at maturity like a straight bond. He also has the right to forgo the
fixed-income components and convert CB into the underlying common stock according to
pre-specified conditions, i.e., a conventional CB may be converted at any time until a pre-
specified maturity date into stocks at a fixed conversion ratio. Hence, it might be said that
a CB is equivalent to a bond with an embedded American-style call option for conversion.
CBs are attractive to investors due to their flexibility, and also to issuers due to the fact that
CB yields are lower than those of equivalent straight bonds. This is the principal reason
why CBs become an important segment of worldwide corporate bond markets.

The hybrid feature offers potentially unlimited gain to investors when the issuer’s stock
performs well. The investor is, however, exposed to the credit risk of default at the same
time. Default occurs when the total firm value falls below the total redemption value of
debt at maturity. Merton [24] applied the option pricing framework of Black and Scholes
[10] and Merton [23] to develop a fundamental model for valuing a defaultable CB as a
contingent claim on firm value, obtaining a partial differential equation (PDE) for the CB
value. Ingersoll [14] used this PDE to discuss optimal policies for call and conversion,
assuming that CB is the only senior debt in the firm’s capital structure. Most of the
structural models established previously are considered as extensions of the framework of
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Merton [24] and Ingersoll [14]; see Batten et al. [8] and Bhattacharya [9] for surveys.
To solve the PDE for CBs under more general assumptions, we need numerical methods

such as finite difference and finite element methods. Brennan and Schwartz [11] adopted a
finite-difference method to value callable CBs with discrete coupons and dividends. Barone-
Adesi et al. [6] used a finite element method for solving a two-factor model of CBs under
stochastic interest rate and volatility. See Table 3 of Batten et al. [8] for recent references
on these numerical methods as well as lattice-based and simulation methods.

As another alternative, Fourier or Laplace transform (LT) method has been known as
a powerful tool of solving general PDEs. In particular, Laplace-Carson transform (LCT),
a minor variant of LT, has been extensively used in the context of option pricing [4, 12,
13, 15–19, 25, 27]. In the randomization of Carr [12], the LCT approach is used to obtain
the value of an American put option with random maturity distributed exponentially. For
a general one-factor valuation problem, the basic LCT approach consists of the following
three steps:

i) Taking the LCT of the PDE with respect to the remaining time to maturity, we have
an associated ordinary differential equation (ODE).

ii) Solving this ODE together with appropriate boundary conditions, we obtain the LCT
of the original value.

iii) The original value in the real-time domain can be computed by an algorithm for in-
verting LTs/LCTs numerically.

For multi-factor problems, multidimensional LTs and their numerical inversion are required
in the steps i) and iii), respectively. For optimal stopping problems such as valuing American
options, the LCT of the optimal stopping boundary can be jointly obtained in the step ii).
For the step iii), various efficient methods have been developed for inverting LTs/LCTs; see,
e.g., Abate and Whitt [2] for one-dimensional cases and Abate et al. [1] for multidimensional
cases.

The expression for the solution obtained in the step ii) is seriously affected by the payoff
function at maturity. If the payoff is a piecewise function defined on some separate intervals,
then the LCT of the value becomes extremely complex. As we will see in Section 2, the payoff
function of a typical defaultable CB is defined on three separate intervals. Hence, the plain
LCT approach generates a cumbersome expression including six coefficients to be determined
by boundary conditions. The purpose of this paper is to develop a refined LCT approach
that generates a much simpler solution than the plain LCT approach. A primal target is
the CB valuation problem. In recent years, various CBs have been issued with additional
conversion provisions, including international CBs [5], CBs with reset clauses [21], reverse
CBs [26], mandatory CBs [3] and so on; see Table 2 of Batten et al. [8] for detailed features
of these variants. However, we only focus on a simple CB with no coupon payments, no call
provision and voluntary conversion prior to maturity, because what we are actually aiming
at is refining the LCT approach to meet more general claims.

This paper is organized as follows: In Section 2, as a bad example, we simply apply
the plain LCT approach to the PDE for the CB value, obtaining a complex solution with
little prospect of further analysis. To improve this LCT solution, we introduce in Section 3
the notion of premium decomposition, which separates the CB value into an associated
European CB value and an early conversion premium. By the LCT approach combined
with the premium decomposition, we obtain a much simpler and closed-form solution for
the CB value and an optimal conversion boundary. By virtue of the simplified solution,
we can easily characterize asymptotic properties of the conversion boundary. Finally, in
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Section 4, we show that our refined LCT approach is broadly applicable to a more general
class of claims with optimal stopping structure.

2. The Plain LCT Approach

2.1. Assumptions

Following the framework of Merton [24] and Ingersoll [14], we consider a CB issued by a firm
in frictionless markets, assuming that the CB is the only senior debt in the firm’s capital
structure except for common stock. Hence, a default would occur when the firm value
falls below the total redemption value of the CBs. Let (Vt)t≥0 denote the aggregate value
process of the firm. Assume that (Vt)t≥0 is a diffusion process with the Black-Scholes-Merton
dynamics

dVt = (r − δ)Vt dt+ σVt dWt, t ≥ 0 (2.1)

where r > 0 is the risk-free rate of interest, δ ≥ 0 is the instantaneous rate of the cash
payments by the firm to either its shareholders or liabilities-holders (e.g., dividends or
interest payments), and σ > 0 is the volatility coefficient of the firm value, all of which are
assumed to be constants. Suppose an economy with finite time period [0, T ], a complete
probability space (Ω,F ,P), and a filtration F ≡ (Ft)t∈[0,T ]. W ≡ (Wt)t∈[0,T ] is a one-
dimensional standard Brownian motion process defined on (Ω,F) and takes values in R.
The filtration F is the natural filtration generated by W and FT = F. The firm value
process defined in (2.1) is represented under the equivalent martingale measure P, which
implies that the firm value has mean rate of return r, and the conditional expectation
Et[ · ] ≡ E[ · |Ft] is calculated under the measure P.

Consider a defaultable CB with maturity date T and face value F . For simplicity, we
focus on CBs with no coupon payments, no call provision and defaultable only at maturity.
Assume that there are ℓ outstanding CBs of this firm in markets, and each CB is convertible
into n shares. The holders who choose to convert their CBs into shares will dilute current
shareholders’ ownership. If there are m shares of common stock outstanding, the conversion
value is given by γVt, where γ is defined by

γ =
n

m+ ℓn
, (2.2)

for which γℓ (< 1) is called the dilution factor, indicating the fraction of the common stock
held by the CB holders.

2.2. CB value and its LCT

Let B(t, Vt) denote the CB value at time t ∈ [0, T ). From the assumptions on the capital
structure and the default time, we see that there are three possible payoffs at maturity: CB
holders receive either the conversion value γVT if it exceeds the face value F , the face value
F if it exceeds the conversion value γVT , or the proportional firm value VT/ℓ if the firm
value is less than the par value of outstanding CBs, i.e.,

B(T, VT ) = max

(
γVT , min

(
1

ℓ
VT , F

))
=

1

ℓ
VT1{VT≤Fℓ} + F1{Fℓ<VT≤F

γ
} + γVT1{VT>F

γ
}

=
1

ℓ
VT − 1

ℓ

(
VT − Fℓ

)+
+ γ

(
VT − F

γ

)+

, (2.3)
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Figure 1: Payoff value of convertible bonds at maturity

where (x)+ ≡ max(x, 0) for x ∈ R. Figure 1 illustrates the payoff value B(T, VT ) at maturity
as a function of the firm value VT .

From the payoff value (2.3) and the theory of arbitrage pricing, the fair CB value at time
t is given by solving the optimal stopping problem

B(t, Vt) = ess sup
τc∈[t,T ]

Et

[
e−r(τc−t) max

(
γVτc , min

(
1

ℓ
Vτc , F

))]
, 0 ≤ t ≤ T, (2.4)

where τc is a stopping time of the filtration (Ft)t∈[0,T ]. The random variable τ ∗c ∈ [t, T ] is
called the optimal conversion time if it gives the supremum value of the right-hand side of
(2.4). Ingersoll [14] proved that τc = T (a.s.) if δ = 0, i.e., it is not optimal for investors to
convert early before maturity if there are no dividends; see Theorem 2 below.

Let D = [0, T ]×R+. Solving the optimal stopping problem (2.4) is equivalent to finding
the points (t, Vt) in D for which early conversion is optimal. Let E and C denote the early
conversion region and continuation region, respectively. The early conversion region E is
defined by

E = {(t, Vt) ∈ D |B(t, Vt) = p(Vt)} ,

where p(Vt) is a virtual payoff at time t, which is defined by

p(Vt) = max

(
γVt, min

(
1

ℓ
Vt, F

))
. (2.5)

No doubt, the continuation region C is the complement of E in D. The boundary that
separates E from C is referred to as the early conversion boundary (ECB), which is defined
by

Vc(t) = inf {Vt ∈ R+ |B(t, Vt) = p(Vt)} , t ∈ [0, T ].

For simplicity, let V ≡ Vt. In much the same way as in the valuation of American
options, the value B(t, V ) and the ECB Vc(t) can be jointly obtained by solving a free
boundary problem [11], which is specified by the Black-Scholes-Merton PDE

∂B

∂t
+

1

2
σ2V 2∂

2B

∂V 2
+ (r − δ)V

∂B

∂V
− rB = 0, V < Vc(t), (2.6)
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together with the boundary conditions∣∣∣∣∣∣∣∣∣∣∣

lim
V ↓0

B(t, V ) = 0

lim
V ↑Vc(t)

B(t, V ) = γVc(t)

lim
V ↑Vc(t)

∂B

∂V
= γ,

(2.7)

and the terminal condition
B(T, V ) = p(V ). (2.8)

The second condition in (2.7) is often called the value-matching condition, while the third
one is called the smooth-pasting condition.

With the change of variables τ = T − t, let

B̃(τ, V ) = B(T − τ, V ) = B(t, V ) and Ṽc(τ) = Vc(T − τ) = Vc(t), τ ≥ 0.

For λ ∈ C (Re(λ) > 0), define the LCT of these time-reversed functions with respect to τ as

B∗(λ, V ) = LC[B̃(τ, V )](λ) ≡
∫ ∞

0

λe−λτ B̃(τ, V )dτ

and

V ∗
c (λ) = LC[Ṽc(τ)](λ) ≡

∫ ∞

0

λe−λτ Ṽc(τ)dτ.

Obviously, there is no essential difference between the LCT and the LT, i.e.,

L[B̃(τ, V )](λ) =
B∗(λ, V )

λ
, Re(λ) > 0.

Also, this relation implies that the LCT can be inverted by using previously established
methods developed for inverting LTs; see Abate and Whitt [2].

Remark 1. In the context of option pricing, LCTs have been first adopted in the random-
ization of Carr [12] for valuing an American vanilla put option, of which maturity T is ex-
ponentially distributed random variable with mean E[T ] = 1/λ. The idea of randomization
gives us another interpretation that the LCT B∗(λ, V ) can be regarded as an exponentially

weighted sum (integral) of the time-reversed value B̃(τ, V ) for (infinitely many) different
values of the maturity T ∈ R+, and hence for τ ∈ R+, which makes LCTs be well defined.
From the viewpoint of Carr’s randomization, we assume λ is a positive real number.

From the PDE (2.6) with the conditions (2.7) and (2.8), we see that the LCT B∗(λ, V )
satisfies the ODE

1

2
σ2V 2d

2B∗

dV 2
+ (r − δ)V

dB∗

dV
− (λ+ r)B∗ + λp(V ) = 0, V < V ∗

c , (2.9)

together with the boundary conditions∣∣∣∣∣∣∣∣∣∣∣

lim
V ↓0

B∗(λ, V ) = 0

lim
V ↑V ∗

c

B∗(λ, V ) = γV ∗
c

lim
V ↑V ∗

c

dB∗

dV
= γ.

(2.10)
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It is straightforward but cumbersome to solve (2.9) with the boundary conditions (2.10)
and the continuity conditions of B∗(λ, V ) and its first derivatives at V = Fℓ, V = F/γ and
V = V ∗

c . By this plain LCT approach, Hayashi et al. [13] obtained

B∗(λ, V ) =



A1V
θ1 +

1

ℓ

λV

λ+ δ
, V ≤ Fℓ

A2V
θ1 + A3V

θ2 +
λF

λ+ r
, F ℓ < V ≤ F

γ

A4V
θ1 + A5V

θ2 +
λγ

λ+ δ
,

F

γ
< V < V ∗

c

γV, V ≥ V ∗
c ,

(2.11)

where Ai (i = 1, . . . , 5) are constants given by

A1 =
λ
(
λ+ r + (δ − r)θ2

)
(γθ1 − ℓ−θ1)F 1−θ1

(θ1 − θ2)(λ+ δ)(λ+ r)

−
θ2λ
(
λ+ r + (δ − r)θ1

)
(γθ2 − ℓ−θ1)F 1−θ2

θ1(θ1 − θ2)(λ+ δ)(λ+ r)
(V ∗

c )
θ2−θ1 +

γδ

θ1(λ+ δ)
(V ∗

c )
1−θ1 ,

A2 =
λ
(
λ+ r + (δ − r)θ2

)
γθ1F 1−θ1

(θ1 − θ2)(λ+ δ)(λ+ r)

−
θ2λ
(
λ+ r + (δ − r)θ1

)
(γθ2 − ℓ−θ2)F 1−θ2

θ1(θ1 − θ2)(λ+ δ)(λ+ r)
(V ∗

c )
θ2−θ1 +

γδ

θ1(λ+ δ)
(V ∗

c )
1−θ1 ,

A3 = −
λ
(
λ+ r + (δ − r)θ1

)
ℓ−θ2F 1−θ2

(θ1 − θ2)(λ+ δ)(λ+ r)
,

A4 = −
θ2λ
(
λ+ r + (δ − r)θ1

)
(γθ2 − ℓ−θ2)F 1−θ2

θ1(θ1 − θ2)(λ+ δ)(λ+ r)
(V ∗

c )
θ2−θ1 +

γδ

θ1(λ+ δ)
(V ∗

c )
1−θ1 ,

A5 =
λ
(
λ+ r + (δ − r)θ1

)
(γθ2 − ℓ−θ2)F 1−θ2

(θ1 − θ2)(λ+ δ)(λ+ r)
.

The parameters θ1 ≡ θ1(λ) > 1 and θ2 ≡ θ2(λ) < 0 are two real roots of the quadratic
equation

1
2
σ2θ2 +

(
r − δ − 1

2
σ2
)
θ − (λ+ r) = 0. (2.12)

From the value-matching condition in (2.10), the LCT V ∗
c is given by

V ∗
c (λ) =

[
γδ(θ1 − 1)(λ+ r)F θ2−1

λ
(
λ+ r + (δ − r)θ1

)
(γθ2 − ℓ−θ2)

] 1
θ2−1

. (2.13)

3. A Refined LCT Approach

From the complex solutions (2.11) and (2.13), it is really hard to have any prospect of further
analysis. To refine these solutions, we will use the notion of premium decomposition: For
the CB value B(t, V ), we can decompose it into two parts, i.e.,

B(t, V ) = b(t, V ) + π(t, V ), t ∈ [0, T ], (3.1)

where b(t, V ) is the European CB value and π(t, V ) is the premium for early conversion.
Note that both B(t, V ) and b(t, V ) have the same terminal value at t = T , i.e.,

b(T, V ) = B(T, V ) = p(V ), (3.2)
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which is an important key of our refinement. Applying the standard risk-neutral valuation
method to b(t, Vt), we obtain

b(t, V ) = Et

[
e−r(T−t)p(V )

]
=

1

ℓ
Et

[
e−r(T−t)V

]
− 1

ℓ
Et

[
e−r(T−t) (V − Fℓ)+

]
+ γEt

[
e−r(T−t)

(
V − F

γ

)+
]

=
1

ℓ
c(t, V ; 0)− 1

ℓ
c(t, V ;Fℓ) + γc(t, V ;F/γ), (3.3)

where c(t, V ;K) denotes the value of a European vanilla call option with maturity T and
strike price K (K = 0, F ℓ, F/γ). This value is well known and is given by

c(t, V ;K) = V e−δ(T−t)Φ
(
d+(V,K, T − t)

)
−Ke−r(T−t)Φ

(
d−(V,K, T − t)

)
, (3.4)

where Φ( · ) is the standard normal cumulative distribution function defined by

Φ(x) =

∫ x

−∞
ϕ(y)dy with ϕ(x) =

1√
2π

e−
1
2
x2

, x ∈ R,

and

d±(x, y, τ) =
log(x/y) + (r − δ ± 1

2
σ2)τ

σ
√
τ

.

Clearly, c(t, V ; 0) = V e−δ(T−t). With the change of variables τ = T − t, let c̃(τ, V ;K) =
c(T − τ, V ;K) = c(t, V ;K) and b̃(τ, V ) = b(T − τ, V ) = b(t, V ). For λ > 0, define the LCTs
c∗(λ, V ;K) = LC[c̃(τ, V ;K)](λ) and b∗(λ, V ) = LC[b̃(τ, V )](λ). Then, from (3.3), the LCT
b∗(λ, V ) can be represented as

b∗(λ, V ) =
1

ℓ

λV

λ+ δ
− 1

ℓ
c∗(λ, V ;Fℓ) + γc∗(λ, V ;F/γ). (3.5)

In order to carry out a further analysis, we need the following lemmas:

Lemma 1. {
λ+ r = −1

2
σ2θ1θ2,

λ+ δ = −1
2
σ2(θ1 − 1)(θ2 − 1).

Proof. It is an easy consequence of Vieta’s formulas for the quadratic equation (2.12) that
relate the coefficients to sums and products of its roots.

Lemma 2.

c∗(λ, V ;K) =

 ξ1(V ), V < K

ξ2(V ) +
λV

λ+ δ
− λK

λ+ r
, V ≥ K,

where for i = 1, 2,

ξi(V ) ≡ ξi(V ;K) =
2

σ2

λK

θi(θi − 1)(θ1 − θ2)

(
V

K

)θi

.
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Proof. We follow the proof of Kimura [18, Lemma 1] with minor modifications. The Eu-
ropean call option value c(t, V ;K) satisfies the same PDE as (2.6) for V > 0 but with the
different boundary conditions

lim
V ↓0

c(t, V ;K) = 0 and lim
V ↑∞

∂c

∂V
< ∞,

and the terminal condition c(T, V ;K) = (V −K)+. Taking the LCT of the PDE with these
conditions, we see that c∗(λ, V ;K) satisfies the ODE

1

2
σ2V 2d

2c∗

dV 2
+ (r − δ)V

dc∗

dV
− (λ+ r)c∗ + λ(V −K)+ = 0, V > 0, (3.6)

with the boundary conditions

lim
V ↓0

c∗(λ, V ;K) = 0 and lim
V ↑∞

dc∗

dV
< ∞.

It is straightforward to solve (3.6) with the boundary conditions above as well as the con-
tinuity conditions of c∗(λ, V ;K) and its first derivative at V = K. Assuming a general
solution of the form

c∗(λ, V ;K) =



2∑
i=1

ai

(
V

K

)θi

, V < K

2∑
i=1

ai+2

(
V

K

)θi

+
λV

λ+ δ
− λK

λ+ r
, V ≥ K,

for unknown constants ai (i = 1, . . . , 4), we obtain the desired results using Lemma 1.

For ease of exposition, for i = 1, 2, we write

ηi ≡ ηi(V ) = ξi(V ;Fℓ) and ζi ≡ ζi(V ) = ξi(V ;F/γ).

Then, from (3.5) and Lemma 2, we obtain

b∗(λ, V ) =



−1

ℓ
η1(V ) + γζ1(V ) +

1

ℓ

λV

λ+ δ
, V ≤ Fℓ

−1

ℓ
η2(V ) + γζ1(V ) +

λF

λ+ r
, F ℓ < V ≤ F

γ

−1

ℓ
η2(V ) + γζ2(V ) + γ

λV

λ+ δ
, V >

F

γ
.

(3.7)

As we saw in Section 2, the LCT B∗(λ, V ) satisfies the boundary conditions in (2.10),
from which the corresponding boundary conditions for the LCT π∗(λ, V ) = LC[π̃(τ, V )](λ)
for π̃(τ, V ) = π(T − τ, V ) = π(t, V ) can be written as∣∣∣∣∣∣∣∣∣∣∣∣

lim
V ↓0

π∗(λ, V ) = 0

lim
V ↑V ∗

c

π∗(λ, V ) = γV ∗
c − b∗(λ, V ∗

c )

lim
V ↑V ∗

c

dπ∗

dV
= γ − db∗

dV

∣∣∣∣
V=V ∗

c

.

(3.8)
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The LCT π∗(λ, V ) satisfies the ODE

1

2
σ2V 2d

2π∗

dV 2
+ (r − δ)V

dπ∗

dV
− (λ+ r)π∗ = 0, V > 0. (3.9)

From the first boundary condition limV ↓0 π
∗(λ, V ) = 0, we have

π∗(λ, V ) = A0V
θ1 , V ≥ 0, (3.10)

where A0 is a constant. Applying the smooth-pasting condition in (3.8) to π∗(λ, V ) and
using b∗(λ, V ) for V > F/γ, we obtain

A0 =
1

θ1

[
γδV ∗

c

λ+ δ
+ θ2

{
1

ℓ
η2(V

∗
c )− γζ2(V

∗
c )

}]
(V ∗

c )
−θ1 ,

so that for V < V ∗
c

π∗(λ, V ) =
1

θ1

[
γδV ∗

c

λ+ δ
+ θ2

{
1

ℓ
η2(V

∗
c )− γζ2(V

∗
c )

}](
V

V ∗
c

)θ1

=
1

θ1

[
γδV ∗

c

λ+ δ
+

θ1 − 1

θ1 − θ2

λF

λ+ δ

(
1− (γℓ)−θ2

)(γV ∗
c

F

)θ2
](

V

V ∗
c

)θ1

. (3.11)

In addition, from the value-matching condition in (3.8), we obtain the LCT V ∗
c for the

conversion boundary as

V ∗
c (λ) =

F

γ

[
− δθ2

λ
(
1− (γℓ)−θ2

)] 1
θ2−1

, (3.12)

which enables us to simplify π∗(λ, V ) in (3.11) down to

π∗(λ, V ) =
γV ∗

c

θ1

1

λ+ δ

[
δ +

θ1 − 1

θ1 − θ2
λ
(
1− (γℓ)−θ2

)(γV ∗
c

F

)θ2−1
](

V

V ∗
c

)θ1

=
γδV ∗

c

θ1

1

λ+ δ

(
1− θ1 − 1

θ1 − θ2
θ2

)(
V

V ∗
c

)θ1

=
γδV ∗

c

λ+ δ

1− θ2
θ1 − θ2

(
V

V ∗
c

)θ1

=
2

σ2

γδV ∗
c

(θ1 − 1)(θ1 − θ2)

(
V

V ∗
c

)θ1

.

Remark 2. It is relatively easy to check the equivalence between two expressions in (2.13)
and (3.12) for V ∗

c (λ): From the quadratic equation (2.12), we have the relation

λ+ r + (δ − r)θ = 1
2
σ2θ(θ − 1).

Hence, using Lemma 1, we have

γδ(θ1 − 1)(λ+ r)F θ2−1

λ
(
λ+ r + (δ − r)θ1

)
(γθ2 − ℓ−θ2)

=
δ(θ1 − 1)(λ+ r)

λ
(
λ+ r + (δ − r)θ1

)(
1− (γℓ)−θ2

) (F

γ

)θ2−1

=
δ(θ1 − 1)

λ
(
1− (γℓ)−θ2

) −1
2
σ2θ1θ2

1
2
σ2θ1(θ1 − 1)

(
F

γ

)θ2−1

= − δθ2

λ
(
1− (γℓ)−θ2

) (F

γ

)θ2−1

,

from which we see that the refined LCT solution (3.12) coincides with the plain LCT solution
(2.13).
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Since the European CB value b(t, V ) is explicitly given in (3.3) and (3.4), it would
suffice to invert π∗(λ, V ) for obtaining the target CB value B(t, V ). Hence, we summarize
the results as

Theorem 1. The value B(t, V ) of the CB with voluntary conversion prior to maturity and
no coupon payments is given by

B(t, V ) =

{
b(t, V ) + LC−1[π∗(λ, V )](T − t), V < LC−1[V ∗

c (λ)](T − t)

γV, V ≥ LC−1[V ∗
c (λ)](T − t),

(3.13)

where b(t, V ) is the associated European CB value given by

b(t, V ) =
1

ℓ
V e−δ(T−t) − 1

ℓ
c(t, V ;Fℓ) + γc(t, V ;F/γ),

c(t, V ;K) is the value of the associated vanilla call option with strike price K (K = Fℓ, F/γ)
given by (3.4), and

π∗(λ, V ) =
2

σ2

γδV ∗
c

(θ1 − 1)(θ1 − θ2)

(
V

V ∗
c

)θ1

, V < V ∗
c .

The LCT V ∗
c ≡ V ∗

c (λ) for the early conversion boundary is given by

V ∗
c (λ) =

F

γ

[
− δθ2

λ
(
1− (γℓ)−θ2

)] 1
θ2−1

.

Remark 3. We know that the early conversion premium π(t, V ) is smaller as compared to
the European value b(t, V ), so that π(t, V ) is a small fraction of B(t, V ). This implies that
computational errors contained in (3.13) would be less than the direct inversion

LC−1[B∗(λ, V )](τ) = LC−1[b∗(λ, V ) + π∗(λ, V )](τ).

Theorem 2. If δ = 0, then it is not optimal for investors to convert early before maturity.

Proof. From (3.12), we have(
γV ∗

c (λ)

F

)θ2−1

= − δθ2

λ
(
1− (γℓ)−θ2

) . (3.14)

If we let δ → 0 in (3.14), then(
γ lim

δ→0
V ∗
c (λ)

F

)θ′2−1

= 0 where θ′2 ≡ lim
δ→0

θ2 < 0,

which implies that limδ→0 V
∗
c (λ) = ∞ for λ > 0, so that Ṽc(τ) = Vc(t) = ∞ if δ = 0.

Assume hereafter that δ > 0.
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Theorem 3. For the time-reversed early conversion boundary
(
Ṽc(τ)

)
τ≥0

, we have

lim
τ→0

Ṽc(τ) = lim
t→T

Vc(t) =
F

γ
. (3.15)

Proof. By virtue of the initial-value theorem of LTs, the value Ṽc(τ) at time τ = 0 can be
obtained by letting λ → ∞ in V ∗

c (λ). Replacing θi(λ) (i = 1, 2) in (3.14) by their asymptotic
order of growth for large λ, i.e., θ1(λ) ∼ O(

√
λ) and θ2(λ) ∼ O(−

√
λ) (as λ → ∞), we obtain

δ ∼ O(
√
λ) exp

{
O(−

√
λ) log

(
γV ∗

c (λ)

F

)}
, as λ → ∞, (3.16)

where we used γℓ < 1. Since γV ∗
c (λ)/F ≥ 1, if γV ∗

c (λ)/F ↛ 1 as λ → ∞, the right-
hand side of (3.16) converges to 0, which contradicts the assumption δ > 0. Hence,
limλ→∞ γV ∗

c (λ)/F = 1, which completes the proof.

Remark 4. We see from Theorems 1 and 3 that the desired result π(T, V ) = 0 certainly
holds by virtue of the initial-value theorem, i.e.,

π(T, V ) = lim
τ→0

π̃(τ, V ) = lim
λ→∞

π∗(λ, V ) = 0,

because V < V ∗
c , limλ→∞ θ1(λ) = ∞ and limλ→∞ V ∗

c (λ) = F/γ < ∞.

Theorem 4. For the time-reversed early conversion boundary
(
Ṽc(τ)

)
τ≥0

, we have

lim
τ→∞

Ṽc(τ) = lim
T→∞

Vc(t) = 0, (3.17)

i.e., for the perpetual case, it is optimal for investors to convert quickly after purchase.

Proof. We use the expression (3.14) and the final-value theorem of LTs, i.e.,

lim
τ→∞

Ṽc(τ) = V ∗
c (0+).

As λ → 0, the right-hand side of (3.14) diverges, while the left-hand side becomes(
γV ∗

c (0+)

F

)θ◦2−1

where θ◦2 ≡ lim
λ→0

θ2(λ) < 0.

Hence, limτ→∞ Ṽc(τ) = V ∗
c (0+) = 0.

Remark 5. In general, the assertion of Theorem 4 does not hold for conventional CBs.
The quick conversion of the perpetual CB is primarily due to the assumption of no-coupon
payments. There would be no rational reason for holding bonds with neither redemption
nor coupons.
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4. Broad Applicability

A remarkable feature of our refined LCT approach is that the early conversion premium
does not depend on the complex terminal condition of the value, because the premium is
defined by the difference of the American and European values, both of which are equal at
maturity. As a result, the ODE for the LCT of the premium is given in a very concise form,
together with a little bit modified boundary conditions. We immediately see that this idea
is also applicable to other American-style claims, provided that the associated European
claims have closed-form solutions for the value and its LCT. For example, consider an
American vanilla call option with maturity T and strike price K, written on a dividend-
paying asset. Let (St)t≥0 be the price process of the underlying asset, and assume that
(St)t≥0 is a geometric Brownian motion process with the same dynamics as (2.1). Then, the
value of the American vanilla call option at time t ∈ [0, T ], C(t, St), is decomposed as

C(t, St) = c(t, St) + πc(t, St), t ∈ [0, T ], (4.1)

where c(t, St) = c(t, St;K) is the value of the associated European vanilla call option given
in (3.4) with V := St, and πc(t, St) is the early exercise premium. Applying the refined LCT
approach to this pricing problem, we see that the LCT π∗

c (λ, S) = LC[π̃c(τ, S)](λ) satisfies
the ODE

1

2
σ2S2d

2π∗
c

dS2
+ (r − δ)S

dπ∗
c

dS
− (λ+ r)π∗

c = 0, S < S∗
c , (4.2)

with the boundary conditions∣∣∣∣∣∣∣∣∣∣∣∣

lim
S↓0

π∗
c (λ, S) = 0

lim
S↑S∗

c

π∗
c (λ, S) = S∗

c −K − c∗(λ, S∗
c )

lim
S↑S∗

c

dπ∗
c

dS
= 1− dc∗

dS

∣∣∣∣
S=S∗

c

,

(4.3)

where c∗ is given in Lemma 2 and S∗
c ≡ S∗

c (λ) = LC[S̃c(τ)](λ) is the LCT of the early
exercise boundary

(
Sc(t)

)
t∈[0,T ]

. Solving the ODE (4.2) with (4.3), we obtain

π∗
c (λ, S) =

1

θ1

{
δ

λ+ δ
S∗
c − θ2ξ2(S

∗
c )

}(
S

S∗
c

)θ1

=
2

σ2

δ

(θ1 − 1)(θ1 − θ2)

(
S∗
c −

rK

δ

θ1 − 1

θ1

)(
S

S∗
c

)θ1

, S < S∗
c ,

where the LCT S∗
c (≥ K) is a unique positive solution of the functional equation

λ

(
S∗
c

K

)θ2

+ δθ2
S∗
c

K
+ r(1− θ2) = 0.

Hence, the American vanilla call option has the value

C(t, S) =

{
c(t, S) + LC−1[π∗

c (λ, S)](T − t), S < LC−1[S∗
c (λ)](T − t)

S −K, S ≥ LC−1[S∗
c (λ)](T − t).

As another example, consider a European continuous-installment option with maturity
T and strike price K, written on a dividend-paying asset (St)t∈[0,T ]; see Kimura [18]. In-
stallment options are path-dependent claims in which a small amount of up-front premium
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instead of a lump sum is paid at the time of purchase, and then a sequence of installments
are paid up to maturity. If the installments are paid at a certain rate, say q > 0, per unit
time, it is referred to as a continuous-installment option. The holder has the right of stop-
ping payments at any time, thereby terminating the option contract. Hence, an optimal
stopping problem similar to American-style options arises for the installment option even
in European style. Let t (≥ 0) be the purchase time and let ci(t, St; q) denote the initial
premium of the continuous-installment call option, assuming the same framework as that
for the vanilla call option in this paper. Then, the value ci(t, St; q) can be decomposed as

ci(t, St; q) = c(t, St) + πi(t, St; q)−Kt, t ∈ [0, T ], (4.4)

where
Kt =

q

r

(
1− e−r(T−t)

)
, t ∈ [0, T ],

is the NPV of the future payment stream at time t, and

πi(t, St; q) = ess sup
s∈[t,T ]

Et

[
e−r(s−t)

(
Ks − c(s, Ss)

)+]
,

represents the value of an American compound put option maturing in time T written on
the vanilla call option. Using the refined LCT approach combined with the decomposition
(4.4), we have

π∗
i (λ, S; q) ≡ LC[π̃i(τ, S; q)](λ) = − 2

σ2

q

θ2(θ1 − θ2)

(
S

S∗
i

)θ2

, S > S∗
i ,

where S∗
i ≡ S∗

i (λ) = LC[S̃i(τ)](λ) is the LCT of the optimal stopping boundary
(
Si(t)

)
t∈[0,T ]

,

which is given by

S∗
i (λ) = K

[
q(θ1 − 1)

λK

] 1
θ1

.

Hence, the initial premium of the continuous-installment option is given by

ci(t, S; q) =

{
0, S ≤ LC−1[S∗

i (λ)](T − t)

c(t, S) + LC−1[π∗
i (λ, S; q)](T − t)−Kt, S > LC−1[S∗

i (λ)](T − t).

Note that the solutions for π∗
i (λ, S; q) and S∗

i (λ) have much simpler expressions as compared
with those in Kimura [18, Equations (32) and (25)].

Due to the simplicity of the idea, the refined LCT approach is broadly applicable to, e.g.,
American continuous-installment options [16], American fractional lookback options [19],
American exchange options [20] and so on. Of course, the approach is also applicable to put
counterparts in the same way.

Finally, we make a brief remark about a certain similarity between our LCT approach
and the so-called quadratic approximation (QA) developed by MacMillan [22] and Barone-
Adesi and Whaley [7]. In the QA for an American vanilla option, the focus is also on the
early exercise premium, for which an approximate ODE is derived. The option value is
given by the sum of the associated European value and an approximate solution for the
early exercise premium. The significant difference between these two approaches is that the
ODE derived from the LCT approach is exact in the Laplace domain, whereas the ODE
derived from the QA approach is an approximation in the real-time domain. It has been
known from numerical experiences that the LCT approach generates almost exact values,
while the QA approach generates less accurate values, in particular, for options with long
maturity.
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