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DYNAMIC DUALIZATION IN A GENERAL SETTING
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Abstract Recently, Iwamoto, Kimura, and Ueno proposed dynamic dualization to present dual problems
for unconstrained optimization problems whose objective function is a sum of squares. The aim of this
paper is to show that dynamic dualization works well for unconstrained problems whose objective function
is a sum of convex functions. Further we give another way to get dual problems, which is based on the
infimal convolution. In both approaches we make clear the assumption for duality to hold.
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1. Introduction

Dual problems are usually defined for convex programming problems with constraints.
Iwamoto, Kimura, and Ueno [1–3, 5] proposed dynamic dualization to present dual problems
for unconstrained minimization problems whose objective function is a sum of squares. For
example, for the following primal problem

Minimize x2 + (x+ 1)2 + (x+ 2)2, x ∈ R, (1.1)

they introduce variables u = x, v = x+1, and w = x+2 to get a convex quadratic problem

Minimize u2 + v2 + w2 (1.2)

subject to x− u = 0, x+ 1− v = 0, x+ 2− w = 0.

Its Lagrange dual is

Maximize −1

4
(λ2 + µ2 + ν2) + µ+ 2ν (1.3)

subject to λ+ µ+ ν = 0,

where λ, µ, and ν are Lagrange multipliers corresponding to the constraints x − u = 0,
x + 1 − v = 0, and x + 2 − w = 0, respectively. If we take x − u = 0 and x + 1 − v = 0
in (1.2), then we get another dual problem. If we take only x − u = 0 in (1.2), then we
get another dual problem, see (4.4) in Section 4. Iwamoto, Kimura, and Ueno derived dual
problems by computation, which is highly dependent on the sum of squares and perfect
square. However dynamic dualization is effective in more general setting. In this paper, we
deal with the following primal problem

(P ) Minimize
m∑
i=1

fi(x), x ∈ Rn, (1.4)
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where fi : Rn → (−∞,∞] (i = 1, . . . ,m) are convex functions not identically ∞. In Section
2, we show that dynamic dualization works well in a general setting. In Section 3, we show
another route to reach the dual problem obtained by dynamic dualization, which is based
on the infimal convolution. In Section 4, we discuss another type of dynamic dualization.

Throughout this paper, inf(P ) and sup(D) denote the infimum of the primal problem
(P ) and the supremum of the dual problem (D), respectively. When the infimum is attained
by some feasible solution of (P ), we denote inf(P ) by min(P ). Similarly we denote sup(D)
by max(D), where max(D) does not always implies max(D) ∈ R. When the value of the
objective function is −∞ for some feasible solution of (D), max(D) = −∞.

2. Dynamic Dualization

Dynamic dualization first introduces new variables u1, . . . , um ∈ Rn to (1.4), and transforms
it into a minimization problem with m linear equality constraints:

Minimize
m∑
i=1

fi(ui) subject to x− ui = 0 (i = 1, . . . ,m). (2.1)

Its Lagrange function is given by

L(x, u1, . . . , um, y1, . . . , ym) :=
m∑
i=1

fi(ui) +
m∑
i=1

yTi (x− ui), (2.2)

where yi ∈ Rn, and its Lagrange dual problem is given by

(DL) Maximize inf{L(x, u1, . . . , um, y1, . . . , ym) | x, u1, . . . , um ∈ Rn}. (2.3)

The last step of dynamic dualization is to express the objective function by the dual variables
y1, . . . , ym.

The following theorem is given in Rockafellar [4, Corollary 28.2.2].

Theorem 2.1. (Lagrange duality theorem) Let (P0) be a convex programming problem
with m linear equality constraints

(P0) Minimize f(x) subject to Ax = b. (2.4)

If (P0) has a feasible solution and inf(P0) is finite, then there exists y ∈ Rm such that

inf{L(x, y) | x ∈ Rn} = inf(P0), (2.5)

where L(x, y) := f(x) + yT (Ax− b).

By applying Theorem 2.1 to (2.1), we obtain the following duality theorem.

Theorem 2.2. For the primal problem (1.4), its dual is given by

(D) Maximize −
m∑
i=1

f ∗
i (yi) subject to

m∑
i=1

yi = 0 ∈ Rn, (2.6)

where f∗
i (yi) := sup{yTi ui − fi(ui) | ui ∈ Rn}, and if inf(P ) is finite, then inf(P ) = sup(D).
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Proof. It is evident that the primal problem (2.1) has a feasible solution. So Theorem 2.1
is applicable to (2.1). Since

inf{L(x, u1, . . . , um, y1, . . . , ym) | x, u1, . . . , um ∈ Rn}

= inf

{
m∑
i=1

(fi(ui)− yTi ui) +
m∑
i=1

yTi x x, u1, . . . , um ∈ Rn

}

=

{
−
∑m

i=1 f
∗
i (yi) if

∑m
i=1 yi = 0,

−∞ if
∑m

i=1 yi 6= 0,

(DL) becomes (D), and we get inf(P ) = sup(D).

Example 2.1. Let ai ∈ R and fi(x) = (x+ ai)
2. Then since f ∗

i (yi) = y2i /4− aiyi, the dual
problem is

Maximize −1

4
(y21 + · · ·+ y2m) + a1y1 + · · ·+ amym

subject to y1 + · · ·+ ym = 0.

3. Infimal Convolution

In this section, we present another route to reach the dual problem (2.6). For any convex
function f : Rn → (−∞,∞], its conjugate is defined by

f ∗(y) := sup{yTx− f(x) | x ∈ Rn}, y ∈ Rn. (3.1)

The epigraph of f is defined by epif := {(x, r) ∈ Rn+1 | f(x) ≤ r}. The closure cl f of
f is defined so that epi(cl f) is the closure of epif . The closure of f is the greatest lower
semi-continuous function majorized by f .

The infimal convolute of f1, . . . , fm is defined by

(f1�f2� · · ·�fm)(x) := inf{f1(x1) + · · ·+ fm(xm) | x1 + · · ·+ xm = x}. (3.2)

The operation � is called infimal convolution.

Theorem 3.1. (Rockafellar [4, Theorem 16.4]) Let fi : Rn → (−∞,∞] (i = 1, . . . ,m) be
convex functions not identically ∞. Then for any y ∈ Rn

(cl f1 + · · ·+ cl fm)
∗(y) = cl (f ∗

1� · · ·�f ∗
m)(y) ∈ (−∞,∞]. (3.3)

If the relative interior of dom fi (i = 1, . . . ,m) have a point in common, the closure operation
can be omitted from (3.3), and

(f1 + · · ·+ fm)
∗(y) = min{f ∗

1 (y1) + · · ·+ f ∗
m(ym) | y1 + · · ·+ ym = y} ∈ (−∞,∞]. (3.4)

Remark 3.1. In (3.4), min{f ∗
1 (y1) + · · · + f ∗

m(ym) | y1 + · · · + ym = y} = ∞ means that
there exist y1, . . . , ym ∈ Rn such that y1 + · · ·+ ym = y and

f ∗
1 (y1) + · · ·+ f∗

m(ym) = ∞.

Applying Theorem 3.1 to the primal problem (1.4), we obtain the following duality
theorem.
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Theorem 3.2. Let fi : Rn → (−∞,∞] (i = 1, . . . ,m) be convex functions not identically
∞. Assume that the relative interior of dom fi (i = 1, . . . ,m) have a point in common, then
the dual of (1.4) is (2.6), and inf(P ) = max(D) ∈ [−∞,∞).

Proof. For f :=
∑m

i=1 fi, since f∗(0) = sup{−f(x) | x ∈ Rn} = − inf{f(x) | x ∈ Rn}, we
get from (3.4)

inf(P ) = −f ∗(0) = max{−f∗
1 (y1)− · · · − f ∗

m(ym) | y1 + · · ·+ ym = 0} ∈ [−∞,∞). (3.5)

Figure 1 illustrates a dual problem for m = 2. Since y2 = −y1, the dual problem is to
maximize −f ∗

1 (y1)− f∗
1 (−y1). In both figures the slope of tangent lines are ±y1.

Figure 1: The dual problem for m = 2

4. Dynamic Dualization 2

As we mentioned in the introduction, Iwamoto, Kimura, and Ueno [1–3, 5] gave another
type of dynamic dualization for the primal problem (1.4). The second dynamic dualization
introduces variables ui (i ∈ I) and constraints x− ui (i ∈ I), where I is a proper subset of
{1, . . . ,m}. Then the primal problem is equivalent to

Minimize
∑
i∈I

fi(ui) +
∑
i/∈I

fi(x) subject to x− ui = 0 (i ∈ I). (4.1)

Since the Lagrange function is

L(x, . . . , ui, . . . , yi, . . . ) =
∑
i∈I

fi(ui) +
∑
i/∈I

fi(x) +
∑
i∈I

yTi (x− ui), (4.2)

where yi ∈ Rn (i ∈ I), we have

inf{L(x, . . . , ui, . . . , yi, . . . ) | x, ui ∈ Rn (i ∈ I)}

= inf

{∑
i∈I

(fi(ui)− yTi ui) +
∑
i/∈I

fi(x) +
∑
i∈I

yTi x x, ui ∈ Rn (i ∈ I)

}

= −
∑
i∈I

f∗
i (yi)−

(∑
i/∈I

fi

)∗(
−
∑
i∈I

yi

)
.
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Applying Theorem 2.1 to (4.1), we get the following dual problem

(D2) Maximize −
∑
i∈I

f∗
i (yi)−

(∑
i/∈I

fi

)∗(
−
∑
i∈I

yi

)
(4.3)

subject to yi ∈ Rn (i ∈ I).

Theorem 4.1. If inf(P ) is finite, then inf(P ) = sup(D2).
Example 4.1. ([5]) Let f1(x) = x2, f2(x) = (x+1)2, f3(x) = (x+2)2, and I = {1}. Then

f ∗
1 (y1) =

1

4
y21, (f2 + f3)

∗(−y1) =
1

8
y21 +

3

2
y1 −

1

2
.

Hence the dual problem (D2) is written as

Maximize − 3

8
y21 −

3

2
y1 +

1

2
subject to y1 ∈ R.

In [5] they put λ = y1/2, and obtained

Maximize − 3

2
λ2 − 3λ+

1

2
subject to λ ∈ R. (4.4)

Remark 4.1. If we apply (3.4) to the second term of (4.3), then we have

−

(∑
i/∈I

fi

)∗(
−
∑
i∈I

yi

)

= max

{
−
∑
i/∈I

f ∗
i (zi)

∑
i/∈I

zi = −
∑
i∈I

yi, zi ∈ Rn (i /∈ I)

}

= max

{
−
∑
i/∈I

f ∗
i (zi)

∑
i∈I

yi +
∑
i/∈I

zi = 0, zi ∈ Rn (i /∈ I)

}
Hence (D2) reduces to (D). Therefore the second dynamic dualization can be regarded as
a halfway point of the first dynamic dualization.

5. Concluding Remarks

We close this paper with making a comparison between dynamic dualization and infimal
convolution. The former (Theorem 2.2) assumes only inf(P ) ∈ R, and claims that inf(P ) =
sup(D) ∈ R. The latter (Theorem 3.1) assumes that the relative interior of dom fi (i =
1, . . . ,m) have a point in common, and claims that inf(P ) = max(D). The latter assumption
is trivially satisfied if every fi is real-valued. However inf(P ) = max(D) might be −∞.
Example 5.1. Let fi(x) = aTi x+ bi (i = 1, . . . ,m). Since fi is real-valued, Theorem 3.2 is
applicable. Since

f ∗
i (yi) =

{
−bi yi = ai

∞ yi 6= ai,

the dual problem is to maximize
∑m

i=1 bi subject to
∑m

i=1 yi = 0 and yi = ai (i = 1, . . . ,m),
and we have

inf(P ) = max(D) =

{∑m
i=1 bi

∑m
i=1 ai = 0

−∞
∑m

i=1 ai 6= 0.

This example is outside of [1–3, 5].
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