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Abstract Modularity proposed by Newman and Girvan is the most commonly used measure when the
nodes of a graph are grouped into communities consisting of tightly connected nodes. We formulate the
modularity maximization problem as a set partitioning problem, and propose an algorithm for the problem
based on the linear programming relaxation. We solve the dual of the linear programming relaxation by
using a cutting plane method. To mediate the slow convergence that cutting plane methods usually suffer,
we propose a method for finding and simultaneously adding multiple cutting planes.
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1. Introduction

One of the most important issues in the network analysis is to find a meaningful structure,
which often addresses identifying or detecting community structure. Here communities are
the sets of nodes such that each set consists of tightly connected nodes, but loosely connected
each other. A variety of approaches to detect communities has been proposed. The cut size
defined as the number of edges connecting communities is one of the most commonly used
quality measures. Minimizing the cut size, known as the minimum cut method, however
often results in forming a number of very small communities. Several variants to overcome
this drawback have been introduced such as the ratio cut [32], the normalized cut [30], and
min-max cut [11].

A novel quality measure, called modularity, has been proposed by Newman and Girvan
[27]. The modularity was originally used as a stopping criterion of the hierarchical divisive
algorithm [27], and Newman [25] suggested an approach of maximizing the modularity due
to the observation that a high value of the modularity leads to a good community structure.
Then the modularity maximization became one of the central subjects of research. The
NP -hardness of the modularity maximization problem shown by Brandes et al. [4] turned
researchers’ attention to heuristic algorithms, which resulted in several efficient heuristic
algorithms such as the linear programming with rounding procedure by Agarwal and Kempe
[1], the hierarchical agglomerative method by Clauset et al. [8], the simulated annealing by
Guimerá and Amaral [18], and the spectral divisive method by Newman [26].

On the other hand, among exact algorithms three approaches should be mentioned. The
first approach is based on the formulation of the problem as a clique partitioning prob-
lem proposed by Grötschel and Wakabayashi [17]. In this formulation, a binary variable
corresponding to each pair of nodes represents whether the two nodes belong to the same
community. Then the numbers of variables and constraints amount to O(n2) and O(n3),
respectively, both of which grow rapidly with the number n of nodes. Based on this formu-
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lation, Aloise et al. [2] solved instances up to 115 nodes by using the cutting plane algorithm
proposed by Grötschel and Wakabayashi [17].

The second approach is based on the set partitioning problem. Since this formulation
has to take into account all nonempty subsets of the node set, it has O(2n) variables. We can
hardly secure the computational resource to hold the problem when n is large, say more than
200. Column generation technique is a common trick to deal with such problems, but the
auxiliary problem of determining the entering column ends up as a quadratic programming in
binary variables, which is hard to solve exactly. Moreover, the column generation is known
to suffer slow convergence. To overcome this defect, Du Merle et al. [12] have proposed
an acceleration method, called stabilized column generation method. Some computational
results are reported also in Aloise et al. [2].

The third approach is based on the quadratic programming formulation. This formula-
tion suffers from symmetry, that is, there exists a large number of equivalent solutions for
each community structure. As a consequence the computational time increases due to the
large search space of solutions. Xu et al. [33] solved instances up to 104 nodes by introducing
some symmetry breaking constraints.

In this paper, based on the second formulation, set partitioning, we propose cutting plane
algorithms for solving the LP relaxation of the set partitioning problem. Our cutting plane
algorithms, which share a basic framework with the column generation proposed by Aloise
et al. [2], have a merit of being able to provide the upper bounds on the optimal modularity
at every iteration by solving a small relaxation problem. We incorporate several techniques
into the algorithms: multiple cutting planes, rounding heuristics and pegging test. We
report some computational results and demonstrate that our algorithm outperforms some
of existing heuristics.

This paper is organized as follows. We give the definition of the modularity in Section 2
and formulate the modularity maximization problem as a set partitioning problem and a
quadratic programming in Section 3. In Section 4, we introduce several relaxation problems
and their dual problems. In Section 5, after reviewing cutting plane algorithms, we propose
two versions of the cutting plane algorithm and explain a method to calculate an upper
bound. In Section 6, we report the computational experiments of the proposed algorithm.
Finally we give some conclusions in Section 7.

2. Modularity Maximization Problem

Let G = (V,E) be an undirected graph with the set V = {1, 2, . . . , n} of n nodes and the
set E of m edges. We assume that the graph G is simple, that is, G has neither loops
nor parallel edges. We say that Π = {C1, C2, . . . , Ck} is a partition of V if V =

∪k
p=1Cp,

Cp ∩ Cq = ∅ for any distinct p and q in {1, 2, . . . , k}, and Cp ̸= ∅ for any p ∈ {1, 2, . . . , k}.
Each member Cp of a partition is called a cluster or a community. We denote the set of
edges that have one end-node in C and the other end-node in C ′ by E(C,C ′). When C = C ′,
we abbreviate E(C,C ′) to E(C) for the sake of simplicity. Modularity, denoted by µ(Π), of
a partition Π is defined as

µ(Π) =
∑
C∈Π

 |E(C)|
m

−

(
2|E(C)|+

∑
C′∈Π\{C} |E(C,C ′)|
2m

)2
 , (2.1)

where | · | denotes the cardinality of the corresponding set. Roughly speaking, the first
term of (2.1) represents the fraction of the number of edges in a community, whereas the
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26 Y. Izunaga & Y.Yamamoto

second term of (2.1) represents the fraction of the number of edges connecting nodes in
different communities. For more correct explanation of the modularity, we refer the reader
to Newman [26]. It is known that the modularity µ(Π) falls between −1/2 and 1 for any
partition of V . See Brandes et al. [4] for details. In addition, when Π consists of a single
community, i.e., Π = {V }, then we have µ({V }) = 0. We refer to 0 and 1 as trivial lower
and upper bounds on the modularity, respectively.

For i, j ∈ V , let eij be

eij =

{
1 when {i, j} ∈ E

0 otherwise

i.e., the (i, j) element of the adjacency matrix of graph G, and di be the degree of node i,
i.e., di = |{ j ∈ V | {i, j} ∈ E }|, and π(i) be the index of community which node i belongs
to, i.e., π(i) = p means i ∈ Cp. Then µ(Π) is rewritten as

µ(Π) =
1

2m

∑
i∈V

∑
j∈V

(
eij −

didj
2m

)
δ(π(i), π(j)),

where δ is the Kronecker delta, i.e.,

δ(p, q) =

{
1 when p = q

0 otherwise.

Modularity maximization problem, (MM) for short, is the problem of finding a partition of
V that maximizes the modularity µ(Π). Denoting (eij − didj/2m) by wij, then the problem
is formulated as

(MM) :

∣∣∣∣∣∣ maximize
1

2m

∑
i∈V

∑
j∈V

wijδ(π(i), π(j))

subject to Π is a partition of V .

3. Formulations

In this section, we introduce two different formulations of the modularity maximization
problem. The first one is based on the integer programming formulation, and the second
one is based on the quadratic programming formulation.

3.1. Integer programming formulation

Let P denote the family of all nonempty subsets of V . Note that P is composed of 2n − 1
subsets of V . Introducing a binary variable zC for each C ∈ P , a partition Π is represented
by the (2n − 1)-dimensional binary vector z = (zC)C∈P defined as

zC =

{
1 when C ∈ Π

0 otherwise.

This enables us to formulate problem (MM) as an integer programming problem. For each
i ∈ V and C ∈ P , let aiC be defined by

aiC =

{
1 when i ∈ C

0 otherwise.
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Note that the column aC = (a1C , . . . , anC)
⊤ is the incidence vector of community C, i.e.,

C = { i ∈ V | aiC = 1 }. For each C ∈ P , let fC be

fC =
1

2m

∑
i∈C

∑
j∈C

wij, (3.1)

which is rewritten as

=
1

2m

∑
i∈V

∑
j∈V

wijaiCajC .

The constant fC represents the contribution of community C to the objective function µ(Π)
when community C is selected as a member of the partition Π. Thus (MM) is formulated
as the integer programming (P ):

(P ) :

∣∣∣∣∣∣∣∣∣∣
maximize

∑
C∈P

fCzC

subject to
∑
C∈P

aiCzC = 1 (i ∈ V )

zC ∈ {0, 1} (C ∈ P).

Since the first set of constraints states that the communities adopted form a partition of V ,
this problem is called a set partitioning problem. From now on, we will call the first set of
constraints set partitioning constraints. Due to its huge number of variables this problem
easily becomes computationally intractable as the number of nodes grows.

3.2. Quadratic programming formulation

The quadratic programming formulation for the modularity maximization problem has been
proposed by Xu et al. [33]. Though the optimal number of communities is a priori unknown,
we suppose an upper bound on the optimal number of communities is known, and denote
it by t. Let T be an index set {1, 2, . . . , t}. For each edge r = {i, j} ∈ E and each p ∈ T ,
let xrp be the binary variable such that

xrp =

{
1 when r ∈ E(Cp)

0 otherwise.

For each node i ∈ V and each p ∈ T , let yip be defined by

yip =

{
1 when i ∈ Cp

0 otherwise.

Then (MM) is formulated as the following quadratic programming:

(QP ) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
p∈T

 1

m

∑
r∈E

xrp −
1

4m2

(∑
i∈V

diyip

)2


subject to
∑
p∈T

yip = 1 (i ∈ V )

xrp ≤ yip (r = {i, j} ∈ E, p ∈ T )
xrp ≤ yjp (r = {i, j} ∈ E, p ∈ T )
xrp ∈ {0, 1} (r ∈ E, p ∈ T )
yip ∈ {0, 1} (i ∈ V, p ∈ T ).
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28 Y. Izunaga & Y.Yamamoto

The first set of constraints impose that each node belongs to exactly one community, and
the remaining constraints express that any edge r = {i, j} belongs to a set of edges E(Cp)
if both end-nodes i, j belong to the community Cp. Note that the binary constraint of the
variable xrp is redundant owing to the objective function of maximizing with respect to xrp,
hence it could be deleted or relaxed to 0 ≤ xrp ≤ 1.

This formulation suffers from symmetry, that is, re-indexing some communities yields
alternative equivalent solutions. Such solutions are called symmetric solutions. As a con-
sequence, branch-and-bound algorithms tend not to work well. See, Chapter 9 of Conforti
et al. [9] for instance. Xu et al. [33] have proposed some valid inequalities to get rid of the
symmetric solutions from the feasible region. In this paper we will not solve the problem
(QP ), but make use of this problem to obtain an upper bound on the optimal value of (P )
in Subsection 5.2.

4. Relaxation Problems and Related Dual Problems

Not only the number of variables but also their integrality makes problem (P ) a highly
intractable problem. Then it would be a natural and clever strategy to consider relaxation
problems for the useful information about the solution of (P ). See, for example [6, 7, 29, 31].
The first choice to consider would be the Linear Programming relaxation, LP relaxation for
short, where the binary constraint zC ∈ {0, 1} is replaced by 0 ≤ zC ≤ 1. It is given as

(RP ) :

∣∣∣∣∣∣∣∣∣∣
maximize

∑
C∈P

fCzC

subject to
∑
C∈P

aiCzC = 1 (i ∈ V )

zC ≥ 0 (C ∈ P).

The upper bound constraints zC ≤ 1 are redundant owing to the set partitioning constraints,
hence omitted. The linear programming dual problem of (RP ) is given as the following
(RD):

(RD) :

∣∣∣∣∣∣∣∣∣∣
minimize

∑
i∈V

λi

subject to
∑
i∈V

aiCλi ≥ fC (C ∈ P)

λi ∈ R (i ∈ V ).

Now let us denote the feasible region and the optimal value of an optimization problem, say
Q, by F(Q) and ω(Q), respectively. Since (RP ) is a relaxation problem of (P ), it holds that
F(P ) ⊆ F(RP ), hence ω(P ) ≤ ω(RP ). Applying the linear programming duality theorem
to the primal dual pair (RP ) and (RD), we see ω(P ) ≤ ω(RD). Namely, solving (RD) we
will obtain an upper bound on ω(P ). The optimal solution of (RP ) often provides a clue as
to possibly a good feasible solution of (P ) with aid of the information collected in solving its
dual problem (RD). Although (RD) has only n variables, its exponentially large number
of constraints makes it intractable.

Another interesting way is Lagrangian relaxation, see, e.g., Conforti et al. [9], Fisher [13]
and Geoffrion [14]. We relax the set partitioning constraints by adding them to the objective
function as a penalty with the Lagrangian multiplier vector λ = (λ1, . . . , λn) ∈ Rn, then we
obtain the following Lagrangian relaxation problem (LR(λ)) having only binary variable
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constraint:

(LR(λ)) :

∣∣∣∣∣∣∣∣∣∣∣
maximize

∑
C∈P

fCzC +
∑
i∈V

λi

(
1−

∑
C∈P

aiCzC

)
=
∑
C∈P

γC(λ)zC +
∑
i∈V

λi

subject to zC ∈ {0, 1} (C ∈ P)

where γC(λ) = fC −
∑

i∈V aiCλi. For a given multiplier vector λ, we can obtain an optimal
solution z(λ) = (zC(λ))C∈P by simply setting zC(λ) = 1 if γC(λ) > 0, and zC(λ) = 0
otherwise. Then the optimal value ω(LR(λ)) provides an upper bound on ω(P ) for any λ,
and the upper bound given by the problem (LR(λ)) depends on a choice of the multiplier
vector. The problem of finding the best upper bound on ω(P ) is called the Lagrangian dual
problem, which is given as

(LD) :

∣∣∣∣ minimize ω(LR(λ))
subject to λ ∈ Rn.

The objective function of (LD) is a piecewise linear convex function with respect to λ,
hence sub-differentiable. One of the most commonly used method for this problem is the
subgradient method (See e.g., [9]).

Now, we consider continuous relaxation problem of (LR(λ)), i.e., replacing the binary
constraint by 0 ≤ zC ≤ 1, and denote it by (LR(λ)). Clearly, any optimal solution of
(LR(λ)) is also optimal for (LR(λ)), which is called integrality property [14]. Under this
property, the optimal value of (LD) coincides with that of the problem (RD), hence the
problems (RD) and (LD) yield upper bounds of the same quality, and the subgradient
method for (LD) is more attractive than the simplex method as well as barrier method for
(RD) in terms of low computational burden and low memory consumption. However, the
Lagrangian multiplier λ obtained by the subgradient method does not necessarily satisfy
the dual feasibility condition γC(λ) ≤ 0 unlike the case of applying the simplex method or
barrier method to (RD), which may causes undesirable issue in cutting plane algorithm.
Specifically, the algorithm may repeatedly generate a cut which is already added.

Boschetti et al. [3] have proposed a parametric relaxation for the set partitioning problem,
and the dual problem to their relaxation problem also provides upper bounds on the same
level with those provided by LP relaxation even if the parameter in the relaxation problem
is appropriately set on.

As mentioned above, LP relaxation provides a tight upper bound for the set partitioning
problem and produces a solution with a favorable feature, dual feasibility, so that we consider
the LP relaxation problem in this paper.

5. Cutting Plane Algorithm

The constraints of problem (RD) far outnumber the variables, hence most of them should
not be binding at an optimal solution. The cutting plane algorithm is one of commonly
used methods for LP problems of this kind. We will give a brief review of cutting plane
algorithms, and then propose an algorithm for (RD).
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30 Y. Izunaga & Y.Yamamoto

5.1. Prototype of cutting plane algorithm

The key idea of the cutting plane algorithm is to deal with a small subfamily C of P , and
instead of (RD), to solve the following problem with fewer constraints:

(RD(C)) :

∣∣∣∣∣∣∣∣∣∣
minimize

∑
i∈V

λi

subject to
∑
i∈V

aiCλi ≥ fC (C ∈ C)

λi ∈ R (i ∈ V ).

Let λ(C) denote an optimal solution of (RD(C)). Since the constraints
∑

i∈V aiCλi ≥ fC for
C ∈ P \ C are not considered, it is not necessarily a feasible solution of (RD). To check the
feasibility of λ(C), we define a measure of violation γC(λ(C)) of the constraint corresponding
to C as

γC(λ(C)) = fC −
∑
i∈V

aiCλi(C). (5.1)

Note that γC(λ(C)) ≤ 0 for all C ∈ C. When γC(λ(C)) ≤ 0 for all C ∈ P \ C, λ(C) is a
feasible solution of problem (RD), hence an optimal solution of problem (RD). When

γC(λ(C)) > 0

holds for some C ∈ P \ C, adding this C to C can lead to an improvement of the optimal
value of problem (RD(C)), i.e., ω(RD(C ∪ {C})) ≥ ω(RD(C)). Substituting (3.1) for fC of
(5.1) yields

γC(λ(C)) =
1

2m

∑
i∈V

∑
j∈V

wijaiCajC −
∑
i∈V

aiCλi(C),

hence the problem of maximizing γC(λ(C)) over P is formulated as the problem (SP (λ(C)))
with a quadratic objective function in binary variables:

(SP (λ(C))) :

∣∣∣∣∣∣ maximize
1

2m

∑
i∈V

∑
j∈V

wijyiyj −
∑
i∈V

λi(C)yi

subject to yi ∈ {0, 1} (i ∈ V ).

An optimal solution y∗ of this problem provides the incidence vector of the community that
maximizes γC(λ(C)) over P . Since y = 0 is a feasible solution of this problem, the optimal
value is non-negative. According to the quadratic formulation presented in Subsection 3.2,
(SP (λ(C))) is equivalently formulated as the following problem with a quadratic concave
objective function:

(SP (λ(C))) :

∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1

m

∑
r∈E

xr −
1

4m2

(∑
i∈V

diyi

)2

−
∑
i∈V

λi(C)yi

subject to xr ≤ yi (r = {i, j} ∈ E)
xr ≤ yj (r = {i, j} ∈ E)
0 ≤ xr ≤ 1 (r ∈ E)
yi ∈ {0, 1} (i ∈ V ).

For each edge r = {i, j} ∈ E, a binary variable xr is equal to 1 when both end-nodes i, j of
edge r belong to a community that maximizes γC(λ(C)), and a variable yi, for each i ∈ V ,
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Cutting Plane Algorithm for Modularity Maximization 31

is equal to 1 when node i belongs to the community and 0 otherwise. Having found y∗ with
positive optimal value, we have only to add the constraint∑

i∈V

y∗i λi ≥ f ∗

to (RD(C)), where

f ∗ =
1

2m

∑
i∈V

∑
j∈V

wijy
∗
i y

∗
j .

From the above discussion, a prototype of the cutting plane algorithm is given as follows.

Prototype of the Cutting Plane Algorithm

Step 0

Let C be an initial family of nonempty subsets of V .
Step 1

Solve (RD(C)) to obtain an optimal solution λ(C) and the optimal value ω(RD(C)).
Step 2

Solve (SP (λ(C))) and set y∗ be an optimal solution.
Step 3

If ω(SP (λ(C))) ≤ 0 then

Set C⋆ ← C and ω⋆ ← ω(RD(C)). Output C⋆ and ω⋆, and terminate.
else

Set C ← { i ∈ V | y∗i = 1 } and increment C ← C ∪ {C}. Return to Step 1.
end if

Note that one can regard the cutting plane algorithm for a dual LP problem as column
generation algorithm for a primal problem corresponding to the above dual problem. We
refer the reader to Desaulniers et al. [10].

The initial subfamily C could be empty, but a clever choice may enhance the efficiency
of the algorithm. In our experiments we collected all singletons of V to make the initial
family C. When the algorithm terminates, we have solved (RD), hence also (RP ), which
usually admits a fractional optimal solution. The final family C⋆ however would yield a
set of primal variables that are likely to be positive at an optimal solution of problem (P ).
Then we propose to solve the following problem (P (C⋆)) of variables zC with C ∈ C⋆.

(P (C⋆)) :

∣∣∣∣∣∣∣∣∣∣
maximize

∑
C∈C⋆

fCzC

subject to
∑
C∈C⋆

aiCzC = 1 (i ∈ V )

zC ∈ {0, 1} (C ∈ C⋆).

This problem is expected to have much fewer variables than problem (P ) does, so that it
could be solved within a reasonable time by an IP solver, e.g., CPLEX, Gurobi and Xpress.
Furthermore, we can fix some variables corresponding to subsets in C⋆ without loss of the
optimality of the solution for the problem (P (C⋆)). This preprocessing technique for (P (C⋆))
is called pegging test [31]. In order to explain the pegging test, we first consider the following
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Lagrangian relaxation problem (LR(C⋆,λ)) of (P (C⋆)).

(LR(C⋆,λ)) :

∣∣∣∣∣∣∣
maximize

∑
C∈C⋆

fCzC +
∑
i∈V

λi

(
1−

∑
C∈C⋆

aiCzC

)
subject to zC ∈ {0, 1} (C ∈ C⋆).

From (5.1), the objective function of (LR(C⋆,λ)) is written as∑
C∈C⋆

γC(λ)zC +
∑
i∈V

λi.

For a given multiplier vector λ ∈ Rn, we can obtain an optimal solution z(λ) of (LR(C⋆,λ))
by simply setting zC(λ) = 1 if γC(λ) > 0, and zC(λ) = 0 otherwise.
Proposition 5.1. Let LB be a lower bound on (P ) and λ be an optimal solution of
(RD(C⋆)), respectively. If

∑
i∈V λi + γC(λ) < LB, then zC = 0 for any optimal solution of

the problem (P (C⋆)).

Proof. Since the problem (LR(C⋆,λ)) is a relaxation problem of (P (C⋆)), we have

ω(P (C⋆ | zC = 1)) ≤ ω(LR(C⋆,λ | zC = 1)). (5.2)

For any C ∈ C⋆, γC(λ) is non-positive due to the feasibility of λ for the problem (RD(C⋆)),
hence ω(LR(C⋆,λ)) =

∑
i∈V λi holds. Moreover we obtain

ω(LR(C⋆,λ | zC = 1)) =
∑
i∈V

λi + γC(λ). (5.3)

From (5.2), (5.3) and the assumption, we have the following inequality

ω(P (C⋆ | zC = 1)) ≤
∑
i∈V

λi + γC(λ) < LB.

The above inequality ω(P (C⋆ | zC = 1)) < LB implies the non-existence of the optimal
solution that satisfies zC = 1. Therefore zC = 0 for any optimal solution of the problem
(P (C⋆)).

We put off the description of the heuristics to obtain a lower bound LB on ω(P ) until
Subsection 5.2. Lacking variables zC with C not in C⋆, (P (C⋆)) provides a lower bound on
ω(P ). Then

ω(P (C⋆)) ≤ ω(P ) ≤ ω(RD(C⋆)).

Thus, the value ω(RD(C⋆))− ω(P (C⋆)) provides an upper bound of the difference between
ω(P (C⋆)) and ω(P ), hence the quality of the solution of (P (C⋆)) given by an IP solver.

5.2. Proposed cutting plane algorithms

In this subsection we first discuss the stopping criterion of the cutting plane algorithm.
Generally, this algorithm suffers from slow convergence, and, many iterations may be needed
to prove the optimality of (RD) after the optimal value of (RD) has been obtained. Even so,
it should be noted that we can evaluate the quality of the current optimal value ω(RD(C))
by means of the difference between ω(RD(C)) and an upper bound on ω(P ).

To obtain an upper bound on ω(P ), we recall the problem (QP ) presented in Subsec-
tion 3.2. We relax the first set of constraints and add them to the objective function as
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a penalty with Lagrangian multiplier vector λ ∈ Rn, and obtain the following Lagrangian
relaxation problem:

(LRQP (λ)) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑
p∈T

 1

m

∑
r∈E

xrp −
1

4m2

(∑
i∈V

diyip

)2
+

∑
i∈V

λi

(
1−

∑
p∈T

yip

)
subject to xrp ≤ yip (r = {i, j} ∈ E, p ∈ T )

xrp ≤ yjp (r = {i, j} ∈ E, p ∈ T )
0 ≤ xrp ≤ 1 (r ∈ E, p ∈ T )
yip ∈ {0, 1} (i ∈ V, p ∈ T ).

The problem (LRQP (λ)) is a relaxation problem of (P ), and hence the optimal value of
(LRQP (λ)) provides an upper bound on ω(P ) for any λ ∈ Rn. Owing to the absence of the
first set of constraints of the problem (QP ), the problem (LRQP (λ)) is decomposable into
t subproblems. Let us denote the subproblem corresponding to p ∈ T by (LRQP (λ, p)),
then the subproblem (LRQP (λ, p)) is as follows:

(LRQP (λ, p)) :

∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1

m

∑
r∈E

xrp −
1

4m2

(∑
i∈V

diyip

)2

−
∑
i∈V

λiyip

subject to xrp ≤ yip (r = {i, j} ∈ E)
xrp ≤ yjp (r = {i, j} ∈ E)
0 ≤ xrp ≤ 1 (r ∈ E)
yip ∈ {0, 1} (i ∈ V ).

The optimal value of (LRQP (λ)) is given as follows via the optimal value ω(LRQP (λ, p)).

ω(LRQP (λ)) =
∑
p∈T

max
x,y∈F(LRQP (λ,p))

 1

m

∑
r∈E

xrp −
1

4m2

(∑
i∈V

diyip

)2

−
∑
i∈V

λiyip

+
∑
i∈V

λi

=
∑
p∈T

ω(LRQP (λ, p)) +
∑
i∈V

λi.

Note that each subproblem (LRQP (λ, p)) has the same optimal value regardless of index
p ∈ T and that (LRQP (λ, p)) is equivalent to (SP (λ)). Therefore we have the following
equation:

ω(LRQP (λ)) = t · ω(SP (λ)) +
∑
i∈V

λi. (5.4)

Proposition 5.2. Let t be an upper bound on the number of communities at an optimal
solution of (P ). Then (5.4) is an upper bound on ω(P ) for any λ ∈ Rn.

Proof. Clear from the above discussion.

Due to arbitrariness of λ ∈ Rn in Proposition 5.2, the proposition holds for an optimal
solution λ(C) obtained at each iteration of the algorithm. Thus we can obtain an upper
bound on ω(P ) at every iteration without additional computation. If the difference between
the upper bound and ω(RD(C)) is small, we can stop the algorithm even if ω(SP (C)) ≤ 0
does not hold. For a predetermined parameter ε ≥ 0, we use the following condition as one
of the stopping criterion of our algorithm

UB− ω(RD(C))
UB

≤ ε,
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where UB is the smallest upper bound obtained so far. Note that the above condition
implies (ω(P )− ω(RD(C)))/ω(P ) ≤ ε due to ω(P ) ≤ UB, that is, ω(RD(C)) is sufficiently
close to the optimal value ω(P ).

Here we describe the heuristic algorithm to obtain a feasible solution of the problem
(P ), which is based on a simple rounding procedure. First, we derive an optimal solution
z(C) of (RP (C)) from the optimal dual solution λ(C) obtained at Step 1 of the cutting plane
algorithm. Since this primal solution is usually a fractional solution, we construct an integer
solution z̄ = (z̄C)C∈C by rounding z̄C = 1 if zC(C) > 0, and z̄C = 0 otherwise. We say that
{C1, C2, . . . , Ck} is a cover of V if V =

∪k
p=1Cp and Cp ̸= ∅ for any p ∈ {1, 2, . . . , k}, and let

S denote a sub-family represented by the solution z̄ for succinct notation. The sub-family
S is not necessarily a partition of V , but a cover of V due to the feasibility of z(C) for the
problem (RP (C)). Thus some communities may overlap with each other. For a given S, we
define the following set

M(S, i) = {C ∈ S | i ∈ C }

in order to check whether S is a partition of V . When the cardinality of M(S, i) is equal
to 1 for any i ∈ V , the sub-family S is a partition of V , hence we can obtain a lower bound
on ω(P ). If |M(S, i)| > 1 holds for some i ∈ V , then we compute the variation ∆(i, C) of
the contribution fC when node i is removed from a community C,

∆(i, C) =
1

m

∑
j∈C

wij

for each C ∈ M(S, i). Let C∗ be the community that minimizes ∆(i, C) over M(S, i), and
we remove the index i from any C ∈ M(S, i) \ C∗. The rounding heuristics is described as
follows.

Rounding Heuristics
Step 0

Let z(C) be an optimal solution of (RP (C)).
Step 1

Construct z̄ from z(C) by the rounding procedure.
Let S be a sub-family represented by z̄.

Step 2

if |M(S, i)| = 1 for any i ∈ V then

Calculate fC for any C ∈ S, and set ℓ(P )←
∑

C∈S fC .
Output ℓ(P ) and terminate.

else

Go to Step 3.
end if

Step 3

Select a minimum index i ∈ V such that |M(S, i)| > 1.
Compute ∆(i, C) for any C ∈M(S, i), and set C∗ ← argmin{∆(i, C) | C ∈M(S, i) }.
for C ∈M(S, i) \ C∗ do

Set C ← C \ {i}.
Step 4

Update the sub-family S according to the modification at Step 3,
and return to Step 2.
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Our proposed algorithm is described as follows. Note that C is incremented by a single
set C determined by y∗ found in Step 2. We will call this algorithm the Single-Cutting-
Plane-at-a-Time Algorithm, SCP for short.

Single-Cutting-Plane-at-a-Time Algorithm (SCP)
Step 0

Let C be an initial family of nonempty subsets of V and ε be a parameter.
Initialize an upper bound UB and a lower bound LB by setting UB← 1 and LB← 0.

Step 1

Solve (RD(C)) to obtain an optimal solution λ(C) and the optimal value ω(RD(C)).
Compute a lower bound ℓ(P ) by the rounding heuristics.
if LB < ℓ(P ) then LB← ℓ(P ).

Step 2

Solve (SP (λ(C))) and set y∗ be an optimal solution.
Compute an upper bound u(P ) according to Proposition 5.2.
if UB > u(P ) then UB← u(P ).

Step 3

if ω(SP (λ(C))) ≤ 0 or (UB− ω(RD(C)))/UB ≤ ε then

Set C⋆ ← C, ω⋆ ← ω(RD(C)), LB⋆ ← LB and UB⋆ ← UB.
Output C⋆, ω⋆, LB⋆, UB⋆, and terminate.

else

Set C ← { i ∈ V | y∗i = 1 }, increment C ← C ∪ {C}. Go to Step 1.
end if

Carrying out some preliminary experiments by SCP, we frequently observed that the
optimal value ω(RD(C)) stays constant for many iterations even when C is repeatedly incre-
mented. We show in Table 1 and Figure 1 how slowly ω(RD(C)) increases. Here “Karate” is
Zachary’s karate dataset [34] representing friendship relation between members of a karate
club. The slow convergence we observed may arise from a particular structure of (RD(C))

Table 1: Plateau situation of SCP

Karate
iteration ω(RD(C))

0 0.00000
10 0.37179
20 0.37179
30 0.37179
40 0.38047
50 0.41979

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50

ob
j.v

al

iteration

UB   
ω(RD(C))

Figure 1: Behavior of SCP for Karate

that all coefficients of the objective function are one and all coefficients of the constraints
are either zero or one. This makes the contour of the objective function and some face of
F(RD(C)) be parallel, and the whole face be optimal. As a consequence, the optimal value
ω(RD(C)) stays constant although lots of cutting planes are added. To cut off such a face
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entirely, we propose to simultaneously add multiple cutting planes which may complement
well each other. The first cutting plane is the same as the one defined by y∗ and f ∗ obtained
from problem (SP (λ(C))). We then fix the variables yi to zero for all i with y∗i = 1, and
consider (SP (λ(C))). More precisely, we let V (1) = { i ∈ V | y∗i = 1 } and approximately
solve the problem

(SP (λ(C), V (1))) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1

m

∑
r∈E

xr −
1

4m2

(∑
i∈V

diyi

)2

−
∑
i∈V

λi(C)yi

subject to xr ≤ yi (r = {i, j} ∈ E)
xr ≤ yj (r = {i, j} ∈ E)
0 ≤ xr ≤ 1 (r ∈ E)

yi ∈ {0, 1} (i ∈ V \ V (1))

yi = 0 (i ∈ V (1))

to obtain y(1) and f (1), i.e., the second cutting plane. In a general step, with V (h) = { i ∈
V | y(l)i = 1 for some l < h } we approximately solve

(SP (λ(C), V (h))) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
1

m

∑
r∈E

xr −
1

4m2

(∑
i∈V

diyi

)2

−
∑
i∈V

λi(C)yi

subject to xr ≤ yi (r = {i, j} ∈ E)
xr ≤ yj (r = {i, j} ∈ E)
0 ≤ xr ≤ 1 (r ∈ E)

yi ∈ {0, 1} (i ∈ V \ V (h))

yi = 0 (i ∈ V (h)),

where y(0) = y∗ and V (0) = ∅. As long as ω(SP (λ(C), V (h))) is positive, we keep on
generating cutting planes. When ω(SP (λ(C), V (h))) becomes non-positive, we add all the
cutting planes obtained so far to C. The Step 3 of the algorithm SCP should be modified as
follows. We will call the algorithm with this modification the Multiple-Cutting-Planes-at-a-
Time Algorithm, MCP for short.

Step 3 of the Multiple-Cutting-Planes-at-a-Time Algorithm (MCP)
Step 3

if ω(SP (λ(C))) ≤ 0 or (UB− ω(RD(C)))/UB ≤ ε then

Set C⋆ ← C, ω⋆ ← ω(RD(C)), LB⋆ ← LB and UB⋆ ← UB.
Output C⋆, ω⋆, LB⋆, UB⋆, and terminate.

else

Generate cutting planes until ω(SP (λ(C), V (h))) becomes non-positive.
Add all the cutting planes generated to C. Go to Step 1.

end if

6. Computational Experiments

In this section, we report the computational experiments with the algorithms SCP and
MCP. The experiments were performed on a computer with an Intel Core i7, 3.70 GHz
processor and 32.0 GB of memory. We implemented the algorithm in Python 2.7, and
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used the barrier method in Gurobi 6.0.0 as the LP solver. In the experiments, we used
ten instances; Michael’s Strike dataset [22], Zachary’s Karate dataset [34], Gil-Mendieta
and Schmidt’s Mexico dataset [15], Michael and Massey’s Sawmill dataset [23], Lusseau’s
Dolphins dataset [21], Hugo’s Les Misérables dataset [19], Krebs’ Books dataset [20], Girvan
and Newman’s Football dataset [16], U.S.airport (USAir97) dataset [35], and Electronic
Circuit (s838) dataset [24]. The size, the known optimal value ω(P ) and the optimal number
of communities t∗ of each instance are given in Table 2. We set C initially to the family

Table 2: Solved instances
ID name n m ω(P ) t∗

1 Strike 24 38 0.56198 4
2 Karate 34 78 0.41979 4
3 Mexico 35 117 0.35952 4
4 Sawmill 36 62 0.55007 4
5 Dolphins 62 159 0.52852 5
6 Les Misérables 77 254 0.56001 6
7 Books 105 441 0.52724 4
8 Football 115 613 0.60457 10
9 USAir97 332 2126 0.36820 6
10 s838 512 819 0.81940 12

of all singleton, i.e., C = {{1}, {2}, . . . , {n}}, and the tolerance parameter ε to 0.03. We
set the parameter t to the optimal number of communities t∗, which is usually unknown in
advance. This setting may provide a favorable condition for our algorithm. The statistics
collected are given in Table 3, and Table 4 shows the results of both algorithms SCP and
MCP for each instance. The symbol “*” in the columns “peg” and “time 2” represents
that the phase of solving the problem (P (C⋆)) is not executed since the solution obtained
by the cutting plane algorithm has already satisfied the integrality. The symbol “OT” in
the column “time 1” means that the cutting plane algorithm does not terminate after more
than 604, 800 seconds, i.e., seven days.

Table 3: Statistics

iter. the number of solving the problem (RD(C))
|C⋆| cardinality of the final family of subsets C⋆
LB⋆ lower bound obtained at the end of algorithm

ω(RD(C⋆)) optimal value of (RD(C⋆)) obtained at the end of the algorithm
UB⋆ upper bound obtained at the end of algorithm
peg the number of pegged variables

ω(P (C⋆)) optimal value of (P (C⋆))
gap relative gap defined by gap =

(
ω(P )−ω(P (C⋆))

ω(P )

)
× 100

time 1 computation time of the cutting plane algorithm in seconds
time 2 computation time of solving the problem (P (C⋆)) in seconds

From Table 4, we observe that the number of generated constraints is much smaller
than that of the original problem in both algorithms. Take instance Karate (ID=2) with 34
nodes for example, the generated constraints are less than 1/108 of the original constraints
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totaling 1.7 × 1010. To compare SCP with MCP, we see that the number of iterations
and the computation time of MCP are much smaller than those of SCP. Especially, for
the instance Football (ID=8), the number of iterations (resp., the computation time) is
reduced by a factor of approximately 10.02 (resp., 17.44). We also see that MCP solves the
instances of Strike (ID=1), Karate (ID=2), Mexico (ID=3), Sawmill (ID=4) and Football
(ID=8) to optimality, whereas SCP only solves the instance Sawmill (ID=4). Regarding the
accuracy of the obtained solution, for the instances that SCP (resp., MCP) failed to solve,
the remaining gap was less than approximately 2% (resp., 1%). From these observations,
the algorithm MCP is superior to SCP in terms of both computation time and accuracy of
the solution.

To compare the performance of several existing heuristics and our proposed algorithm, we
give the lower bounds on the modularity obtained by several heuristics as well as ω(P (C⋆)) of
MCP in Table 5. The columns GN, CNM, SD, CHL and NR represent the Girvan-Newman
algorithm [16], the hierarchical agglomerative method by Clauset et al. [8], the Newman’s
spectral divisive method [26], the divisive method by Cafieri et al. [5], and the Noack and
Rotta heuristics [28], respectively. Note that the largest lower bounds for each instance are
bold-faced.

Table 5: Lower bounds by the existing heuristics and MCP

ID GN CNM SD CHL NR MCP
1 NA NA NA NA NA 0.56198
2 0.401 0.38067 0.39341 0.41880 0.41979 0.41979
3 NA NA NA NA NA 0.35952
4 NA NA NA NA NA 0.55007
5 0.520 0.49549 0.49120 0.52646 0.52377 0.52760
6 0.540 0.50060 0.51383 0.54676 0.56001 0.55908
7 NA 0.50197 0.46718 0.52629 0.52694 0.52262
8 0.601 0.57728 0.49261 0.60091 0.60028 0.60457
9 NA 0.32039 0.31666 0.35959 0.36577 0.36477
10 NA 0.80556 0.73392 0.81663 0.81624 0.81722

From Table 5, we confirm that the algorithm MCP attains the best result for seven
instances out of whole of instances. Note that, for the three instances which have not been
tested by any existing heuristics, MCP finds the optimal values. For other three instances
whose best results are obtained by the algorithm NR, the lower bounds obtained by MCP
are quite close to those obtained by the algorithm NR. To be specific, the difference (resp.,
gap) between them is at most 0.00432 (resp., 0.82%).

7. Conclusion

In this paper, we proposed the cutting plane algorithms for the modularity maximization
problem. One of the advantages of the algorithms is that they are able to provide the upper
bounds on the optimal modularity at every iteration by solving a small relaxation problem
of the original problem. This bounding technique enables us to evaluate the quality of the
objective value of the small relaxation problem at every iteration of the algorithms.

The key point in developing a good algorithm for the modularity maximization problems
would be generating deep cutting planes. The method of multiple cutting planes that we
proposed in this paper performed fairly well, and this method could apply to other clustering
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problems of finding a partition of a given set. However it should need further investigation
from both theoretical and computational view points.

A direction of further research is to incorporate a heuristics providing an initial partition
into our algorithm. The exact algorithm [2] first finds a partition by Noack and Rotta’s
heuristics [28] before starting the column generation process, and uses members of the
partition as an initial set of columns. This scheme would be expected to reduce the number
of iterations of our algorithm. Moreover the instances we solved are so limited that further
experiments should be carried out.

Acknowledgements

The authors thank anonymous referees for their careful reading and valuable comments on
the earlier version of this paper.

References

[1] G. Agarwal and D. Kempe: Modularity-maximizing graph communities via mathemat-
ical programming. The European Physical Journal B, 66 (2008), 409–418.

[2] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, L. Liberti, and S. Pellon: Column
generation algorithms for exact modularity maximization in networks. Physical Review
E, 82 (2010), 046112.

[3] M.A. Boschetti, A. Mingozzi, and S. Ricciardelli: A dual ascent procedure for the set
partitioning problem. Discrete Optimization, 5 (2008), 735–747.

[4] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner:
On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20
(2008), 172–188.

[5] S. Cafieri, P. Hansen, and L. Liberti: Locally optimal heuristic for modularity maxi-
mization of networks. Physical Review E, 83 (2011), 056105.

[6] A. Caprara, M. Fischetti, and P. Toth: Heuristic method for the set covering problem.
Operations Research, 47 (1999), 730–743.

[7] A. Caprara, P. Toth, and M. Fischetti: Algorithms for the set covering problem. Annals
of Operations Research, 98 (2000), 353–371.

[8] A. Clauset, M.E. Newman, and C. Moore: Finding community structure in very large
networks. Physical Review E, 70 (2004), 066111.

[9] M. Conforti, G. Cornuejols, and G. Zambelli: Integer Programming (Springer, 2014).

[10] G. Desaulniers, J. Desrosiers, and M.M. Solomon: Column Generation (Springer, 2005).

[11] C.H.Q. Ding, X. He, H. Zha, M. Gu, and H.D. Simon: A min-max cut algorithm for
graph partitioning and data clustering. In N. Cercone, T.Y. Lin, and X. Wu (eds.):
Proceedings of the 2001 IEEE International Conference on Data Mining, (2001), 107–
114.

[12] O. Du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen: Stabilized column generation.
Discrete Mathematics, 194 (1999), 229–237.

[13] M.L. Fisher: The Lagrangian relaxation method for solving integer programming prob-
lems. Management Science, 27 (1981), 1–18.

[14] A.M. Geoffrion: Lagrangean relaxation for integer programming. Mathematical Pro-
gramming Studies, 2 (1974), 82–114.

[15] J. Gil-Mendieta and S. Schmidt: The political network in Mexico. Social Networks, 18
(1996), 355–381.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Cutting Plane Algorithm for Modularity Maximization 41

[16] M. Girvan and M.E. Newman: Community structure in social and biological networks.
Proceedings of the National Academy of Sciences U.S.A., 99 (2002), 7821–7826.

[17] M. Grötschel and Y. Wakabayashi: A cutting plane algorithm for a clustering problem.
Mathematical Programming, 45 (1989), 59–96.
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