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Abstract  In the theory and engineering of reliability, it is one of the important issues for reliability
researchers to develop effective evaluation methods of reliability performance of systems. For the case of a
binary state system, using the minimal-path or minimal-cut sets of the system, an effective method is given
by decomposing a structure function into series or parallel systems. For multi-state systems with partially
ordered state spaces, however, sufficient examinations of the decomposition and related subjects have not
been given. In this paper, following the definition of a series system of Ohi [28], we show a necessary and
sufficient condition for a multi-state system to be a series system, which denotes that a system is series
system if and only if the serialisation at system’s and component’s levels are equivalent with each other
and then presenting the series-decomposition, we show the relationship among the stochastic bounds which
is given by the decomposition. Furthermore, some examinations about the pattern of maximal state vectors
of a series system are given. In this paper, we omit the discussions about the parallel system, since it is
ordered set theoretically dual of the series system.

Keywords: Reliability, multi-state system, partially ordered state space, series system,
parallel system, decomposition by series systems, stochastic bound

1. Introduction

One of the most important issues in reliability theory is to explain ordered set theoretical
and probabilistic relations between a system and components, which gives us reliability
evaluation methods useful for solving practical reliability evaluation problems. For binary
state systems having the common state space {0, 1}, many works have been performed so far,
and the fruits of these works are applied to practical problems. For example see Mine [14],
Birnbaum and Esary [4], Birnbaum, Esary and Sauder [3], Esary and Proschan [5], and
these works are totally summarised in a great book by Barlow and Proshcan [1].

Systems and their components, however, could practically take many intermediate per-
formance levels between perfectly functioning and complete failure states, and furthermore
several states sometimes can not be compared with each other.

For example, suppose a situation that the state of a component is taken to be temperature
and the optimal temperature is 7,. If there are different two states 77 and T3 satisfying
Ty, < T, < 'T; in a numerical order, we may not define order relation between these 77 and
T, from the point of degradation, especially when these two temperatures correspond to
different kinds of defects of the system.

Hence multi-state reliability models with partially ordered state spaces are required to
understand and solve practical reliability problems, and some evaluation methods have been
proposed and applied to real problems.

Multi-state systems with totally ordered state spaces have been mathematically studied
by many authors. See Barlow and Wu [2], Griffith [6], El-Neweihi, Proschan and Sethura-
man [17], Natvig [15], Ohi and Nishida [18-20,22]. Huang, Zuo and Fang [7] extended a
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binary state consecutive k-out-of-n system which is well observed in a practical situation to
the multi-state case.

Levitin [8-10] have extensively applied the universal generating functiond UGFOmethod
to solve reliability problems of multi-state systems and showed its effectiveness. UGF
method was first proposed by Ushakov [30,31] as a stochastic evaluation method of multi-
state systems, and is thought to be effective especially for a system hierarchically composed
of physical modules like series-parallel or parallel-series systems, which is practically well
observed for a system treating flow of oil, gas, job shop and so on.

Ohi [25] has generally given stochastic upper and lower bounds for system’s reliability
performances via modular decompositions, which are convenient for systems designer and
analyst, since the bounds are intuitively understood.

Assuming the state spaces to be totally ordered sets, Natvig [16], Lisnianski and Levitin
[13], Lisnianski, Frenkel and Ding [12] have summarised the work about multi-state systems
performed so far, and we may find examples of practical applications.

Studies in the case of partially ordered state spaces have started in recent years. Levitin
[11], from a practical point of view, has proposed a multi-state vector-k-out-of-n system of
which state spaces are supposed to be a subset of R", a special type of partially ordered set.
Yu, Koren and Guo [32], emphasising the case that the states are not necessarily totally
ordered, have proposed a model of multi-state system having partially ordered state spaces.
Ohi [23,24] have been trying to build up a general theoretical frame work of multi-state
systems. The former paper has given an existence theory of series and parallel systems,
series-parallel decomposition of multi-state systems, when the state spaces are lattice sets.
The latter work have given a characterisation of a module by ¢-equivalent relation under
the lattice set assumption for the state spaces. Furthermore Ohi [26,27], continuations of
Ohi [25], shows upper and lower bounds for P{p = s}, the probability that the system’s
state is greater than or equals to s, when the state spaces are partially ordered sets.

One of the typical evaluation methods of the reliability performance of a binary state
system is to utilise the decomposition of the structure function by minimal path series or
minimal cut parallel systems, which is well-known to be max-min or min-max formulae of
the structure function, i.e., for every state vector a,

() = max min z;, (1.1)
where min;cp, ; means the series system composed of components of a minimal path set F;.
Considering the minimal cut sets, we have a min-max formula of the structure function ¢,
which is dual to the max-min formula. These formulae mean that two simplest structures,
series and parallel, form basis and every binary state structure function can be expressed by
taking max or min of series or parallel systems, respectively. Various stochastic evaluation
methods and ageing properties of binary state systems are derived from these formulae. See
Barlow and Proschan [1].
For multi-state systems, such a decomposition formulae have been given, when the state
spaces are lattice sets, see Ohi [24], but not when they are generally partially ordered sets.
When the state spaces are totally ordered sets and the cardinal numbers of the state
spaces are the same, a structure function ¢ of a multi-state series system is usually defined
to be p(x) = minj<;<, x;, where x; means the state of the component i. But this definition
has some problems. One of the most serious problems is that this formula supposes the
possibility of comparing the states of different components. Usually a system is composed
of many qualitatively different components. Even if, for example, the state spaces of com-
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ponents 7 is assumed to be {0, 1,---, M;}, the state 1 of the component 1 and the state 1
of the component 2 generally mean different physical situations, and may not be compared
with each other. Ohi [18,22, 24] have defined series and parallel systems for totally ordered
and lattice state spaces, not using the above formula, and showed a necessary and sufficient
condition for a system to be a series (parallel) system. Ohi [18,22], assuming relevant prop-
erty different from that shown in this paper, have proved that a structure function of a series
system can be conventionally expressed as ¢(x) = minj<;<, z;, when the state spaces are
totally ordered sets and have the same cardinal number. Ohi [23], for lattice state spaces,
has examined a decomposition by series systems and stochastic bounds for the reliability of
a multi-state system.

Definitions of series and parallel systems in a partially ordered case are given by Ohi [28].
In this paper, a necessary and sufficient condition for a system to be series is proved, which
is a generalisation of the well known condition in the binary state case and means that
the system is series if and only if the serialisation at the component and the system levels
are equivalent with each other. The present paper lists important concepts as generalised
infimum needed for examinations of the series systems. Some theorems proved in Ohi [2§]
are also listed in this paper in a shortened form because of its importance.

Using the definition of Ohi [28], Ohi [29] has shown a series decomposition and stochastic
upper and lower bounds based on the decomposition. These decompositions are shown to
relate to the variety of deterioration processes of the system and components. We give
stochastic upper and lower bounds by these decompositions and relations of these bounds
to those of Ohi [26], and show that lower bounds are coincident with each other but not are
the upper bounds.

These considerations are easily transformed into the parallel case by the duality, and so
we focus on series systems.

2. Notations

In this paper we use the following notations. Finite sets C' = {1,2,--- n}, Q; (i € C) and
S are respectively the set of the components, the state space of the i-th component and the
state space of the system. ¢ is a mapping from the product ordered set Q¢ = [[,c €2 to S,
so-called a structure function of the system. The precise definition of a multi-state system
is presented in Definition 4.1.

1. The symbol \ denotes the difference between two sets A and B as

ABY {z|zeA, 2¢ B}

2. Q¢ is the product ordered set of €; (i € C). A symbol X is also used to denote the
product set as €27 x 2.

3. An element x € Q¢ is precisely written as ® = (1, ,x,), ©; € Q; (i =1,---n).
For & € Qc¢, (u;, ) (i € C) is used to emphasize that the i-th element of @ is u. (-, x)
is used to denote the element of Qc\ ;) given by eliminating x; from x, or sometimes
denotes an combination of the states of components of C\{i}, i.e., for x € Qe 4, the
x is also written as (-;, ).

4. For A S Q; and (-, %) € Qevgiy, A® (v, ) denotes

A® (2) S {(ai,z) |ae A ).

5. In this paper orders are commonly written as < except < defined in Section 3. For
elements x,y of an ordered set W, x < y means x < y and x # v.
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6. When each state space ; (i € C) is endowed with an order =<, the product set Q¢ is
assumed to be the product ordered set. Then, for state vectors @ and y of Q¢, £ Sy
means z; < y; for all i € C, and © < y means < y and z; < y; for some i € C.

7. When an order < is assumed on S, for any state s € .S,

o s =) Y {zeo|s<S @) ),

e (8] {me Q@ s ),
e7s) ¥ {we oo =s)

8. MI(W) and MA(W) generally denotes the set of all the minimal and maximal elements
of a finite ordered set W, respectively. In this paper a partially ordered set is called
simply an ordered set. An element x of W is called a minimal (maximal) element when
there exists no element y of W such that y < = (z < y). For example, MI (p~'[s,—))
is the set of all the minimal elements of ¢~ ![s, —), when orders are assumed on S and
; (i € C). The order on the product set ()¢ is defined to be the product order assumed
above on Q; (i € C).

9. When a set W is a lattice set, for x,y € W, z Ay and z V y respectively denote

r Ay =inf{z,y}, xVy=sup{z,y},

i.e., which are the infimum and the supremum of x and y, respectively. Generally, the
infimum of A € W is denoted by inf A, when the infimum exists.

3. Ordered Set Theoretical Preliminaries

In this section, assuming W to be an ordered set, we prepare some ordered set theoretical
notions needed for our examination.

For a,b € W such that a < b, a is called a predecessor of b or b is called a successor of
a, when there is no element ¢ € W such that a < ¢ < b. In this case we write b=a + 1 or
a =0b—1. A predecessor and a successor are not generally unique.

(S0, ,8p) is called a path of length p from sy to s,, when the following condition is
satisfied.

So <81 << S8y, Siy1=8+1, i=0,---,p—1

A path is called to be maximal, when the length of the path can not be extended by adding
other elements to the path.

Since a finite ordered set has necessarily maximal and minimal elements, a maximal path
on W is a path between a minimal and a maximal elements, and there is no other type of
maximal path.
Example 3.1. In an ordered set which is defined by Hasse diagram of Figure 1, (as, by, bo)
is a maximal path, (bs,by) is a path but not maximal and (ay,bs) is not a path. All the
maximal paths are (aj, by, b1), (a1,bs,b2), (az,bs,01), (ag,bys,b2), (a1,b3), (az,bs), (as,bs).
Notice that (aq,b;) is not maximal, since there exists by, between them.

For an element w € W and a subsets A, B C W, we define the following relations.

w<B &L weB, w<h,

A<B &L vVacA a<Be=VacA VbeB, a<h,
A<B & VYac A FbeB, a<h

ASB &4 A<BandB<A
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A € B clearly implies A < B, but we notice that A = B is not generally coincident with
A= B.
Example 3.2. Figures 1 and 2 give us examples of ordered sets for the above definitions
by Hasse diagrams.

In Figure 1, for A = {ay,a3} and B = {by,by,b3,b4}, A < B holds. When C =
{b1,by, b3, a1} and D = {by,bo, b3, by, a3}, C = D is easily verified to hold, even though
C' = D does not hold.

In Figure 2, for A = {a;,as} and B = {by, ba,b3,b4}, A < B holds, but A £ B does not
hold, since, for example, a; < by does not hold.
It is easily proved that the following equivalent relation holds.

A=B <= MA(A) = MA(B), (3.1)

which means that when A = B, maximal elements of A and B are equivalent.

i

Figure 1: An ordered set having the < related subsets A = {ay, a2} and B = {by, b, b3, b4},
and the = related subsets C' = {b;, bg, bs,ar} and D = {by,bo, b3, by, a4}

N

CL \./ag

Figure 2: An ordered set having subsets A = {ay, a2} and B = {by, by, b3, by} between which
the relation A < B holds

Definition 3.1. LM A (lower maximal) of A, denoted by LM A(A), is defined as
LMAA) Y pma{ 2254},

which is the set of all the maximal elements of { z | z < A }.
Remark 3.1. (i) When A has the minimum element denoted by min A, then LM A(A) =
{min A}. Hence, when W is a finite totally ordered set, every subset A of W has the
minimum element and so LM A(A) = {min A}.

(ii) When W is a finite lattice, every subset A of W has the infimum and then LM A(A) =
{inf A}.
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By these remarks, we know that LM A is a natural extension of the concept of infimum
from the lattice case to the general partially ordered case. See also Example 3.3 (iii).
Theorem 3.1. If

da € LMA(A), a € A, (3.2)

holds, then A has the minimum element and LM A(A) = {min A}. By Remark 3.1 (i), the
relation (3.2) is equivalent to that A has the minimum element.

The proof of Theorem 3.1 is easy and omitted here.
Example 3.3. We suppose that a finite ordered set W is given by the Hasse diagram of
Figure 3.

(i) For a subset A of W given by A = {a,u,v,w,z,y, 2}, a is the minimum element of
A and then clearly LM A(A) = {a}, where { p | p £ A } = {a,b,c,d} of which maximum
element is also a.

(i) For a subset B = {u,v} of W, LM A(B) = {z,y}.

(iii) For a subset C' = {v,w}, LM A(C) = {z} = {inf C}.

o=

B{“\XM
A (r6 y]  es | EMAQ)

be— e e d

Figure 3: An ordered set of Example 3.3

4. Multi-state Systems

Definition 4.1. A multi-state system composed of n components is defined to be a triplet
(ILcc $%, S, ¢) satistying the following conditions.

(i) C ={1,--- ,n} is a set of components.

(ii) Q;(i € C) and S are finite ordered sets, denoting the state spaces of the i-th com-
ponent and the system, respectively. Each state space has the minimum and the maximum
elements, denoted by m; and M; for £2;, and m and M for S. The minimum and maximum
elements mean the perfect failure and the perfect functioning states, respectively.

(iii) J],cc € is the product ordered set of €; (i € C'), which is simply written as Q¢. An
element © = (21, ,x,) € Q¢ is called a state vector.

(iv) ¢ is a surjection from Q¢ to S, which is called a structure function and reflects an
inner structure of the system.

A multi-state system (¢, S, ¢) is simply called a system ¢, when there is no confusion.
Definition 4.2. A system ¢ is called increasing when

A\

Ve,Vy € Qc, =S y= p(x) = ¢(y)

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.



Decomposition of a Multi-state System 297

The increasing property means that the state of the system does not degrade when the
states of the components are improved.
Definition 4.3. A system ¢ is called relevant when the following condition is satisfied.

Vi e C, Vk,VI € Q; such that k # [, 3(-;, ), o(ki,x) # p(l;, x).

This relevant property is not a strict condition, since any non-relevant system is easily
converted to a relevant one. If a system ¢ is not relevant, we have

Ji e C, Jk, 3l € Q; such that k # 1, Y(-,x), p(ki,x) = o(l;,x),

which means that these two sates k and [ contribute to the system’s performance in the
same way and may be merged into one state. Hence we have a relevant system equivalent
to the original non-relevant system.

For an increasing system, the relevant property of the component i means that for states
k and [ of ); such that £ < [, we have

(4, ), ki, x) < o(l;, x),

denoting that the improvement of the component’s state implies strict improvement of
the system’s state in some circumstance (-,x). When k£ < [ and [ < k do not hold, we
may only say that these two states differently contribute to the system’s performance at a
circumstance, but not excluding the improvement of the system’s state.
Definition 4.4. Let (Q¢, S, ¢) be an increasing system.

(i) The system is called minimally normal, when the following condition is satisfied.

MI (o7 s,—=)) = MI (¢7'(s)) .
(ii) The system is called maximally normal, when the following condition is satisfied.
MA (¢ (+,5]) = MA(o7(s)) .

(iii) The system is called simply normal, when it is minimally and maximally normal.
The normal property is introduced by Ohi [25,26,29], when stochastic bounds via a
modular decomposition is given for the stochastic performance of multi-state systems. When
the state spaces are totally ordered sets, it is proved in Ohi [25] that the system’s state does
not drastically change by the change of the components’ statel]
Theorem 4.1. Suppose that all the state spaces of components of an increasing and relevant
system ¢ are totally ordered sets. We have the following relation.

Vie O, VkeQ, Is€ S, Jx e MI(¢ ' (s)), x; =k,

which means that every state of every component is an element of some minimal state
vector.

Proof. First, we notice that €; may be assumed to be {0,1,--- | N;} without loss of gener-
ality. If a state k& € {); of a component ¢ does not satisfy the condition, we have

v(kh'r'c) S QCavy € MI (9071“0(]{;273:))) such that Y g (kiam)7 Yi g kE—1< ka

and so for every (-, x), p(ki, ) = ¢((k — 1);, ) holds and the system is not relevant. [
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Our Theorem 4.1 weakened the assumption of Theorem 3.1 of Ohi [28] that all the state
spaces are totally ordered sets to that all the state spaces of the components are totally
ordered sets.

In the sequel, a system is assumed to be increasing, and is simply called a system.

Since LM A(A) £ A, o(LMA(A)) £ ¢(A) holds by the increasing property of ¢. Then
we have easily the next Theorem.

Theorem 4.2. For a system ¢, we have the following relation.

VA C Qe p(LMA(A)) £ LMA(p(A))

When A = {x,y} for x,y € Q¢, Theorem 4.2 means p(LMA{x,y}) < LM A{p(x), v(y)},
and when W is a lattice, this relation is the well-known inequality p(x Ay) < p(x) A p(y),
which tells us that the serialisation at component level is generally worse than that at system
level.

The next theorem, which is proved in Ohi [28], plays an important role for our examina-
tion, we again present here it and a shortened proof is shown in Appendices for convenience
of readers.

Theorem 4.3. Let ¢ be a system. For a subset A € (¢, we have the following equivalent
relations.

LMA(p(A) 2 o(LMA(A)) = LMA(p(A)) = MA(p(LMA(A)))
— LMA(p(A)) C p(LMA(A))

Since the next theorem is also important, we show the proof of Ohi [28] in Appendices.
Theorem 4.4. For a system ¢,

VA S Qc, o(LMA(A)) = LMA(p(A)) (4.1)
hods if and only if
Vs € S, ¢ ![s,—) has the minimum element. (4.2)

When all the state spaces are lattice sets, the necessary condition (4.1) of Theorem 4.4
is reduced to

pxNy) = e(x) N o(y), (4.3)

which means that the serialisations at component and system levels are equivalent with each
other. The equality (4.3) has been proved to be a necessary and sufficient condition for a
multi-state system to be a series system, when the state spaces are lattices. See Ohi [24]. In
the next section, adopting the notions of series and parallel systems given by Ohi [28,29],
we show a necessary and sufficient condition for a system to be a series system when the
state spaces are partially ordered sets.

5. Series and Parallel Systems
Definition 5.1. (i) A system ¢ is called a series system, when for every s € S, o~ ![s, —)
has the minimum element.

(i) A system ¢ is called a parallel system, when for every s € S, ¢~ '(+,s] has the
maximum element.
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Since a structure function is a surjection, a series system is necessarily minimally normal.

And then, a parallel system is maximally normal, because of duality. The next example
shows us that a series system is not necessarily maximally normal.
Example 5.1. We consider a two-unit system having the state spaces as ; = Qs = {0, 1,2}
and S = {m, A, B, M}, where 0 <1 <2, m< A<M and m < B < M. There is no order
relation between A and B. ; and (), are totally ordered state spaces and S is a partially
ordered state space. A structure function ¢ : Q; x 25 — S is defined as

e '(M) = {(2,2)},
MI (™' (M)) = {(2,2)}, MA(p"(M)) ={(2,2)},
e '(A) = {(2,1),(1,1)},
MI (7' (A)) = {(LD}, MA(p'(4) ={(2. 1)},
e '(B) = {(1,2),(0,2)},
MI(¢7'(B)) = {(0,2)}, MA(p " (B)) ={(1,2)},
o~ (m) {(2,0),(1,0),(0,1),(0,0)},
MI (¢~ (m)) {(0,0)}, MA (¢~ (m)) ={(2,0),(0,1)}.

See Figure 4, where ; x €2y and S are given by Hasse diagrams. This system is a series
system and not maximally normal, since

MA (90_1(<_7B]) = {(1’2)’ (270)}7 MA (50_1<B)) = {(1’2)}'

0y x Q9 S

(2,2) M
(2,1) (1,2)
(2,0) (0,2)
(1,0) (0,1)

Figure 4: The Hasse diagrams of the state spaces €21 x €2y and S of Example 5.1

Theorem 5.1. A system ¢ is a series system if and only if
vz, Yy € Qo, o(LMA{z,y}) = LMA{p(), o(y)}- (5.1)

Proof. If the system ¢ is series, then the equality (5.1) clearly holds from Theorem 4.4 by
setting A = {@,y}. We prove that (5.1) implies that the system ¢ is a series system, that
is to say, ¢ ![s,—) has the minimum element for every s € S. We divide the proof into
some steps.

(i) Since the structure function ¢ is a surjection, we have ¢(x) = s, for some x €
MI (¢~ !s,—)). So writing M (¢~ '[s,—)) = {x1, @2, -+ ,xx}, we may assume p(x;) = s
without loss of generality.

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.



300 F. Ohi

(i) First we consider {@1,x2}. Since p(xy) = s, from (7), we have
¢ (LMA{zy, 22}) = LMA{p(21), p(22)} = {p(x1)} = {s}.

(iii) Since {s} < ¢ (LM A{x1,x2}), from the definition of <, we have ¢(y) = s for some
y € LMA{xy,x2}. On the other hand, from the definition of LM A, y < «; and y < x5
hold. Then, ¢(y) = s and so y € ¢~ ![s,—) follows. Hence y = x; or @, hold because of
that &; and @, are minimal elements of p~![s, —). As a consequence,

y € LMA{x1,x2}, y € {1, 22},

which means that {x;, x>} has the minimum element from Theorem 3.1 and thus x; = -
holds.

(iv) Applying the same argument to {x1, 3}, we have x; = x3. Hence the inductive
argument gives us ©; = Ty = -+ = x}, which means that ¢ !'[s,—) has the minimum
element. [

For a parallel system, we may easily prove a necessary and sufficient condition in a dual
way to the series case.

6. The Case of Totally Ordered State Spaces
6.1. The pattern of maximal state vectors of series systems

Next Theorem 6.1 shows us the pattern of maximal elements of M (p~![s,—)),s € S of a
series system, when the state space of the system is a totally ordered set.

Lemma 6.1. Let (¢, S,¢) be a multi-state series system with a totally ordered state
space S. Assuming s € S,s # M,be MI (¢ (s+1)),b1 # my, for & = (x1, My, -+ , M,),
¢(x) < s holds if and only if 2 ;{f by.

Proof. 1f 1 2 by, then b < @ and so ¢(x) = ¢(b) = s + 1. Thus
o) Ss = 1 % by.

If p(x) % s, in other words, ¢(x) = s+ 1, since the state space S is a totally ordered
set, then & = b because of that the system is series. Thus z; = b; and so

1 b = ¢(x) < s
Hence the lemma is proved. O

From Lemma 6.1, we have easily the next Theorem 6.1 which gives us the pattern of the
maximal state vectors of a series system.
Theorem 6.1. Under the same assumptions of Lemma 6.1, we have the following equality
about the pattern of the maximal state vectors of a series system. For s € S,

MA (@71(%75]) = UMA{ (My, -+ My, i, Miga, -+, M) | b % z; },
i=1
MA{ (MI;"' s Mi1, i, My, - - 7Mn) | bz‘%%‘ }
= MA{ z; | bz‘i% P& My, My, -, Mg, -+, My).

Theorem 6.1 tells us that the problem to find the maximal state vectors of p~!(<—, 5] is
the one to find the maximal elements of { x; | b; % z; }.
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6.2. A necessary and sufficient condition for the existence of a series system

For a series system ¢,
Vs € S, ming '[s,—) = minp (s),

since the structure function is generally a surjection.
Reminding that we have assumed ¢ to be relevant, we have for every i € C'

Vk € ;,ds € S, (min go_l(s)). =k (6.1)

(2

by Theorem 4.1, when the state spaces of the components are totally ordered sets. Then
we have the first inequality of the next Theorem 6.2, clearly.

Theorem 6.2. When the state spaces of a system and components are finite totally ordered
sets, a series system ¢ : (0o — S exists if and only if the following inequality holds.

| < < |

=1

where | - | means the cardinal number of a set.
The second inequality is clear by considering the maximum number of the state vectors
T, , &, such that

L1 é émma mi?émi-i-lv Z:]-) am_l'
When |Q;| = |S| (i € C), a relevant series system is uniquely determined as
o(x) = llgzlgnn x;, (6.2)
where we assume Q; = S = {0,1,---, N} without loss of generality. In this case, from

the relevant property and the equality of the cardinal numbers of the state spaces, we have
necessarily M1 (¢~ ![s,—)) = (s,---,s), s € S, and so the formula (6.2) holds. This formula
is commonly used as a definition of series system, when the state spaces are the same. We
may say that our definition of series system is reasonable, since it include the formula in the
special case of the same totally ordered state spaces used for physical systems as pipeline
systems. See Lisnianski and Levitin [13], Natvig [16].

7. Decomposition along with the Variety of System’s Deterioration Patterns
Let (¢, S, ) be an increasing system and P be the set of all the paths from the minimum
element m to the maximum element M of S, in other words, maximal paths. For a path
p = (50,---,5,) € P, we define ap : Q¢ — Sp = {s¢,- -, 5,} as the following.

z €O, ap(z) Y max{te Sp |t < p(a) }, (7.1)

where we notice that so = m and s, = M, and the set in the right hand side of (7.1) is not
empty since for every € Q¢, (&) = m holds. In the sequel, we let p denote also the set
Sp for simplicity.

Clearly we may have

=s, if s €p,
x € g, 90(33>:3:>O‘P<w>{§s 1f3§é£.
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Since there exists a path containing s for every s € S, then when ¢(x) = s,

Vp € P, ap(x) < s,
dp € P such that s € p, ap(x) = s

holds and so {ap(x)}pep has the maximal element which is s. Thus we have the following
decomposition of the structure function.

€, ¢lx)= r}glg%(&p( x). (7.2)

When S is a totally ordered set, a maximal path on S is unique, and so ap is unique
and is ¢ itself.

A maximal path on S is a deterioration path from the maximum state to the minimum
state. The number of the maximal paths corresponds to the variety of deteriorating paths.
Then the formula (7.2) shows us that the structure function may be decomposed along with
a deterioration process of the system. In the next section, the structure function ap is
decomposed into a family of series systems.

8. Decomposition of a Structure Function into a Family of Series Systems

For a maximal path p = (so,---,s,) € P, Pp denotes the set of all maximal paths on
Usep M1 (¢71(s)) , where we notice sy = m.

For every k = (ug, -+ ,u;) € Pp, we define ozg : Q¢ — {s0,- -, 5p} as the following.

z € o, o (x) < ¢ (max{u; € klu; < z}),
where ug = m = (my,--- ,m,). Then for & € Q¢, we have the next equivalent relation
p

ak(w) 2 p(u;) <= x 2 u,,

which means that o}kz is a series system.

We have the following Theorem 8.1 which gives us a decomposition of ap by Ozz (k: € Pp) .
Theorem 8.1. For a maximal path p € P on S, we have

x € (¢, ap(x) = max ag(m).
kEPp

Proof. Supposing ap(x) = s; € {50, -+ , s, }(= Sp), we have from the definition (7.1) of ap

51 = P(x), Si41 ;ﬁ p(x), - ) Sp i (,O(:B)

Then
Vi(l+1<j<p), VaeMI(p'(s))), atx,

and furthermore

dbe MI (o' (s1)), b< =

hold. Then for k € Pp,
pmax{ueck|usz}) = s

Especially for k containing b,
pmax{uek|usz}) =g
holds. Thus the Theorem 8.1 is proved. O
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A structure function ¢ may be decomposed by these series systems as the next Corollary,
which corresponds to (1.1) in the binary case. The min of (1.1) is 041’;, and the max of (1.1)
becomes to be the duplicated max, since the system’s state space is an ordered set. When
the system’s state space is totally ordered set, the duplicated max comes to be single.
Corollary 8.1.

x € Qc, p(x) = max max oP(x). 8.1
e ple) = s o (o .)

Then we have apparently the following inequality.
V¥p € P, Vk € Pp, Va € Qc, p(@) Z ok (x). (8.2)

When all the state spaces of a system are the binary state space as {0,1}, the above
equality (8.1) is equivalent to (1.1), the decomposition by the usual minimal path sets. A
min formula of a structure function by parallel system is given by dual examination of (8.1).

From the above examination, we know that a structure function may be decomposed hi-
erarchically along with the variety of deterioration paths of the system and the components.
Example 8.1. (2; x 25,5, ¢) is a two-unit system, each state space of which is given by

Qi = {miuAiaBiaMi}v S = {maA7B7M}7

where A; and B; are not ordered, and A and B are not also ordered. See Figure 5.

Q; S
M; M

Figure 5: The Hasse diagrams of the state spaces €2;,7 = 1,2 and S of Example 8.1

The structure function ¢ is defined as

—(

— ~— ~—

= {(M, Ba), (B, M)},
(A) = {(A1, A2), (B1,m2), (B1, A2), (M1, ma), (My, As) },
(B (
( (

m

< ©

1

= {(m1, Ms), (A, Ba), (A1, Ma), (By, Ba)},
= {(m1,ma), (m1, Az), (1, Ba), (A1, m2)}.

€ 6

-1

The minimal state vectors are given by

MI (o~ (M)) = {(M, By),(B1, M)},
MI(¢7'(4)) = {(A1, A2), (Bi,ma)},

MI (97" (B)) = {(m1, M), (Bi, By), (A1, Ba)},
MI (7" (m)) = {(m1,ma)}.
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On the state space S, there exist two maximal paths as
pl = (maA7M)7 p2 - (m7BaM>

For the maximal path p,, there are three maximal paths on M T (¢~ (m))UMI (¢~ (A))U
MI (e~ (M)),

ki = ((ml,m2), (A1,A2)),
ko ((m17m2), (Bl,m2)7 (Ml,B2))7
ki3 = ((m1,m2), (31,7712), (BhMQ))-

For the maximal path p,, there are four maximal paths on M T (¢~ (m))UMI (¢~*(B))U
MI (p=H(M)),

P (21,29) = { p(mi,mg) =m, (z1,72) Z (m1,ma) and (x1,22) Z (A1, As),
kn b2 SO(ALAQ) = Aa (5171,1‘2) g (AlaAQ)v

p @(mlamQ) =m, ('T17I2) z (m17m2) and (Jfl,.TQ) ;/I:A (BIJm2)7

Olk;(l‘l,l’z) = (Bi,mg) = A, (21,22) Z (B, m) and (21, 22) % (M, Bs),
SO(MlaBQ) = M7 (331,33'2) 2 (M1782)7

p (;O(mlamQ) =m, (xlaxQ) z (mlamQ) and (l‘l,l’g) 2 (B17m2)7

Oékis(xh@) = @(Bi,mz) = A, (21,22) Z (B, m) and (21, 22) z (B1, M),
@(Bl7M2) == M7 ('r17x2) Z (BlaMQ)-

2 s, for example, given as

For the path p,, a7?> ~ a7 ? are similarly determined. o
k21 k:24 21

the following.

p
k

p @(mlamQ) =m, (xla x?) z (m17 m?) and (xla x2) 2 (m17 M2)7
ak;(flaf@) =19 wlm, Mz) =B, (x1,22) = (m1, M) and (21, 22) % (B1, Ma),
@(BDM2) :M7 <x17x2> 2 (B17M2>~

Here we notice how the decomposition (8.2) of a series system is. Supposing a system ¢
to be a series system, we denote the minimum element of M7 (p~!(s)) (s € S) by m,. For
a maximal path p = (so,---,s,) € P, Pp is composed of only one path (m,,---,ms,) by
the normal property of the series system, where mg, = (m, -+ ,my,).

We may have more strong assertion which is given by the following Theorem, of which
proof is easy and omitted.

Theorem 8.2. For a system ¢, a necessary and sufficient condition for the system ¢ to be
a series system is that for each p € P, Pp is composed of only one path.
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9. Stochastic Bounds

Let P be a probability on ¢. From (8.1) and (8.2), we have easily stochastic bounds for
the stochastic performance of a system given by the following Theorem 9.1. See Ohi [29]
and a simple proof is also shown in Appendices.

Theorem 9.1. (i) From (7.2), for every s € S, we have

P(p = s ZmaxmaxP(aPES). 9.1
(029) 2 oy o P (o] = (9.1

(ii) When P is associated, from (8.1), we have for every s € S

Plpzs)s [[ P (afkj > s) . (9.2)
per.kerp

For an associated probability, refer Ohi [21].

(9.1) and (9.2) give us lower and upper bounds for P(¢ = s) (s € 5), respectively. We
may make the bounds (9.1) and (9.2) more precise by using the min formula of ¢ by parallel
systems, but we omit them here.

Example 9.1. Using Example 8.1, we demonstrate the calculation process of Theorem 9.1.
Let P be an associated probability on €2; x 5.

P{p= A} = max{P{aZl EA},P{(M% zA},P{azl QA},

Plag, 24} Pl 24} Pof: 24} Plap 24} |
= max{ P{x =2 (A1, 42)},P{x = (B;,ms)},P{x = (B1,ms)},
P{xz = (B, M)}, P{x = (M, B2)} ,P{x = (B1, Ma)},
P{xz = (M, By)} }
= max{ P{x = (A1, 42)},P{x = (B;,m2)} },
P{p>A} < 1-(1-P{x=(A,A4))(1—P{x> (B, my)})

(1-P{z 2 (B, Mp)})* (1 - P{z = (My, B,)})”,

where, for example, P{x = (A1, 42)} = P{x € Q) x Qy|x = (A, A)}. Similarly we have
upper and lower bounds for P{p = B} as
P{o =2 B} =2 max{P{x = (m, My)},P{x = (By,Bs)},P{x = (A1, Bs)} },
P{p2= B} < 1—(1— Pl 2 (M, By)}) (1 - Pz = (B, M)}) (1 - Pla = (m1, Ma)})
(1—Plz 2 (B, By}’ (1 - Pla = (A1, Bo)}).

We know, from this example, that the upper bounds include some needless terms in com-
parison with the lower bounds. Such a situation will made clear by comparing these bounds
with those given by Ohi [26, 29].

An increasing system is uniquely determined by M1 (¢~ '[s,—)) (s € S) as

o s, =) = U [s,—).

SeMI(p~1[s,—))

From which, we have the following stochastic inequalities (9.3) and (9.4) of Ohi [26,29].
Noticing o~ ![s,—) = (p = 5), for s € S,

P(p=s)2 P[s, —). 9.3
(w_S)_SeM;g}g[sﬁ)) [s,—) (9.3)

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.



306 F. Ohi

When P is associated, for s € S5,

P(p 2 s)

A

1T Pls, —). (9.4)

SeMI(p—1[s,—))

We have the next Theorem for relationships among (9.1), (9.2), (9.3) and (9.4).
Theorem 9.2. (i) For s € S,

> s) . (9.5)

max P[s,—) = max max P (a
SeMI(p=1]s,—)) P<P kepy,

ket

(ii) For s € S,

v

[T Ps—+= ] P(Jé

SeMI(p~1[s,—)) per.kerp

s) . (9.6)

Proof. In the sequel, we show three propositions, from which (9.5) is easily verified. (9.6)
is clear and the proof is omitted here.
(1) We first suppose p € P, k € Pp, s € MI (¢~ '[s,—)) and s € k. ¢(s) € p clearly

holds. For & € ¢, noticing the values which az may take, we have the following equivalent
relations.
r=s < max{ucklr=u}=s
= ai(m) = p(max{u € k|lx = u}) = p(s) = s.

Then noticing s € M1 (¢~ ![s,—)) and s € k, in this case we have the following equality.

{w\m;s}:{m‘ag(@gs}. (9.7)

There necessarily exit p € P and k € Pp which contains s. Then, O}k): which satisfies (9.7)
exists, but not unique, since the existence of k containing s is not uniquely assured.

(2) For we (Up, MI (7 (6) )\ MI (975, —))
ds € MI (¢ '[s,—=)), s<wu

holds. In this case,
{z|ap(@)z s} S{z|ap(@)Z s}

follows, where u € k', s € k. Thus we have
P{z| &i,(w) > s} P{a|ob(z) 2 s}
(3) The next if and only if relation holds.
Vue | JMI(p7'(1), ugk < {z|of(@)=s}=9¢. (9.8)

t>s

(4) From the above three propositions, we have

p p
max max P{ x| o} (x) = s = max max max P{x|ai(x)=s

= max P{zxz|x=s},
SeMI(p~1[s,—))

and then (9.5) is proved. O
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From this theorem, we know that the upper stochastic bounds by the series decomposi-
tion is worse than that given simply by the minimal state vectors in Ohi [26,29], in other
words, the structure function is too decomposed. And so we have a possibility to make the
upper stochastic bounds to be the same by choosing appropriate series systems, which is
remained to be a future work.

10. On a Definition of a k-out-of-n System

Series and parallel systems are complete opposite with each other in the class of all the
k-out-of-n systems. It is remained to be an open problem how to define a k-out-of-n system
in the case of partially ordered state spaces. When the state spaces are totally ordered sets,
a definition of a k-out-of-n system has been given by Ohi [18,22], which is however seemed
to be a working hypothesis.

k-out-of-n system implies that for each state vector @, the state of the system is de-
termined by x* for some A € C such that |[A] = k and is independent of £“\4. Then,
generalising Ohi [18,22], when the state space of the system S is lattice, we may define a
k-out-of-n:G system to satisfy

VA C C such that |A| = k, Ja series system (24,5, p4), p = suppa, (10.1)

which includes the series system as a special case. Where £ means a state vector composed

of the states x; (i € A) taken out from x. For example, when A = {1,2,4}, 24 = (21, 72, 74).
In the lattice case, we easily conjecture that for each s € S, o™ ![s, =) = Uace, |A|:kg0;11 (s, —
) holds. This equality, however, does not hold generally for the lattice case. Then, the
examination about the minimal state vectors will be performed in a somewhat complicated
situation, if we adopt (10.1) as the definition.

Following faithfully the above mentioned image of a k-out-of-n:G system, we may give
another definition as a system ¢ is called a k-out-of-n system when the following (10.2) is
satisfied.

VA € C such that |A| = k, Ja series system (Q4,5,¢4),

e = | ea'ls) x Qo (10.2)
ACC, |Al=k

which also includes the series system as a special case. In this case we do not need any
calculation as taking supremum, and can be used for the general partially ordered case
for the state space of the system. MT (¢!(s)) may be determined by the minimum state
vectors of ¢ ;'(s) (A C C,|A| = k). But, we have a question whether there is a consistency
between (10.2) and Ohi [18, 22].

Corresponding to (10.1) or (10.2), A k-out-of-n:F' system is defined in a dual manner to
satisfy respectively

VA C C such that |A| = k, Ja paralle system @4 : Q4 — S, ¢ = inf pa, (10.3)
or

VA C C such that |A| = k, Ja paralle system (24,5, ¢4),

e s)= | @a'(s) x Qo (104)
ACC, |Al=k
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Detailed examinations of k-out-of-n:G and k-out-of-n:F' systems are remained for future
work.

A definition of a consecutive k-out-of-n:G system is easy after the completion of the
definition of k-out-of-n:G system. For example, when the system’s state space is a lattice set,
we may define the notion of the system by restricting A in (10.1) to be {7,i+1,--- ,i+k—1},
where t = 1,--- ,n — k4 1 or the periodic boundary condition is considered.

11. Conclusions

In this paper, following Ohi [28,29], we have shown a definition of series and parallel multi-
state systems for the case of partially ordered state spaces, and shown a necessary and
sufficient condition given in Theorem 5.1 for a system to be a series system and that the
definition is reasonable from the point of view of serialisation. Furthermore the structure
function of a series system may be conveniently expressed as a min-formula. We also have
given a decomposition of a multi-state system by series systems, by which stochastic bounds
for the reliability of multi-state systems are given and compared with the previously given
stochastic bounds.

Precise numerical examinations of these stochastic bounds are remained for future work.

For the parallel systems, we may easily present similar results, since parallel is a dual
notion of series.

In the case of binary state spaces, a system is decomposed into series systems defined by
minimal path sets and this decomposition is used to give stochastic evaluation of the binary
state system. Our results in this paper are entire extension of the results in the binary case.

When all the state spaces of a system are given as totally ordered sets, in Ohi [19, 22]
another definition of relevant property is given ; for every component i € C,

Vr,Vs € S such that r # s, 3k,31 € Q;, I(k;, x),I(;, ) € Q¢,
(lp(k’w IB) =T, 90<l27 ZD) =S

This definition of relevancy is given from the system level’s point of view, and Ohi [22] have
proved the min formula for a series system, starting from this relevant property. On the
other hand, Definition 4.3 of this paper is from the component level’s point of view. It is
remained to be a future work to explain what practical differences between these relevant
properties are.

For a definition of a k-out-of-n system which includes a series and parallel systems as
special cases, we have proposed tow kind of candidates and an assertion about minimal state
vectors.
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Appndices
Proof of Theorem 4.3

proof of the first equivalent relation From (3.1), the next equivalent relation holds.

LMA(p(A)) £ o(LMA(A)) <= MALMA(p(A))) = MA(p(LMA(A))).

Noticing MA(LM A(p(A))) = LM A(p(A)), since every two different elements of LM A(p(A))
have no order relation, the first equivalent relation is clear.

proof of the second equivalent relation From Theorem 4.2, o(LMA(A)) £ LMA(p(A))

holds automatically, then it is sufficient to prove the next equivalent relation.

LMA(p(A)) < p(LMA(A)) <= LMA(p(A)) C p(LMA(A)),

which is clear by the first equivalent relation.
Proof of Theorem 4.4
proof of (4.1) = (4.2) First we notice that

LMA(p(¢™'[s,—))) = LMA([s,—)) = {s}

holds. Then setting A = p~![s,—) in Theorem 4.3, we have M A(p(LMA(A))) = {s} and

Jda € LMA(p~'[s,—)), ¢(a) = s.
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So we have a € ¢~ ![s,—), which means that a is the minimum element of p~![s, —) by
Theorem 3.1.
proof of (4.1) <= (4.2) From Theorem 4.3, (4.1) is equivalent to

LMA(p(A)) & o(LMA(A)), (11.1)

and so we here prove the relation (4.2) = (11.1). s € LM A(¢(A)) implies ¢(A) < [s,—)
and so A € ¢ ![s,—). Since ¢ ![s,—) has the minimum element, we have, from the
definition of LM A,

Ja € LMA(A), minp '[s,»)<a< A

and for this all using the increasing property of ¢,

p(ming~'[s,=)) = s < p(a) < p(A).

Since s € LM A(¢(A)), s = ¢(a) holds. Thus, reminding a € LMA(A), s € p(LMA(A))
follows.

Proof of Theorem 9.1

(9.1) is clear by (8.2). (9.2) is also clear by noticing

{gp%s} = {maxmaxap%s}—ﬂ ﬂ {041’;28}

pEP kEPp
and associated property of P.
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