
Journal of the Operations Research Society of Japan c⃝ The Operations Research Society of Japan
Vol. 59, No. 3, July 2016, pp. 225–240

MANY-TO-MANY STABLE MATCHINGS WITH TIES IN TREES

Keita Nakamura∗ Naoyuki Kamiyama
Kyushu University

(Received February 16, 2015; Revised January 22, 2016)

Abstract In the stable matching problem introduced by Gale and Shapley, it is known that in the case
where the preference lists may involve ties, a stable matching always exists, but the sizes of stable matchings
may be different. In this paper, we consider the problem of finding a maximum-size stable matching in a
many-to-many matching market with ties. It is known that this problem is NP-hard even if the capacity
of every agent is one. In this paper, we prove that this problem in trees can be solved in polynomial time
by extending the algorithm proposed by Tayu and Ueno for the one-to-one setting.

Keywords: Discrete optimization, stable matching, tree, tie

1. Introduction

In the stable matching problem introduced by Gale and Shapley [1], there are two groups of
agents such that each agent has a preference list over the members in the other group. The
goal is to find a stable one-to-one matching. A matching is said to be stable, if there is no pair
of agents that have incentive to break away from the current matching. If the preference lists
do not involve a tie, then a stable matching always exists [1] and all stable matchings are of
the same size [2]. In the case where the preference lists may involve ties, a stable matching†

always exists [3] (we can prove this by breaking ties arbitrarily and using the result of [1]),
but the sizes of stable matchings may be different [8]. In practical settings, the preference
lists may indeed involve ties, and it is desirable to find a maximum-size stable matching [8].
Unfortunately, it is known [8] that the problem of finding a maximum-size stable matching
is NP-hard. For such a hard problem, approximation algorithms and finding tractable cases
may be escapes from its intractability. Several approximation algorithms for this problem
were proposed, and the current best approximation ratio is 1.5 due to [5, 9, 10]. In this
paper, we focus on the other approach, that is, finding tractable cases. For example, Irving,
Manlove, and O’Malley [4] considered the case in which the lengths of the preference lists
are bounded. Furthermore, Tayu and Ueno [11] proved that if an underlying bipartite graph
is a tree, then this problem can be solved in linear time.

In this paper, we consider the many-to-many generalization of the above problem. That
is, our goal is to find a maximum-size stable matching in a many-to-many matching market
with ties. In our problem, each agent v has a capacity q(v) and is allowed to be matched with
at most q(v) partners. We will consider this problem in trees, and give a polynomial-time
algorithm for this case by extending the algorithm of Tayu and Ueno [11] for the one-to-one
setting. To the best of our knowledge, our result is the first polynomial-time solvable case

∗This work was done when Keita Nakamura was a student at Kyushu University.
†We adopt the stability criterion called the weak stability. See [7, Chapter 3] for a survey of stable matchings
with ties.

225

226 K. Nakamura & N. Kamiyama

of the maximum-size stable matching problem in a many-to-many matching market with
ties (to the best of our knowledge, it is still open that the result of [4] can be generalized to
the many-to-one setting).

The rest of this paper is organized as follows. In Section 2, we give a formal definition
of our problem. In Section 3, we give characterizations of many-to-many stable matchings
with ties in trees. In Section 4, we propose our algorithm based on the characterizations in
Section 3. In Section 5, we give a faster implementation of our algorithm.

2. Preliminaries

The Many-to-Many Stable Matching with Ties problem (mmsmt for short) in trees
is defined as follows. In this problem, we are given a tree T = (V,E) that consists of a vertex
set V and an edge set E. If there is an edge in E between distinct vertices u, v in V , then
we denote by (u, v) this edge. Notice that (u, v) and (v, u) represent the same edge. For
each vertex v in V , we denote by N(v) the set of vertices w in V such that (v, w) ∈ E. For
each vertex v in V and each subset F of E, let δF (v) be the set of edges in F incident to v.

For each vertex v in V , we are given a reflexive, transitive, and complete‡ binary relation
≿v on N(v). For each vertex v in V , the binary relation ≿v represents the preference list
of v over N(v). If u ≿v w for a vertex v in V and vertices u,w in N(v), then v prefers u
to w, or is indifferent between u and w. Notice that there is a possibility that u ≿v w and
w ≿v u for a vertex v in V and distinct vertices u,w in N(v). For each vertex v in V and
each pair of vertices u,w in N(v), we write u ≻v w (resp., u ∼v w), if u ≿v w and w ̸≿v u
(resp., u ≿v w and w ≿v u).

For each vertex v in V , we are given a positive integer q(v) that represents the capacity
of v. A subset M of E is called a matching in T , if |δM(v)| ≤ q(v) for every vertex v in V .
For each subset F of E and each edge (v, w) in E \F , we say that (v, w) is dominated by F
on v, if |δF (v)| = q(v) and w′ ≿v w for every edge (v, w′) in δF (v). For each subset F of E
and each edge e in E \ F , if e is dominated by F on at least one end vertex of e, then we
simply say that e is dominated by F . A matching M in T is called a stable matching in T , if
every edge in E \M is dominated by M . It is well known (see, e.g., [7, Section 5.4.3]) that
if there are no distinct vertices u, v, w in V such that u,w in N(v) and u ∼v w, then there
always exists a stable matching in T . Thus, in the same way of [3] for the one-to-one setting
(i.e., by breaking ties arbitrarily), we can prove that there always exists a stable matching
in T . We denote by M the set of stable matchings in T . Then, the goal of mmsmt in trees
is to find a maximum-size stable matching in T .

2.1. Notation

We specify an arbitrary vertex r in V as the root of T , and regard T as a rooted tree with
the root r. Without loss of generality, we can assume that |δE(r)| = 1. We denote by (r, cr)
the unique edge in δE(r), and define U := V \ {r}. For each vertex v in U , we define

• pv := the parent of v,

• Cv := the set of the children of v,

• Dv := the edge set of the subgraph of T induced by the descendants of v (including v),

• Sv := Dv ∪ {(v, pv)}.
For each vertex v in U and each matching M in T , we say that M is v-stable, if every

edge in Dv \M is dominated by M . For each vertex v in U , we denote by M(v) the set of
v-stable matchings M in T such that M ⊆ Sv. For each vertex v in U , we define

‡For every pair of vertices u,w in N(v), at least one of u ≿v w and w ≿v u holds.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

Stable Matchings with Ties in Trees 227

• MP (v) := {M ∈ M(v) | (v, pv) ∈ M},
• MP (v) := {M ∈ M(v) | (v, pv) /∈ M},
• MF (v) := {M ∈ MP (v) | |δM(v)| = q(v) and c ≿v pv for every edge (v, c) in δM(v)}.
It is not difficult to see that for every vertex v in U and every subset M of Dv, M ∈ MP (v)
if and only if M is a stable matching in the subgraph of T induced by the descendants of v.
Thus, for every vertex v in U , since there always exists a stable matching in the subgraph of
T induced by the descendants of v, MP (v) is not empty. For each vertex v in U , we define

• M=
P (v) := {M ∈ MP (v) | |δM(v)| = q(v)},

• M<
P (v) := {M ∈ MP (v) | |δM(v)| < q(v)},

• M=
P
(v) := {M ∈ MP (v) | |δM(v)| = q(v)},

• M<
P
(v) := {M ∈ MP (v) | |δM(v)| < q(v)}.

For each vertex v in U , we partition Cv into C1
v , C

2
v , . . . , C

ℓ(v)
v in such a way that

• u ∼v w for every i = 1, 2, . . . , ℓ(v) and every pair of vertices u,w in C i
v, and

• u ≻v w for every pair of i, j = 1, 2, . . . , ℓ(v) such that i < j and every pair of vertices u
in Ci

v and w in Cj
v .

For each vertex v in U and each i = 1, 2, . . . , ℓ(v), we define

Ki
v := C1

v ∪ C2
v ∪ · · · ∪ Ci

v.

In addition, for each vertex v in U , define K0
v := ∅, Cℓ(v)+1

v := ∅, and K
ℓ(v)+1
v := Cv. For

each vertex v in U , let t+(v) be the minimum integer i in {1, 2, . . . , ℓ(v)} such that pv ≿v c
for a vertex c in Ci

v. If c ≻v pv for every vertex c in Cv, then we define t+(v) := ℓ(v)+1. For
each vertex v in U , we denote by t−(v) the maximum integer i in {1, 2, . . . , ℓ(v)} such that
c ≿v pv for a vertex c in Ci

v. If pv ≻v c for every vertex c in Cv, then we define t−(v) := 0.

3. Characterizations

In this section, we prove lemmas that will be needed in the next section.

We first prove the following two easy lemmas.

Lemma 3.1. For every subset M of E, M ∈ M if and only if M ∈ MP (cr) ∪MF (cr).

Proof. Let M be a subset of E. We first prove the if part. Since M is a cr-stable matching in
T , M is a matching in T . Furthermore, the cr-stability ofM implies thatM dominates every
edge in E \ (M ∪ {(cr, r)}). If M ∈ MP (cr), then (cr, r) ∈ M . In addition, if M ∈ MF (cr),
then (cr, r) is dominated by M on cr. This completes the proof of the if part.

Next we prove the only if part. Since M is a stable matching in T , M is also a cr-stable
matching in T . Furthermore, since Scr = E, M ∈ M(cr). If (cr, r) ∈ M , then M ∈ MP (cr).
Assume that (cr, r) /∈ M . If M ∈ MP (cr) \ MF (cr), then (cr, r) is dominated by M on
neither cr nor r, which contradicts the fact that M ∈ M. Thus, M ∈ MF (cr).

Lemma 3.2. Let v be a vertex in U , and let M be a subset of Sv. If M is a v-stable
matching in T , then for every vertex c in Cv, M ∩ Sc is a c-stable matching in T .

Proof. Assume that M is a v-stable matching in T . Then, for every vertex c in Cv, every
edge in Dc \M is dominated by M ∩Sc and M ∩Sc is a matching in T . This completes the
proof.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

228 K. Nakamura & N. Kamiyama

In what follows, we give characterizations of members inM=
P (v), M

<
P (v), M

=
P
(v), M<

P
(v),

and MF (v) for each vertex v in U . Although these characterizations are natural general-
izations of the characterizations in [11] to the many-to-many setting, there is the following
difference. In several characterizations of [11] for a vertex v in U , we choose a “key” child
of v to which v should be connected, and then we categorize the children of v based on ≿v

and this key child. On the other hand, in our characterizations, we categorize the children
of v without choosing such a key child.

Lemma 3.3. For every vertex v in U and every subset M of Sv, M ∈ M=
P (v) if and only if

1. |δM(v)| = q(v),
2. (v, pv) ∈ M , and
3. there is an integer ξ in {t+(v), t+(v) + 1, . . . , ℓ(v) + 1} such that

• M ∩ Sc ∈ MP (c) ∪MF (c) for every vertex c in Kξ−1
v ,

• M ∩ Sc ∈ MP (c) ∪MP (c) for every vertex c in Cξ
v , and

• M ∩ Sc ∈ MP (c) for every vertex c in Cv \Kξ
v .

Proof. Assume that we are given a vertex v in U and a subset M of Sv. We first prove the if
part. Since q(pv) > 0, the conditions 1, 2, and 3 imply that M is a matching in T such that
|δM(v)| = q(v) and (v, pv) ∈ M . Thus, what remains is to prove that M is v-stable. The
condition 3 implies that for every vertex c in Cv, M ∩ Sc is a c-stable matching in T , i.e.,
every edge in Dc \M is dominated by M . Thus, it suffices to prove that for every vertex c
in Cv, (v, c) ∈ M or (v, c) is dominated by M .

We first consider a vertex c in Kξ−1
v . If M ∩ Sc ∈ MP (c), then (v, c) ∈ M . In addition,

if M ∩ Sc ∈ MF (c), then (v, c) is dominated by M on c. Next we consider a vertex c in Cξ
v .

The condition 3 and ξ ≥ t+(v) imply that c′ ≿v c for every edge (v, c′) in δM(v). Thus, since
the condition 1 implies that |δM(v)| = q(v), (v, c) ∈ M or (v, c) is dominated by M on v.
Lastly, we consider a vertex c in Cv \Kξ

v . The condition 3 and ξ ≥ t+(v) imply that c′ ≻v c
for every edge (v, c′) in δM(v). Thus, since the condition 1 implies that |δM(v)| = q(v), (v, c)
is dominated by M on v. This completes the proof of the if part.

Next we prove the only if part. Since the definition ofM=
P (v) implies that the conditions 1

and 2 hold, it suffices to prove that the condition 3 holds. Let ξ′ be the maximum integer
i in {1, 2, . . . , ℓ(v)} such that (v, c) ∈ M for some vertex c in C i

v. If there is no vertex c in
Cv such that (v, c) ∈ M , then we define ξ′ := 0. We define ξ := max{t+(v), ξ′}, and prove
that ξ satisfies the condition 3. Lemma 3.2 implies that for every vertex c in Cv, M ∩ Sc

is a c-stable matching in T . Thus, what remains is to prove that for every vertex c in Cv,
M ∩ Sc is in an appropriate family of subsets of Sc. Define c

∗ as follows. If ξ′ ≤ t+(v), then
we define c∗ := pv. If ξ

′ > t+(v), then we define c∗ as a vertex c in Cξ′
v such that (v, c) ∈ M .

We first consider a vertex c in Kξ−1
v . If M ∩ Sc is in MP (c) \MF (c), then (v, c) is not

dominated by M on c. In addition, since c ≻v c
∗ and (v, c∗) ∈ M , (v, c) is not dominated by

M on v, which contradicts the fact that M is a v-stable matching in T . These observations
imply that M ∩ Sc ∈ MP (c) ∪MF (c). For every vertex c in Cξ

v , since M ∩ Sc is a c-stable
matching in T , the proof is done. Let c be a vertex in Cv \Kξ

v . The definition of ξ implies
that (v, c) /∈ M . Thus, since M ∩ Sc is a c-stable matching in T , M ∩ Sc ∈ MP (c).

Lemma 3.4. For every vertex v in U and every subset M of Sv, M ∈ M<
P (v) if and only if

1. |δM(v)| < q(v),
2. (v, pv) ∈ M , and
3. M ∩ Sc ∈ MP (c) ∪MF (c) for every vertex c in Cv.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

Stable Matchings with Ties in Trees 229

Proof. Assume that we are given a vertex v in U and a subset M of Sv. We first prove the if
part. The conditions 1, 2, and 3 imply that M is a matching in T such that |δM(v)| < q(v)
and (v, pv) ∈ M . Thus, what remains is to prove that M is v-stable. Since M ∩ Sc is a
c-stable matching in T for every vertex c in Cv, it suffices to prove that (v, c) ∈ M or (v, c)
is dominated by M for every vertex c in Cv. For every vertex c in Cv such that (v, c) /∈ M ,
since M ∈ MF (c), (v, c) is dominated by M on c. This completes the proof of the if part.

Next we prove the only if part. Since the definition ofM<
P (v) implies that the conditions 1

and 2 hold, it suffices to prove that the condition 3 holds. Lemma 3.2 implies that M ∩ Sc

is a c-stable matching in T for every vertex c in Cv. If M ∩Sc ∈ MP (c) \MF (c), then since
|δM(v)| < q(v) follows from the definition of M<

P (v), (v, c) is dominated by M on neither v
nor c. Thus, M ∩ Sc ∈ MP (c) ∪MF (c).

Lemma 3.5. For every vertex v in U and every subset M of Sv, M ∈ M=
P
(v) if and only if

1. |δM(v)| = q(v),
2. (v, pv) /∈ M , and
3. there is an integer ξ in {1, 2, . . . , ℓ(v)} such that

• M ∩ Sc ∈ MP (c) ∪MF (c) for every vertex c in Kξ−1
v ,

• M ∩ Sc ∈ MP (c) ∪MP (c) for every vertex c in Cξ
v , and

• M ∩ Sc ∈ MP (c) for every vertex c in Cv \Kξ
v .

Proof. Assume that we are given a vertex v in U and a subset M of Sv. We first prove the if
part. The conditions 1, 2, and 3 imply that M is a matching in T such that |δM(v)| = q(v)
and (v, pv) /∈ M . What remains is to prove that M is v-stable. The condition 3 implies
that for every vertex c in Cv, every edge in Dc \M is dominated by M . Thus, it suffices to
prove that for every vertex c in Cv, (v, c) ∈ M or (v, c) is dominated by M .

We first consider a vertex c in Kξ−1
v . If M ∩ Sc ∈ MP (c), then (v, c) ∈ M . In addition,

if M ∩ Sc ∈ MF (c), then (v, c) is dominated by M on c. Next we consider a vertex c in
Cξ

v . The condition 3 implies that c′ ≿v c for every edge (v, c′) in δM(v). Thus, since the
condition 1 implies that |δM(v)| = q(v), (v, c) ∈ M or (v, c) is dominated by M on v. Lastly
we consider a vertex c in Cv \Kξ

v . The condition 3 implies that c′ ≻v c for every edge (v, c′)
in δM(v). Thus, since the condition 1 implies that |δM(v)| = q(v), (v, c) is dominated by M
on v. This completes the proof of the if part.

Next we prove the only if part. The definition of M=
P
(v) implies the conditions 1 and 2,

and thus it suffices to prove that the condition 3 holds. Since |q(v)| > 0, there is an integer
i in {1, 2, . . . , ℓ(v)} such that (v, c) ∈ M for some vertex c in C i

v. Let ξ be the maximum
integer i in {1, 2, . . . , ℓ(v)} such that (v, c) ∈ M for some vertex c in C i

v. We will prove that
ξ satisfies the condition 3. Lemma 3.2 implies that for every vertex c in Cv, M ∩ Sc is a
c-stable matching in T . What remains is to prove that M ∩ Sc is in an appropriate family
of subsets of Sc for every vertex c in Cv. Let c

∗ be a vertex c in Cξ
v such that (v, c) ∈ M .

We first consider a vertex c in Kξ−1
v . If M ∩ Sc is in MP (c) \MF (c), then (v, c) is not

dominated by M on c. Furthermore, since c ≻v c
∗ and (v, c∗) ∈ M , (v, c) is not dominated

by M on v, which contradicts the fact that M is a v-stable matching in T . Thus, M ∩Sc is
in MP (c) ∪MF (c). For every vertex c in Cξ

v , since M ∩ Sc is a c-stable matching in T , the
proof is done. Let c be a vertex in Cv \ Kξ

v . The definition of c∗ implies that (v, c) /∈ M .
Thus, since M ∩ Sc is a c-stable matching in T , M ∩ Sc ∈ MP (c).

Lemma 3.6. For every vertex v in U and every subset M of Sv, M ∈ M<
P
(v) if and only if

1. |δM(v)| < q(v),
2. (v, pv) /∈ M , and

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

230 K. Nakamura & N. Kamiyama

3. M ∩ Sc ∈ MP (c) ∪MF (c) for every vertex c in Cv.

Proof. Assume that we are given a vertex v in U and a subset M of Sv. We first prove the if
part. The conditions 1, 2, and 3 imply that M is a matching in T such that |δM(v)| < q(v)
and (v, pv) /∈ M . What remains is to prove that M is v-stable. Since M ∩ Sc is a c-stable
matching in T for every vertex c in Cv, it is sufficient to prove that (v, c) ∈ M or (v, c) is
dominated by M for every vertex c in Cv. For every vertex c in Cv such that (v, c) /∈ M ,
since M ∈ MF (c), (v, c) is dominated by M on c. This completes the proof of the if part.

Next we prove the only if part. Since the definition ofM<
P
(v) implies that the conditions 1

and 2 hold, it suffices to prove that the condition 3 holds. Lemma 3.2 implies that M ∩ Sc

is a c-stable matching in T for every vertex c in Cv. If M ∩Sc ∈ MP (c) \MF (c), then since
|δM(v)| < q(v) follows from the definition of M<

P
(v), (v, c) is dominated by M on neither v

nor c. Thus, M ∩ Sc ∈ MP (c) ∪MF (c).

Lemma 3.7. For every vertex v in U and every subset M of Sv, M ∈ MF (v) if and only if

1. |δM(v)| = q(v),
2. (v, pv) /∈ M , and
3. t−(v) > 0 and there is an integer ξ in {1, 2, . . . , t−(v)} such that

• M ∩ Sc ∈ MP (c) ∪MF (c) for every vertex c in Kξ−1
v ,

• M ∩ Sc ∈ MP (c) ∪MP (c) for every vertex c in Cξ
v , and

• M ∩ Sc ∈ MP (c) for every vertex c in Cv \Kξ
v .

Proof. Assume that we are given a vertex v in U and a subset M of Sv. We first prove the if
part. The conditions 1, 2, and 3 imply that M is a matching in T such that |δM(v)| = q(v)
and (v, pv) /∈ M . Furthermore, since ξ ∈ {1, 2, . . . , t−(v)} and M ∩ Sc ∈ MP (c) for every
vertex c in Cv \Kξ

v , we have c ≿v pv for every edge (v, c) in δM(v). Thus, what remains is
to prove that M is v-stable. The condition 3 implies that for every vertex c in Cv, every
edge in Dc \M is dominated by M . Thus, it suffices to prove that for every vertex c in Cv,
(v, c) ∈ M or (v, c) is dominated by M .

We first consider a vertex c in Kξ−1
v . If M ∩Sc ∈ MP (c), then (v, c) ∈ M . Furthermore,

if M ∩ Sc ∈ MF (c), then (v, c) is dominated by M on c. Next we consider a vertex c in
Cξ

v . The condition 3 implies that c′ ≿v c for every edge (v, c′) in δM(v). Thus, since the
condition 1 implies that |δM(v)| = q(v), (v, c) ∈ M or (v, c) is dominated by M on v. Lastly
we consider a vertex c in Cv \Kξ

v . The condition 3 implies that c′ ≻v c for every edge (v, c′)
in δM(v). Thus, since the condition 1 implies that |δM(v)| = q(v), (v, c) is dominated by M
on v. This completes the proof of the if part.

Next we prove the only if part. Since the definition of MF (v) implies the conditions 1
and 2, it suffices to prove that the condition 3 holds. Since |q(v)| > 0, there is an integer
i in {1, 2, . . . , ℓ(v)} such that (v, c) ∈ M for some vertex c in C i

v. Let ξ be the maximum
integer i in {1, 2, . . . , ℓ(v)} such that (v, c) ∈ M for some vertex c in Ci

v. Since c ≿v pv for
every edge (v, c) in δM(v), t−(v) > 0 and ξ ∈ {1, 2, . . . , t−(v)}. We will prove that ξ satisfies
the condition 3. Lemma 3.2 implies that for every vertex c in Cv, M ∩ Sc is a c-stable
matching in T . Thus, what remains is to prove that for every vertex c in Cv, M ∩ Sc is in
an appropriate family of subsets of Sc. Let c

∗ be a vertex c in Cξ
v such that (v, c) ∈ M .

We first consider a vertex c in Kξ−1
v . If M ∩ Sc is in MP (c) \MF (c), then (v, c) is not

dominated by M on c. Furthermore, since c ≻v c
∗ and (v, c∗) ∈ M , (v, c) is not dominated

by M on v, which contradicts the fact that M is a v-stable matching in T . Thus, M ∩Sc is
in MP (c) ∪MF (c). For every vertex c in Cξ

v , since M ∩ Sc is a c-stable matching in T , the

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

Stable Matchings with Ties in Trees 231

proof is done. Let c be a vertex in Cv \ Kξ
v . The definition of c∗ implies that (v, c) /∈ M .

Thus, since M ∩ Sc is a c-stable matching in T , M ∩ Sc ∈ MP (c).

4. Algorithm

In this section, we give a polynomial-time algorithm formmsmt in trees. We first concentrate
on computing the maximum-size of a stable matching. We can easily modify our algorithm
in such a way that it can find a maximum-size stable matching (see Section 5).

For each vertex v in U and each symbol X in {P, P , F}, we define µX(v) by

µX(v) :=

{
max{|M | | M ∈ MX(v)} if MX(v) ̸= ∅
−∞ if MX(v) = ∅.

It is not difficult to see that for every leaf vertex v in U , we have

µP (v) = 1, µP (v) = 0, µF (v) = −∞. (4.1)

For each vertex v in U , we define the depth d(v) of v as the number of edges of the unique
path from r to v in T . Our algorithm can be described as follows.

Algorithm 1 Algorithm for mmsmt in trees.

1: Set i := max{d(v) | v ∈ U}.
2: while i ≥ 1 do
3: for all vertices v in U such that d(v) = i do
4: if v is a leaf vertex then
5: Compute µP (v), µP (v), and µF (v) as (4.1).
6: else
7: Compute µP (v), µP (v), and µF (v) by using µX(c) for vertices c in Cv and symbols

X in {P, P , F}.
8: end if
9: end for
10: Set i := i− 1.
11: end while
12: Output max{µP (cr), µF (cr)}, and halt.

For proving the correctness of Algorithm 1, Lemma 3.1 implies that it suffices to prove
that in the line 7 of Algorithm 1, we can compute µP (v), µP (v), and µF (v) by using µX(c)
for vertices c in Cv and symbols X in {P, P , F}. In what follows, we prove this by using
the characterizations in Section 3.

Here we explain about relationship between the algorithm of [11] and our algorithm. The
frameworks of these algorithms are the same. In the one-to-one setting (i.e., the algorithm
of [11]), since the number of edges incident to each vertex is at most one, the implementation
of the line 7 is simple. For extending their algorithm to the many-to-many setting, we have
to modify this part to the many-to-many setting. This is our main contribution.

In what follows, we assume that we are given a non-leaf vertex v in U , and we know
µX(c) for all vertices c in Cv and all symbols X in {P, P , F}. Under this assumption, we
consider how to compute µX(v) for all symbols X in {P, P , F}.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

232 K. Nakamura & N. Kamiyama

4.1. Notation

Here we introduce notation that will be needed later. For each vertex c in Cv such that
µP (c) ̸= −∞ and µF (c) ̸= −∞, we define

φF (c) := µP (c)− µF (c).

Furthermore, for each vertex c in Cv such that µP (c) ̸= −∞, we define

φP (c) := µP (c)− µP (c).

Recall that µP (c) ̸= −∞ for every vertex c in Cv. For each member M in M(v), we define

∂vM := {c ∈ Cv | (v, c) ∈ M}.

For each i = 1, 2, . . . , ℓ(v) + 1, we define X i
c by

X i
c :=

{
F if c ∈ Ki−1

v

P if c ∈ Cv \Ki−1
v .

For each i = 1, 2, . . . , ℓ(v) + 1, we define Zi
P and Zi

F by

Zi
P := {c ∈ Ki

v | µP (c) ̸= −∞}, Zi
F := {c ∈ Ki

v | µF (c) = −∞}.

Furthermore, we define ZF := {c ∈ Cv | µF (c) = −∞}.
4.2. Algorithm for computing µP (v)

Here we consider how to compute µP (v). We define µ=
P (v) and µ<

P (v) by

µ=
P (v) :=

{
max{|M | | M ∈ M=

P (v)} if M=
P (v) ̸= ∅

−∞ if M=
P (v) = ∅,

µ<
P (v) :=

{
max{|M | | M ∈ M<

P (v)} if M<
P (v) ̸= ∅

−∞ if M<
P (v) = ∅.

Clearly, we have µP (v) = max{µ=
P (v), µ

<
P (v)}. Thus, it suffices to compute µ=

P (v) and µ<
P (v).

We first consider how to compute µ=
P (v). For each i = t+(v), t+(v) + 1, . . . , ℓ(v) + 1, we

denote by M=
P (v, i) the set of members M in M=

P (v) such that
• M ∩ Sc ∈ MP (c) ∪MF (c) for every vertex c in Ki−1

v ,

• M ∩ Sc ∈ MP (c) ∪MP (c) for every vertex c in C i
v, and

• M ∩ Sc ∈ MP (c) for every vertex c in Cv \Ki
v.

Furthermore, for each i = t+(v), t+(v) + 1, . . . , ℓ(v) + 1, we define µ=
P (v, i) by

µ=
P (v, i) :=

{
max{|M | | M ∈ M=

P (v, i)} if M=
P (v, i) ̸= ∅

−∞ if M=
P (v, i) = ∅.

Since Lemma 3.3 implies that M=
P (v) =

∪ℓ(v)+1

i=t+(v)M
=
P (v, i), we have

µ=
P (v) = max{µ=

P (v, i) | i = t+(v), t+(v) + 1, . . . , ℓ(v) + 1}.

Thus, it suffices to compute µ=
P (v, i) for each i = t+(v), t+(v) + 1, . . . , ℓ(v) + 1.

Let i be an integer in {t+(v), t+(v)+1, . . . , ℓ(v)+1}. Then we consider how to compute
µ=
P (v, i). Lemma 3.3 implies the following lemma.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

Stable Matchings with Ties in Trees 233

Lemma 4.1. We have µ=
P (v, i) ̸= −∞ if and only if

• there is no vertex c in Ki−1
v such that µP (c) = µF (c) = −∞,

• there are at most q(v)− 1 vertices c in Ki−1
v such that µF (c) = −∞, and

• there are at least q(v)− 1 vertices c in Ki
v such that µP (c) ̸= −∞.

Lemma 4.1 implies that we can decide whether µ=
P (v, i) ̸= −∞ by using µX(c) for vertices

c in Cv and symbols X in {P, P , F}. Thus, in what follows, we assume that µ=
P (v, i) ̸= −∞.

A subset Π of Ki
v is said to be (P, =, i)-feasible, if

|Π| = q(v)− 1, Z i−1
F ⊆ Π ⊆ Zi

P .

Let F=,i
P be the family of (P,=, i)-feasible subsets of Ki

v. Then, Lemma 3.3 implies that

(F1) for every member M in M=
P (v, i), we have ∂vM ∈ F=,i

P , and
(F2) for every member Π in F=,i

P , there is a member M in M=
P (v, i) such that ∂vM = Π.

For each member Π in F=,i
P , we define M=

P (v, i; Π) by

M=
P (v, i; Π) := {M ∈ M=

P (v, i) | ∂vM = Π}.

Then, (F1) implies that M=
P (v, i) =

∪
Π∈F=,i

P
M=

P (v, i; Π). In addition, (F2) implies that for

every member Π in F=,i
P , M=

P (v, i; Π) is not empty. Define µ=
P (v, i; Π) by

µ=
P (v, i; Π) := max{|M | | M ∈ M=

P (v, i; Π)}.

Then, we have
µ=
P (v, i) = max{µ=

P (v, i; Π) | Π ∈ F=,i
P }.

Furthermore, it is not difficult to see that for each member Π in F=,i
P ,

µ=
P (v, i; Π) =

∑
c∈Π

µP (c) +
∑

c∈Cv\Π

µXi
c
(c) + 1

=
∑

c∈Π\Zi−1
F

µP (c) +
∑

c∈Zi−1
F

µP (c) +
∑

c∈Cv\Π

µXi
c
(c) + 1

=
∑

c∈Π\Zi−1
F

φXi
c
(c) +

∑
c∈Zi−1

F

µP (c) +
∑

c∈Cv\Zi−1
F

µXi
c
(c) + 1.

(4.2)

Thus, in order to compute µ=
P (v, i), it suffices to find Π that maximizes the first term in the

last line of (4.2). This implies that we can compute µ=
P (v, i) by Algorithm 2.

Algorithm 2 Algorithm for computing µ=
P (v, i)

1: Sort vertices in Zi
P \ Zi−1

F as c1, c2, . . . is such a way that φXi
c1
(c1) ≥ φXi

c2
(c2) ≥ · · · .

2: Set Π := {c1, c2, . . . , cq(v)−1−|Zi−1
F |} ∪ Zi−1

F .

3: Output µ=
P (v, i; Π), and halt.

The following lemma follows from the above argument.
Lemma 4.2. We can compute µ=

P (v, i) by using Algorithm 2.
Next we consider how to compute µ<

P (v). Lemma 3.4 implies the following lemma.
Lemma 4.3. We have µ<

P (v) ̸= −∞ if and only if
• there is no vertex c in Cv such that µP (c) = µF (c) = −∞, and

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

234 K. Nakamura & N. Kamiyama

• there are at most q(v)− 2 vertices in Cv such that µF (c) = −∞.
Lemma 4.3 implies that we can decide whether µ<

P (v) ̸= −∞ by using µX(c) for vertices
c in Cv and symbols X in {P, P , F}. Thus, in what follows, we assume that µ<

P (v) ̸= −∞.
A subset Π of Cv is said to be (P,<)-feasible, if

|Π| ≤ q(v)− 2, ZF ⊆ Π.

Then, Lemma 3.4 implies that
• for every member M in M<

P (v), ∂vM is a (P,<)-feasible subset of Cv, and

• for every (P,<)-feasible subset Π of Cv, there exists a member M in M<
P (v) such that

∂vM = Π.
For each (P,<)-feasible subset Π of Cv, we define µ<

P (v; Π) by

µ<
P (v; Π) := max{|M | | M ∈ M<

P (v), ∂vM = Π}.

Then, for each (P,<)-feasible subset Π of Cv,

µ<
P (v; Π) =

∑
c∈Π\ZF

φF (c) +
∑
c∈ZF

µP (c) +
∑

c∈Cv\ZF

µF (c) + 1. (4.3)

In order to compute µ<
P (v), it suffices to find Π that maximizes the first term of (4.3). Thus,

we can compute µ<
P (v) by Algorithm 3.

Algorithm 3 Algorithm for computing µ<
P (v)

1: Sort vertices in Cv \ ZF as c1, c2, . . . in such a way that φF (c1) ≥ φF (c2) ≥ · · · .
2: if φF (c1) ≤ 0 then
3: Set Π := ∅.
4: else
5: Set ξ to be the maximum integer j in {1, 2, . . . , |Cv \ ZF |} such that φF (cj) > 0.
6: Set Π := {c1, c2, . . . , cmin{ξ,q(v)−2−|ZF |}} ∪ ZF .
7: end if
8: Output µ<

P (v; Π), and halt.

The following lemma follows from the above argument.
Lemma 4.4. We can compute µ<

P (v) by using Algorithm 3.
The following lemma follows from Lemmas 4.2 and 4.4.

Lemma 4.5. We can compute µP (v) by using µX(c) for vertices c in Cv and symbols X in
{P, P , F}.
4.3. Algorithm for computing µP (v) and µF (v)

Here we consider how to compute µP (v). By using Lemma 3.7, we can compute µP (v) in
the similar way as used in the case of computing µP (v). We define µ=

P
(v) and µ<

P
(v) by

µ=
P
(v) :=

{
max{|M | | M ∈ M=

P
(v)} if M=

P
(v) ̸= ∅

−∞ if M=
P
(v) = ∅,

µ<
P
(v) :=

{
max{|M | | M ∈ M<

P
(v)} if M<

P
(v) ̸= ∅

−∞ if M<
P
(v) = ∅.

Clearly, µP (v) = max{µ=
P
(v), µ<

P
(v)}.

We consider how to compute µ=
P
(v). For each i = 1, 2, . . . , ℓ(v), we define µ=

P
(v, i) as the

maximum-size of a member M in M=
P
(v) such that

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

Stable Matchings with Ties in Trees 235

• M ∩ Sc ∈ MP (c) ∪MF (c) for every vertex c in Ki−1
v ,

• M ∩ Sc ∈ MP (c) ∪MP (c) for every vertex c in C i
v, and

• M ∩ Sc ∈ MP (c) for every vertex c in Cv \Ki
v.

If there is no such a member in M=
P
(v), then we define µ=

P
(v, i) := −∞. Lemma 3.5 implies

that we have
µ=
P
(v) = max{µ=

P
(v, i) | i = 1, 2, . . . , ℓ(v)}.

Let i be an integer in {1, 2, . . . , ℓ(v)}, and we consider how to compute µ=
P
(v, i). Lemma 3.5

implies the following lemma.
Lemma 4.6. We have µ=

P
(v, i) ̸= −∞ if and only if

• there is no vertex c in Ki−1
v such that µP (c) = µF (c) = −∞,

• there are at most q(v) vertices c in Ki−1
v such that µF (c) = −∞, and

• there are at least q(v) vertices c in Ki
v such that µP (c) ̸= −∞.

Lemma 4.6 implies that we can decide whether µ=
P
(v, i) ̸= −∞ by using µX(c) for vertices

c in Cv and symbols X in {P, P , F}. Thus, in what follows, we assume that µ=
P
(v, i) ̸= −∞.

Then, in the similar way as used in the case of computing µ=
P (v, i), we can prove that µ=

P
(v, i)

can be computed by Algorithm 4.

Algorithm 4 Algorithm for computing µ=
P
(v, i)

1: Sort vertices in Zi
P \ Zi−1

F as c1, c2, . . . in such a way that φXi
c1
(c1) ≥ φXi

c2
(c2) ≥ · · · .

2: Set Π := {c1, c2, . . . , cq(v)−|Zi−1
F |} ∪ Zi−1

F .

3: Compute µ=
P
(v, i) by

µ=
P
(v, i) :=

∑
c∈Π

µP (c) +
∑

c∈Cv\Π

µXi
c
(c).

4: Output µ=
P
(v, i), and halt.

Lemma 4.7. We can compute µ=
P
(v, i) by using Algorithm 4.

Next we consider how to compute µ<
P
(v). Lemma 3.6 implies the following lemma.

Lemma 4.8. We have µ<
P
(v) ̸= −∞ if and only if

• there is no vertex c in Cv such that µP (c) = µF (c) = −∞, and

• there are at most q(v)− 1 vertices in Cv such that µF (c) = −∞.
Lemma 4.8 implies that we can decide whether µ<

P
(v) ̸= −∞ by using µX(c) for vertices

c in Cv and symbols X in {P, P , F}. Thus, in what follows, we assume that µ<
P
(v) ̸= −∞.

In the similar way as used in the case of computing µ<
P (v), we can prove that µ<

P
(v) can be

computed by Algorithm 5.
Lemma 4.9. We can compute µ<

P
(v) by using Algorithm 5.

The following lemma follows from Lemmas 4.7 and 4.9.
Lemma 4.10. We can compute µP (v) by using µX(c) for vertices c in Cv and symbols X
in {P, P , F}.

Lastly, we consider how to compute µF (v). If t
−(v) = 0, then MF (v) = ∅. If t−(v) > 0,

then Lemma 3.7 implies that

µF (v) = max{µ=
P
(v, i) | i = 1, 2, . . . , t−(v)}.

Thus, we can compute µF (v) by using Algorithm 4.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

236 K. Nakamura & N. Kamiyama

Algorithm 5 Algorithm for computing µ<
P
(v)

1: Sort vertices in Cv \ ZF as c1, c2, . . . in such a way that φF (c1) ≥ φF (c2) ≥ · · · .
2: if φF (c1) ≤ 0 then
3: Set Π := ∅.
4: else
5: Set ξ to be the maximum integer j in {1, 2, . . . , |Cv \ ZF |} such that φF (cj) > 0.
6: Set Π := {c1, c2, . . . , cmin{ξ,q(v)−1−|ZF |}} ∪ ZF .
7: end if
8: Compute µ<

P
(v) by

µ<
P
(v) :=

∑
c∈Π

µP (c) +
∑

c∈Cv\Π

µF (c).

9: Output µ<
P
(v), and halt.

Lemma 4.11. We can compute µF (v) by using µX(c) for vertices c in Cv and symbols X
in {P, P , F}.

The following theorem follows from Lemmas 4.5, 4.10, and 4.11.
Theorem 4.1. Algorithm 1 can compute the optimal objective value of mmsmt in trees.

Here we evaluate the time complexity of Algorithm 1. Define n := |V | and nv := |Cv|
for each vertex v in U . Assume that for every vertex v in V and every pair of vertices
u,w in N(v), we can decide whether u ≿v w in O(1) time. It is not difficult to see that
we can compute Ci

v for all vertices v in U and all i = 1, 2, . . . , ℓ(v) in O(n log n) time in
the same way as sorting. Let v be a vertex in U , and assume that we know µX(c) for all
vertices c in Cv and all symbols X in {P, P , F}. Under this assumption, we evaluate the
time required to compute µX(v) for each symbol X in {P, P , F}. Since µ<

P (v) and µ<
P
(v) can

be computed in O(nv log nv) time, we consider the time required to compute µ=
P (v), µ

=
P
(v),

and µF (v). Since we can compute µ=
P
(v) and µF (v) in the similar way, we concentrate on

the time required to compute µ=
P (v). For each i = t+(v), t+(v) + 1, . . . , ℓ(v) + 1, we can

decide whether µ=
P (v, i) ̸= −∞ in O(nv) time by using Lemma 4.1. Furthermore, for each

i = t+(v), t+(v) + 1, . . . , ℓ(v) + 1 such that µ=
P (v, i) ̸= −∞, we can compute µ=

P (v, i) in
O(nv log nv) time by Algorithm 2. Since ℓ(v) ≤ nv, we can compute µ=

P (v) in O(n2
v log nv)

time. Thus, if we naively implement Algorithm 1, then its time complexity is O(n2 log n).
In the next section, we prove that Algorithm 1 can be implemented in O(n log n) time with
a more sophisticated data structure.

5. Faster Implementation

The goal of this section is to prove that Algorithm 1 can be implemented in O(n log n) time,
where n is the number of vertices of the input tree. For achieving this time complexity,
we use a binary (min) heap that is a binary rooted tree H such that each vertex of H
corresponds to some vertex of T , and each vertex of H is associated with a value, called
a key. We do not distinguish between a vertex h of H and the vertex of T corresponding
to h. For each non-root vertex h of H, the key of h is more than or equal to that of its
parent, which implies that the key of the root of H is minimum among all vertices of H.
If the number of vertices of H is m and we can directly access to a vertex of H by using a
pointer, then we can delete a vertex of H, insert a new vertex to H, and change the key of
some vertex of H in O(logm) time, respectively. See, e.g., [6] for details of a binary heap.
We denote by r(H) and V(H) the root of H and the set of vertices in H, respectively. For

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

Stable Matchings with Ties in Trees 237

each vertex v in V(H), we denote by key(v) the key of v.
From now on, we give a faster implementation. Let v be a vertex in U . Since it is not

difficult to see that we can compute µ=
P
(v) and µF (v) in the similar way, we concentrate on

the time required to compute µ=
P (v). In what follows, we use the notation introduced in

Section 4.1.

5.1. Step 1

We first compute the set I of integers in {t+(v), t+(v)+1, . . . , ℓ(v)+1} such that µ=
P (v, i) ̸=

−∞ by using Algorithm 6.

Algorithm 6 Algorithm for computing I

1: Set I := ∅, i := 1, ∆0
P := 0, and ∆0

F := 0.
2: while i ≤ ℓ(v) + 1 do
3: if i > 1 then
4: if there is a vertex c in Ci−1

v such that µP (c) = µF (c) = −∞ then
5: Output I, and halt.
6: end if
7: Set ∆i−1

F := ∆i−2
F + |{c ∈ Ci−1

v | µF (c) = −∞}|.
8: if ∆i−1

F > q(v)− 1 then
9: Output I, and halt.
10: end if
11: end if
12: Set ∆i

P := ∆i−1
P + |{c ∈ Ci

v | µP (c) ̸= −∞}|.
13: if i ≥ t+(v) and ∆i

P ≥ q(v)− 1 then
14: Set I := I ∪ {i}.
15: end if
16: Set i := i+ 1.
17: end while
18: Output I, and halt.

It is not difficult to see that in Algorithm 6, we have ∆i
P = |Zi

P | and ∆i
F = |Zi

F |. Thus,
the correctness of Algorithm 6 immediately follows from Lemma 4.1. The time complexity
of Algorithm 6 is O(nv). It is not difficult to see that I consists of consecutive integers.
Thus, in what follows, we assume that I = {L, L+ 1, . . . ,R}.
5.2. Step 2

The next step is to compute µ=
P (v, L) and construct a binary heapH used later. We compute

µ=
P (v, L) and construct a binary heap H by using Algorithm 7.
Here we prove the correctness of Algorithm 7, i.e., we prove that µ=

P (v, L) = ζ(H) when
Algorithm 7 halts. It is not difficult to see that during this algorithm, we have

ζ(H) =
∑

c∈V(H)∪ZL−1
F

µP (c) +
∑

c∈Cv\(V(H)∪ZL−1
F)

µXL
c
(c) + 1.

The definition of L implies that ∆L−1
F ≤ q(v) − 1. Thus, when Algorithm 7 halts, we have

∆ = q(v)−1, i.e., |V(H)∪ZL−1
F | = q(v)−1. Thus, V(H)∪ZL−1

F is a (P,=, L)-feasible subset
of KL

v . Furthermore, if we set Π := V(H)∪ZL−1
F , then the definition of a binary (min) heap

implies that Π maximizes the first term in the last line of (4.2) in the case of i = L. This
completes the correctness of Algorithm 7. The time complexity of Algorithm 7 is clearly
O(nv log nv).

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

238 K. Nakamura & N. Kamiyama

Algorithm 7 Algorithm for computing µ=
P (v, L) and constructing H

1: Set ∆ := ∆L−1
F and H to be an empty binary heap.

2: Set ζ(H) by

ζ(H) :=
∑

c∈ZL−1
F

µP (c) +
∑

c∈Cv\ZL−1
F

µXL
c
(c) + 1.

3: for all vertices c in (KL−1
v \ ZL−1

F) ∩ ZL
P do

4: if ∆ < q(v)− 1 then
5: Insert c with a key φF (c) to H, and set ζ(H) := ζ(H) + φF (c) and ∆ := ∆ + 1.
6: end if
7: if ∆ = q(v)− 1, V(H) ̸= ∅, and φF (c) > key(r(H)) then
8: Remove r(H) from H, and insert c with a key φF (c) to H.
9: Set ζ(H) := ζ(H)− key(r(H)) + φF (c).
10: end if
11: end for
12: for all vertices c in CL

v ∩ ZL
P do

13: if ∆ < q(v)− 1 then
14: Insert c with a key φP (c) to H, and set ζ(H) := ζ(H) + φP (c) and ∆ := ∆ + 1.
15: end if
16: if ∆ = q(v)− 1, V(H) ̸= ∅, and φP (c) > key(r(H)) then
17: Remove r(H) from H, and insert c with a key φP (c) to H.
18: Set ζ(H) := ζ(H)− key(r(H)) + φP (c).
19: end if
20: end for
21: Output ζ(H) and H. Then, halt.

5.3. Step 3

Lastly, we consider how to compute µ=
P (v, i) for each i = L+1, L+2, . . . ,R. We can compute

these values by using Algorithm 8.
For each i = L, L + 1, . . . ,R − 1, let µ̂=

P (v, i) be the maximum size of a member M in
M=

P (v, i) such that
• M ∩ Sc ∈ MP (c) ∪MF (c) for every vertex c in Ki

v, and

• M ∩ Sc ∈ MP (c) for every vertex c in Cv \Ki
v.

In the ith iteration of Algorithm 8, we have µ=
P (v, i−1) and the corresponding binary heapH

as an initial input. For computing µ=
P (v, i) from these inputs, we first compute µ̂=

P (v, i− 1)
(in the lines 3 to 22). Notice that for every vertex c in Cv such that µP (c) ̸= −∞ and
µF (c) ̸= −∞, we have φF (c) ≥ φP (c). Furthermore, since X i−1

c = P and X i
c = F for every

vertex c in C i−1
v , we need to do the operation in the line 7. For the same reason, we need

to do the operation in the line 19. In addition, since X i−1
c = P for every vertex c in C i−1

v ,
we add φP (c) to ζ(H) in the lines 12 and 16. However, since X i

c = F for every vertex c
in C i−1

v , we set the key of c to be φF (c) in the line 15. In the lines 23 to 28, we compute
µ=
P (v, i). During these lines, we have

ζ(H) =
∑

c∈V(H)∪Zi−1
F

µP (c) +
∑

c∈Cv\(V(H)∪Zi−1
F)

µXi
c
(c) + 1.

Thus, we can compute µ=
P (v, i) in the ith iteration. The time complexity of Algorithm 8 is

clearly O(nv log nv).

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

Stable Matchings with Ties in Trees 239

Algorithm 8 Algorithm for computing µ=
P (v, i) for each i = L+ 1, L+ 2, . . . ,R

1: Set i := L+ 1, H := the binary heap obtained by Algorithm 7, and ζ(H) := µ=
P (v, L).

2: while i ≤ R do
3: for all vertices c in Ci−1

v ∩ V(H) do
4: if µF (c) = −∞ then
5: Remove c from H.
6: else
7: Change the key of c from φP (c) to φF (c).
8: end if
9: end for
10: for all vertices c in Ci−1

v \ V(H) do
11: if µF (c) = −∞ then
12: Remove r(H) from H, and set ζ(H) := ζ(H)− key(r(H)) + φP (c).
13: else
14: if V(H) ̸= ∅ and φF (c) > key(r(H)) then
15: Remove r(H) from H, and insert c with a key φF (c) to H.
16: Set ζ(H) := ζ(H)− key(r(H)) + φP (c).
17: end if
18: if V(H) = ∅ and/or φF (c) ≤ key(r(H)) then
19: Set ζ(H) := ζ(H)− µP (c) + µF (c).
20: end if
21: end if
22: end for
23: for all vertices c in Ci

v ∩ Zi
P do

24: if φP (c) > key(r(H)) then
25: Remove r(H) from H, and insert c with a key φP (c) to H.
26: Set ζ(H) := ζ(H)− key(r(H)) + φP (c).
27: end if
28: end for
29: Output ζ(H) (for µ=

P (v, i)), and set i := i+ 1.
30: end while
31: Halt.

In the similar way, we can compute µ=
P
(v) and µF (v) in O(nv log nv) time. This completes

the proof of the fact that Algorithm 1 can be implemented in O(n log n) time.

5.4. Finding an optimal solution

Here we consider how to find an optimal solution. For this, it suffices to compute ∂vM for
some maximum-size member M in M=

P (v). For computing this, we first compute an integer
ξ in {L, L + 1, . . . ,R} such that µ=

P (v) = µ=
P (v, ξ). If ξ = L, then we run Algorithm 7, and

output V(H)∪ZL−1
F . If ξ > L, then we run Algorithms 7 and 8. Then, we stop Algorithm 8

when the ξth iteration terminates, and output V(H) ∪ Zξ−1
F . We can treat M=

P
(v) and

MF (v) in the similar way. By using this algorithm from the root r, we can find an optimal
solution in O(n log n) time.

Acknowledgements. Naoyuki Kamiyama was supported by JST, PRESTO. The au-
thors would like to thank anonymous referees for helpful comments on an earlier version of
this paper.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

240 K. Nakamura & N. Kamiyama

References

[1] D. Gale and L.S. Shapley: College admissions and the stability of marriage. The
American Mathematical Monthly, 69-1 (1962), 9–15.

[2] D. Gale and M. Sotomayor: Some remarks on the stable matching problem. Discrete
Applied Mathematics, 11-3 (1985), 223–232.

[3] R.W. Irving: Stable marriage and indifference. Discrete Applied Mathematics, 48-3
(1994), 261–272.

[4] R.W. Irving, D.F. Manlove, and G. O’Malley: Stable marriage with ties and bounded
length preference lists. Journal of Discrete Algorithms, 7-2 (2009), 213–219.

[5] Z. Király: Linear time local approximation algorithm for maximum stable marriage.
Algorithms, 6-3 (2013), 471–484.

[6] J. Kleinberg and É. Tardos: Algorithm Design (Addison-Wesley, Boston, 2005).

[7] D.F. Manlove: Algorithmics of Matching Under Preferences (World Scientific, Singa-
pore, 2013).

[8] D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita: Hard variants of
stable marriage. Theoretical Computer Science, 276-1&2 (2002), 261–279.

[9] E. McDermid: A 3/2-approximation algorithm for general stable marriage. In S. Albers,
A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas, and W. Thomas (eds.): Proceed-
ings of the 36th International Colloquium on Automata, Languages and Programming
Automata, Languages and Programming, Part I, volume 5555 of Lecture Notes in Com-
puter Science (Springer-Verlag, Berlin, Heidelberg, 2009), 689–700.

[10] K. Paluch: Faster and simpler approximation of stable matchings. Algorithms, 7-2
(2014), 189–202.

[11] S. Tayu and S. Ueno: Stable matchings in trees. IPSJ SIG Technical Report, Vol.2013-
AL-145, No.10 (2013).

Naoyuki Kamiyama
Kyushu University
744 Motooka, Nishi-ku
Fukuoka 819-0395, Japan
E-mail: kamiyama@imi.kyushu-u.ac.jp

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

