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Abstract In cloud computing, a large-scale parallel-distributed processing service is provided in which a
huge task is split into a number of subtasks, which are processed independently on a cluster of machines
referred to as workers. Those workers that take longer to process their assigned subtasks result in the
processing delay of the task (the issue of stragglers). An efficient way to address this issue is for other
workers to execute the troubled subtasks for backup purposes (task replication). In this paper, we evaluate
the efficiency of task replication from a theoretical point of view. The mean value and standard deviation
of the task-processing time are derived approximately using extreme value theory, while the mean total pro-
cessing time is evaluated exactly, for cases in which the worker-processing time follows a hyper-exponential,
Weibull, or Pareto distribution. The numerical results reveal that the efficiency of task replication depends
significantly on the tail of the worker-processing time distribution. In addition, the optimal number of
replications which achieves the shortest task-processing time mainly depends on the coefficient of variation
of the worker-processing time. Furthermore, three replications are effective to guarantee a low variance of
the task-processing time, regardless of the tail.

Keywords: Mathematical modeling, parallel-distributed processing, task scheduling,
task replication, extreme value theory, performance analysis

1. Introduction

Recently, cloud computing has attracted considerable attention due to the emergence of
huge computing resources and its significant improvement in usage fee. In [3], cloud com-
puting is defined as the sum of the existing concepts, software as a service (SaaS) and
utility computing. More precisely, cloud computing is the combined concept of providing
a computer-processing service only as needed via the Internet (SaaS) and using server re-
sources in a data center only as needed (utility computing). A remarkable feature of cloud
computing is that data centers providing cloud computing services have a huge number of
computing resources, and this number is still increasing. For example, Google aims to have
several million machines in their data centers [7].

In addition, volunteer computing is becoming popular due to the spread of comput-
ing resources with an Internet connection. In volunteer computing, distributed computing
resources are donated by individuals as well as organizations, and, for some projects, the
number of hosts is in the hundreds of thousands [14]. Therefore, in both cloud and volunteer
computing, efficient use of an extremely large number of computing resources is a critical
issue.

With the increase in the capacity of hard-disks, computing tasks must handle a greater
volume of data, and an enormous amount of time is required if a task is carried out by an
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individual computing resource. In cloud and volunteer computing, an enormous amount of
data is handled by a huge number of computing resources in parallel-distributed processing
fashion [4, 6, 22]. This scheme is used for data mining, document processing, and machine
learning and is used by numerous companies and organizations for processing large-scale
data [21]. In the following, we refer to this processing mechanism as large-scale parallel-
distributed processing.

In large-scale parallel-distributed processing, a huge task is split into a number of sub-
tasks and those are processed independently in parallel on a cluster of machines referred
to as workers. The huge task completes when all the subtasks have finished. Therefore,
workers that take longer to process their assigned subtasks result in delay in the processing
of the task (the issue of stragglers) [6]. One of the reasons causing slow workers is frequent
machine failure because data centers consist of a huge number of commodity machines for
reducing hardware cost [4, 7]. Moreover, it is reported in [25] that virtualization technology
can cause resource competition, and as a result heterogeneity occurs in processing speed of
workers. In the following, we refer to the time to complete a task (resp. subtask) as the
task-processing (resp. subtask-processing) time.

In order to alleviate the issue of stragglers, there exist two scheduling schemes: load
balancing [8] and task replication [5]. In load balancing, the subtask size for a worker is
determined according to its processing speed. In other words, small subtasks are allocated
to slow workers, while large subtasks are performed by fast workers. This scheduling makes
the variance of the subtask-processing times significantly small, although the load-balancing
scheduler must know each worker’s subtask-processing time a priori.

In task-replication scheduling, on the other hand, backup executions of the remaining in-
progress subtask are conducted when the elapsed time of subtask processing is greater than
a pre-specified threshold. Then, the processing of the subtask ends when either the original
subtask or backup execution is completed. One advantage of this scheduling is that the
task-replication scheduler activates backup executions for a worker according to the elapsed
time of subtask processing, i.e., no a priori information about the subtask-processing time
is needed.

In this paper, we evaluate the effect of task-replication scheduling on two performance
measures: the task-processing time and the total amount of execution times of workers for
the processing of a task. The latter is referred to as the total processing time hereafter. Note
that the former indicates how the performance is improved by task replication, whereas the
latter characterizes the cost resulting from task replication. We consider the task-replication
scheduling policy in which a task entering the service facility is split into subtasks of equal
size, and the task service ends when all of the subtasks are completed. Note that the
assumption of equally sized subtasks becomes reasonable when a huge amount of input data
is split into data pieces of approximately equal size [6]. Moreover, each subtask is processed
not only by its own worker but also by alternative distinct workers, and the subtask service
ends when one of the relevant workers’ processes is completed. In the following, we assume
that the times to complete subtask by its own worker and alternative distinct workers are
independent and identically distributed (i.i.d.), and refer to these times as the worker-
processing times. Note here that it is reported in [4–6] that most large distributed systems
are heterogeneous and dynamic due to many reasons. For example, a machine with an
ill-conditioned disk may suffer from a long disk-read time. The machine-/cluster-level task
scheduler may schedule the other tasks before subtasks. Software failure also causes a long
worker-processing time. It is also reported that hardware faults and the complexity of
software process make the system behavior unpredictable even when the system is operated
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in a centralized manner. Based on this unpredictability, we assumed that the worker-
processing time is i.i.d. even when the duplicated subtasks are the same as the original
one. Note also that the subtask-processing time is given by the minimum of some worker-
processing times.

For this system, we propose an approach based on extreme value theory for approxi-
mately deriving the mean value and standard deviation of the task-processing time. More-
over, we exactly derive the mean total processing time. It is reported in [14, 15] that the
time between worker failures has a heavy-tailed property. Therefore, in order to investigate
how the tail of the distribution affects performance measures, we consider cases in which
the worker-processing time follows a hyper-exponential, Weibull, or Pareto distribution.
These distributions are also used for modeling the worker-processing time in the literature
(see, for example, [1, 10, 24]). In numerical examples, we investigate the accuracy of the
approximations derived with extreme value theory in comparison with exact analyses. We
then determine the optimal number of alternative workers which achieves the shortest task-
processing time, and consider the effect of task replication on the performance measures.
Finally, we discuss the effect of the starting time of task replication on performance mea-
sures through Monte Carlo simulation because we assumed in the analytical model that
alternative subtasks are simultaneously executed from the beginning of the processing of
the task in order to simplify the analysis.

The remainder of this paper is organized as follows. We describe previous studies on
task replication and point out the differences between these studies and the present study
in Section 2. The analytical model for large-scale parallel-distributed processing with task
replication is described in Section 3. For this model, we approximately derive the mean
value and standard deviation of the task-processing time using extreme value theory and
exactly derive the mean total processing time in Section 4. Section 5 presents numerical
examples of the derived performance measures. Finally, we conclude the paper in Section 6.

2. Related Work

A number of studies have investigated the performance of task replication. From the ap-
proach based on real-data measurements, Dean et al. [6] implement a task-replication scheme
referred to as backup-task scheduling for MapReduce framework and report that backup
mechanisms can significantly reduce the processing time of a task, increasing computational
resource consumption by no more than a few percent. Zaharia et al. [25] focus on a specu-
lative task assignment mechanism, which is a kind of task-replication scheme, implemented
on Hadoop [23]. They propose a new task-selection algorithm to improve the accuracy of
speculation and confirm through measurement-based evaluation that their algorithm works
significantly better than Hadoop’s algorithm in heterogeneous environments.

On the other hand, from the viewpoint of simulation experiments, Anglano et al. [2]
investigate a scenario in which several users submit multiple sets of tasks to a scheduler
simultaneously and propose several set selection strategies while using task replication to
process individual sets of tasks. They compare these strategies through discrete-event sim-
ulation and confirm the effectiveness of task replication. Cirne et al. [5] investigate the
effectiveness of several job-replication schedulers by simulation in comparison with tradi-
tional information-based schedulers. In [8], Dobber et al. investigate the effectiveness of
dynamic load balancing (DLB) and job replication (JR) by trace-driven simulation experi-
ments and propose a hybrid scheduling scheme of DLB and JR. Nóbrega et al. [17] propose
replication schedulers that use any available information about applications and resources
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and evaluate these schedulers through simulations. They demonstrate that the use of par-
tial information (e.g., the size of the tasks and the speed of the workers) on replication
schedulers can greatly decrease resource wastage without affecting the processing time of a
task.

As mentioned above, many researches investigate the performance of task replication
through simulations or measurements. However, these approaches require excessive time or
computing resources for evaluating extremely large-scale systems. Moreover, it is difficult
to see how the system characteristics, such as the number of workers and the heterogeneity
of the worker-processing time, affect performance measures.

To overcome these challenges, we have investigated the performance of task replication
from a theoretical point of view. In [12, 13], we model the task-scheduling server of parallel-
distributed processing as a single-server queue and explicitly derive task-processing time
distributions when the worker-processing time obeys a Weibull or Pareto distribution. We
then compare the mean response time under task-replication scheduling with the mean
response time obtained under normal scheduling and demonstrate that the effect of task-
replication depends significantly on the workers’ processing time distribution.

Hashimoto et al. [11] consider the effect of backup tasks on performance of systems with
parallel-distributed processing, in which one replicated subtask is activated if an original
subtask is not completed by a pre-specified time referred to as the deadline time. They derive
approximate formulas for the task-processing time and total processing time by extreme
value theory, investigating how the deadline time affects the performance measures for three
cases of the worker-processing time distribution: hyper-exponential, Weibull and Pareto
distributions. In [11], the number of replications is one, and a primary concern is the effect
of deadline time on system performance. In the present paper, on the other hand, we focus
on how the number of replications affects performance measures.

3. Analytical Model

We make the following assumptions to construct a stochastic model of the large-scale
parallel-distributed processing system.

(a) When a task is accepted by the server, the task is divided into N subtasks, each of
which is duplicated R− 1 times.

(b) The system has a server consisting of M (:= NR) workers.
(c) The M subtasks (N original subtasks and their N(R− 1) copies) are assigned to the M

workers on a one-to-one basis (see Figure 1).
(d) The processing of a group consisting of one original subtask and its R − 1 copies is

terminated when one of the R subtasks is processed completely∗. We define the subtask-
processing time as the processing time of such a group.

(e) The task-processing time is equal to the maximum of its N subtask-processing times.

As for the time to make replications, the number of replications R is small in general.
For example, the default setting of R in Hadoop is three [23]. In such a case, the time to
make replications is negligible.

In what follows, we describe the assumption on the subtask-processing time.

∗There exists some delay for terminating all unfinished subtasks. This delay can be included as a part of
the subtask-processing time, but is not taken into consideration in our model due to analytical tractability.
Note that this delay can be negligible if the subtask-processing time is large compared to the overhead of
this termination process.
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Figure 1: Examples of assigning subtasks

Let U
(i)
0 (i = 1, 2, . . . , N) denote the worker-processing time of the i-th original subtask

generated from a task. Moreover, for each i = 1, 2, . . . , N , let U
(i)
j (j = 1, 2, . . . , R − 1)

denote the worker-processing time of the j-th copy of the i-th original subtask. We now
make the following assumption.

(f) The U
(i)
j ’s (i = 1, 2, . . . , N , j = 0, 1, . . . , R − 1) are i.i.d. random variables which follow

a common distribution function HN with positive mean b/N and positive left endpoint
a/N := inf{t ∈ R;HN(t) > 0}, where b > a ≥ 0. Note here that the sizes of a task and
its subtasks are deterministic whereas the processing times of them vary stochastically
due to the unpredictability of workers’ ability. The distribution HN is called a worker-
processing time distribution.

We define Si (i = 1, 2, . . . , N) as the i-th subtask-processing time. It follows from
assumption (d) that

Si = min
0≤j≤R−1

U
(i)
j , i = 1, 2, . . . , N.

Clearly, the Si’s are i.i.d. random variables and

FN,R(t) := P(Si ≤ t) = 1− {1−HN(t)}R, t ∈ R, (1)

for all i = 1, 2, . . . , N . We also define TN,R as the task-processing time. From assumption
(e), we have

TN,R = max
1≤i≤N

Si,

and thus

GN,R(t) := P(TN,R ≤ t) = {FN,R(t)}N , t ∈ R.

4. Analysis of Performance Measures

We evaluate the stochastic model described in the previous section in terms of three perfor-
mance measures.
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To this end, we introduce the performance measures. Let AN,R and DN,R denote the
mean value and standard deviation of the task-processing time, respectively, i.e.,

AN,R = E[TN,R], DN,R =
√
Var[TN,R].

Thus we have

AN,R = g
(1)
N,R, DN,R =

√
g
(2)
N,R −

(
g
(1)
N,R

)2

, (2)

where g
(k)
N,R =

∫∞
0

tkdGN,R(t) (k = 1, 2). Furthermore, let PN,R denote the mean total
processing time. Since the total processing time is defined as the total amount of execution
times of M workers for the processing of a task, and the Si’s are i.i.d., we have

PN,R = E

[
N∑
i=1

RSi

]
= NRf

(1)
N,R, (3)

where f
(1)
N,R =

∫∞
0

tdFN,R(t).
In what follows, we discuss three types of worker-processing time distributions with mean

b/N and left endpoint a/N (b > a ≥ 0)†:

(a) Hyper-exponential distribution‡

HN(t) =


1− σ exp {−σ(t− a/N)/νN}

− σ̃ exp {−σ̃(t− a/N)/νN} , t ≥ a/N,
0, t < a/N,

(4)

with νN = (b− a)/(2N) and σ̃ = 1− σ (0 < σ ≤ 1/2);
(b) Weibull distribution

HN(t) =

{
1− exp {−{(t− a/N)/ηN}α} , t ≥ a/N,
0, t < a/N,

(5)

with ηN = (b− a)/{Γ (1 + 1/α)N} (α > 0); and
(c) Pareto distribution

HN(t) =

{
1− {µN/(t+ µN − a/N)}β , t ≥ a/N,
0, t < a/N,

(6)

with µN = (b− a)(β − 1)/N (β > 2).

The coefficients of variation (i.e., the ratio of the standard deviation to the mean) of these
distributions are as follows:

(a) Hyper-exponential distribution

b− a

b

√
1

2σ(1− σ)
− 1; (7)

†The aim of introducing left endpoints to the three distributions is to compute performance measures
under the same mean and same coefficient of variation for the worker-processing time. This enables us to
investigate how the heavy-tailedness of distributions affects the performance measures.
‡Strictly speaking, this is a two-phase balanced hyper-exponential distribution.
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(b) Weibull distribution

b− a

b

√
Γ (1 + 2/α)

{Γ (1 + 1/α)}2
− 1; (8)

(c) Pareto distribution

b− a

b

√
β

β − 2
. (9)

4.1. Exact expressions for the first and second moments of the task-processing
time

A straightforward calculation yields the following expressions for g
(1)
N,R and g

(2)
N,R:

(a) Hyper-exponential distribution

g
(1)
N,R =

1

N

N∑
k=1

(−1)k−1

(
N

k

) Rk∑
l=0

(
Rk

l

)
σl(1− σ)Rk−l

×
[

b− a

2{σl + (1− σ)(Rk − l)}
+ a

]
,

g
(2)
N,R =

1

N2

N∑
k=1

(−1)k−1

(
N

k

) Rk∑
l=0

(
Rk

l

)
σl(1− σ)Rk−l

×
[

(b− a)2

2{σl + (1− σ)(Rk − l)}2
+

a(b− a)

σl + (1− σ)(Rk − l)
+ a2

]
;

(b) Weibull distribution

g
(1)
N,R =

1

N

N∑
k=1

(−1)k−1

(
N

k

)(
b− a

R1/αk1/α
+ a

)
,

g
(2)
N,R =

1

N2

N∑
k=1

(−1)k−1

(
N

k

)[
Γ (1 + 2/α)

{Γ (1 + 1/α)}2
(b− a)2

R2/αk2/α
+

2a(b− a)

R1/αk1/α
+ a2

]
;

(c) Pareto distribution

g
(1)
N,R =

1

N

N∑
k=1

(−1)k−1

(
N

k

){
(b− a)(β − 1)

βRk − 1
+ a

}
,

g
(2)
N,R =

1

N2

N∑
k=1

(−1)k−1

(
N

k

){
2(b− a)2(β − 1)2

(βRk − 2)(βRk − 1)
+

2a(b− a)(β − 1)

βRk − 1
+ a2

}
.

Combining (2) with the above equations, we can obtain exact expressions for AN,R and
DN,R. However, these expressions are not suitable for computing with high accuracy be-
cause a number of subtractions in the above equations can cause loss of significant digits.
Moreover, it is difficult to make further insights for these expressions against the parameters
such as N and R. Therefore, using extreme value theory, we derive asymptotic formulas for
g
(k)
N,R (k = 1, 2), which can serve as approximations when N is large. The accuracy of the
approximations is numerically investigated in Subsection 5.1.
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4.2. Asymptotic formulas for the first and second moments of the task-process-
ing time

Using extreme value theory, we derive asymptotic formulas for g
(1)
N,R and g

(2)
N,R for three

cases. Note that the preliminary results of extreme value theory used in this subsection are
summarized in appendix.

4.2.1. Case of a hyper-exponential worker-processing time

Let FR(t) = F1,R(t). From (1), we then have

FR(t) = 1− {1−H1(t)}R, t ∈ R. (10)

Substituting (4) into (10), we have

FR(t) =

{
1− [σ exp {−σ(t− a)/ν1} − σ̃ exp {−σ̃(t− a)/ν1}]R , t ≥ a,
0, t < a.

Note that FR is independent of N and

FR(t) = FN,R

(
t

N

)
= P(NSi ≤ t), t ∈ R, (11)

which implies that {NSi; i = 1, 2, . . . , N} is a sequence of i.i.d. random variables with
distribution function FR. We can confirm that FR can be expressed as (20), where

x0 = a, c(x) = 1, g(x) = 1,

a(x) =

[
σ exp

{
−σ(x− a)

ν1

}
+ σ̃ exp

{
− σ̃(x− a)

ν1

}]
× R−1

[
σ2

ν1
exp

{
−σ(x− a)

ν1

}
+

σ̃2

ν1
exp

{
− σ̃(x− a)

ν1

}]−1

.

Thus it follows from Proposition A.1 that FR ∈ MDA(Λ) and cn = a(dn), where dn
is given as the solution of the equation FR(dn) = 1 − 1/n, which can be solved using a
numerical method (e.g., Newton’s method).

Recall here that NTN,R = max1≤i≤N NSi and that the i.i.d. random variables NSi’s
(i = 1, 2, . . . , N) follow distribution function FR (see (11)). Therefore proposition A.2
implies that

lim
N→∞

E

[{
NTN,R − dN

cN

}k
]
= (−1)kΓ (k)(1), k = 1, 2, (12)

where Γ (k)(1) (k = 1, 2) is given by (see Subsection 5.4 (ii) in [19])

Γ (1)(1) = lim
x→1

d

dx
Γ (x) = −γ (γ : Euler constant), Γ (2)(1) = lim

x→1

d2

dx2
Γ (x) = γ2 +

π2

6
.

As a result, from (12) and g
(k)
N,R = E

[
T k
N,R

]
(k = 1, 2), we have

g
(1)
N,R

N∼ γ
cN
N

+
dN
N

, g
(2)
N,R

N∼
(
γ2 +

π2

6

)
c2N
N2

+ 2γ
cNdN
N2

+
d2N
N2

,

where f(x)
x∼ g(x) represents limx→∞ f(x)/g(x) = 1. Substituting these asymptotic formu-

las into (2), we obtain approximate formulas for AN,R and DN,R.
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4.2.2. Case of a Weibull worker-processing time

Substituting (5) into (10), we have

FR(t) =

{
1− exp {−R {(t− a)/η1}α} , t ≥ a,
0, t < a.

The distribution function FR has the representation (20) with

x0 = a, c(x) = 1, g(x) = 1, a(x) =
ηα1

αR(x− a)α−1
.

Therefore, according to Proposition A.1, FR ∈ MDA(Λ) and the normalizing constants cn
and dn are given by

cn =
η1
αR

(
log n

R

)1/α−1

, dn = η1

(
log n

R

)1/α

+ a.

As a result, Proposition A.2 yields

g
(1)
N,R

N∼ −Γ (1)(1)
cN
N

+
dN
N

=
γ(b− a)

Γ (1 + 1/α)αNR

(
logN

R

)1/α−1

+
(b− a)

Γ (1 + 1/α)N

(
logN

R

)1/α

+
a

N
, (13)

g
(2)
N,R

N∼ Γ (2)(1)
c2N
N2

− 2Γ (1)(1)
cNdN
N2

+
d2N
N2

=

(
γ2 +

π2

6

){
(b− a)

Γ (1 + 1/α)αN

(
logN

R

)1/α−1
}2

+
2γ(b− a)

Γ (1 + 1/α)αNR

(
logN

R

)1/α−1
{

(b− a)

Γ (1 + 1/α)N

(
logN

R

)1/α

+
a

N

}

+

{
(b− a)

Γ (1 + 1/α)N

(
logN

R

)1/α

+
a

N

}2

.

4.2.3. Case of a Pareto worker-processing time

From (6) and (10), we have

FR(t) =

{
1− {µ1/(t+ µ1 − a)}βR , t ≥ a,
0, t < a.

Note that 1 − FR is regularly varying with index −βR, and thus (22) holds. Therefore,
Proposition A.3 implies that FR ∈ MDA(ΦβR), and the normalizing constant cn is given by

cn = µ1

{
n1/(βR) − 1

}
+ a.

From Proposition A.4, we have

lim
N→∞

E

[{
NTN,R

cN

}k
]
= Γ

(
1− k

βR

)
, k = 1, 2.

We also obtain the following asymptotic formulas:

g
(1)
N,R

N∼ Γ

(
1− 1

βR

)
cN
N

= Γ

(
1− 1

βR

)[
(b− a)(β − 1)

N

{
N1/(βR) − 1

}
+

a

N

]
, (14)

g
(2)
N,R

N∼ Γ

(
1− 2

βR

)
c2N
N2

= Γ

(
1− 2

βR

)[
(b− a)(β − 1)

N

{
N1/(βR) − 1

}
+

a

N

]2
.
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Table 1: Parameter set

Parameter Value
b [sec] 3.16× 1010 (about 1,000 years)
a [sec] 2.68× 1010 (85% of b)
M 3× 105, 3× 106, 3× 107

R 1, 2, 3, 4

4.3. Exact expressions for the mean total processing time

A straightforward calculation yields the following expressions for f
(1)
N,R:

(a) Hyper-exponential distribution

f
(1)
N,R =

1

N

R∑
l=0

(
R

l

)
σl(1− σ)R−l

[
b− a

2{σl + (1− σ)(R− l)}
+ a

]
;

(b) Weibull distribution

f
(1)
N,R =

1

N

(
b− a

R1/α
+ a

)
;

(c) Pareto distribution

f
(1)
N,R =

1

N

{
(b− a)(β − 1)

βR− 1
+ a

}
.

Substituting these formulas into (3), we obtain exact expressions for PN,R, as follows:

(a) Hyper-exponential distribution

PN,R = R
R∑
l=0

(
R

l

)
σl(1− σ)R−l

[
b− a

2{σl + (1− σ)(R− l)}
+ a

]
;

(b) Weibull distribution

PN,R = R

(
b− a

R1/α
+ a

)
;

(c) Pareto distribution

PN,R = R

{
(b− a)(β − 1)

βR− 1
+ a

}
.

5. Numerical Examples

In this section, we present some numerical examples. We first verify the proposed approxi-
mations of the mean value and standard deviation of the task-processing time by comparing
the exact expressions and the approximate formulas derived by applying extreme value the-
ory. We then calculate the optimal number of replications required to minimize the mean
task-processing time using the derived approximate formulas. We compare the performance
measures between the case of the optimal number of replications and that of no-replication
and discuss the efficiency of task replication. Moreover, we consider the effect of task repli-
cation on reducing the standard deviation of the task-processing time. Finally, we discuss
the effect of the starting time of task replication on performance measures through Monte
Carlo simulation.
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Table 2: Values of σ, α, and β

Coefficient of variation 0.40 0.30 0.20
σ 0.0676 0.115 0.241
α 0.447 0.548 0.769
β 2.34 2.69 4.73
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(b) Case of a small coefficient of variation

Figure 2: Tail of the worker-processing time distribution

Tables 1 and 2 show the parameter values used in the numerical experiments. We set
these parameters according to the measurements and the settings of real systems [7, 18, 23].
The values of σ, α, and β are determined such that the coefficient of variation of the worker-
processing time distribution takes the values shown in Table 2. Note that the coefficient of
variation for a hyper-exponential (resp. Weibull and Pareto) distribution decreases with the
increase in σ (resp. α and β). Note also that the coefficient of variation for each distribution
depends on b − a, which is the difference between the mean and the left endpoint of the
distribution (see (7) to (9)). When σ = 0.500 in (4) (resp. α = 1.00 in (5)), the hyper-
exponential (resp. Weibull) distribution is reduced to a shifted exponential distribution.
Under the parameter setting of Table 1, the coefficient of variation of this shifted exponential
distribution is equal to 0.15, which is smaller than one, the value of the coefficient of variation
for the exponential distribution. Moreover, in the case of the same coefficient of variation,
the tail of the hyper-exponential (resp. Pareto) distribution is the lightest (resp. heaviest)
among the three distributions (see Figures 2a and 2b).

5.1. Verification of the proposed approximations

In this subsection, we investigate the approximation accuracy of the mean value and stan-
dard deviation of the task-processing time, while calculating the relative error between the
approximations in Subsection 4.2 and exact analysis solutions in Subsection 4.1.

Figures 3a, 3b, and 3c show the relative error of the mean task-processing time for
R = 1, 2, and 3 with respect to the number of original subtasks in a log-log plot. Here, the
worker-processing time distribution is set to a hyper-exponential distribution with σ = 0.115
(resp. a Weibull distribution with α = 0.548 and a Pareto distribution with β = 2.69) in
Figure 3a (resp. Figures 3b and 3c). Figures 3a through 3c indicate that the relative error
tends to decrease with the increase in N , the number of original subtasks. Note here that
extreme value theory does not guarantee that the error between the approximations and
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(a) Hyper-exponential distribution with σ = 0.115
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(b) Weibull distribution with α = 0.548
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(c) Pareto distribution with β = 2.69

Figure 3: Relative error of the mean task-processing time

exact analysis solutions decreases monotonically when N increases. Therefore, as for the
case with Figure 3a, the relative error can increase when the number of original subtasks
is small. However, in particular, in Figure 3a (resp. Figures 3b and 3c), the relative error
is approximately 1.1% (resp. 1.3% and 4.0%) and is sufficiently small when N is 104. This
tendency is also observed for other parameter values of the mean value and standard devi-
ation of the task-processing time. These results suggest that approximation formulas from
extreme value theory are not accurate but have the relative error smaller than 0.1 when the
number of original subtasks is greater than several tens of thousands.

5.2. Optimal number of replications

In this subsection, we investigate the optimal number of replications which achieves the
shortest task-processing time.

Figure 4a (resp. Figures 4b and 4c) shows the optimal number of R for the mean task-
processing time when the worker-processing time distribution follows a hyper-exponential
(resp. Weibull and Pareto) distribution. The optimal number is calculated by applying the
golden section search to the derived approximate formulas. The horizontal axis represents
the coefficient of variation (i.e., σ, α, or β are varied). In these figures, the optimal number
of replications increases with the increase in the coefficient of variation. At each value of
the coefficient of variation, the optimal number of replications for M = 3× 107 achieves the
largest value. However, the difference between optimal values of M = 3 × 105 and 3 × 107
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(c) Pareto distribution

Figure 4: Optimal number of replications for the mean task-processing time with respect to
the coefficient of variation

is small. There is no significant difference in the optimal number of replications among
the three worker-processing time distributions. This implies that the optimal number of
replications depends significantly on the variance of the worker-processing time distribution,
rather than the tail of distribution.

5.3. Efficiency of task replication

In this subsection, we discuss the efficiency of task replication by comparing the performance
measures between the case of the optimal number of replications and that of no-replication.

Let hrN,R (resp. wrN,R and prN,R) denote the ratio of the mean task-processing time in
the case of R ≥ 2 to that in the case of no-replication (which corresponds to R = 1). Note
here that the pre-subscript “h” (resp. “w” and “p”) shows that the worker-processing time
follows a hyper-exponential (resp. Weibull and Pareto) distribution. By definition,

hrN,R =
hg

(1)
N,R

hg
(1)
N,1

, wrN,R =
wg

(1)
N,R

wg
(1)
N,1

, prN,R =
pg

(1)
N,R

pg
(1)
N,1

, (15)

where hg
(1)
N,R, wg

(1)
N,R and pg

(1)
N,R denote the mean task-processing times in the cases of hyper-

exponential, Weibull and Pareto distributions, respectively. Moreover, we define R∗ as the
optimal number of replications calculated in Subsection 5.2.
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Figure 5: Ratio of the mean task-processing time in the case of the optimal number of
replications to that in the case of no-replication with respect to the coefficient of variation

Figure 5a shows that hrN,R∗ gradually decreases with the increase in the coefficient of
variation. On the other hand, Figures 5b and 5c show that wrN,R∗ and prN,R∗ decrease more
quickly. Moreover, the value of hrN,R∗ for M = 3 × 105 is almost the same as the one for
3× 107 (see Figure 5a), whereas the difference between the values of prN,R∗ for M = 3× 105

and M = 3 × 107 is comparatively large (see Figure 5c). These facts imply that task
replication is highly effective in reducing the task-processing time when the variation of the
worker-processing time is large and such effect depends significantly on the tail asymptotics
of the worker-processing time distribution.

To verify the above observation from a theoretical point of view, we discuss the difference
between wrN,R and prN,R by using the asymptotic formulas (13) and (14). Removing the
non-dominant terms from these formulas, we have

wg
(1)
N,R

N∼ (b− a)

Γ (1 + 1/α)N

(
logN

R

)1/α

, (16)

pg
(1)
N,R

N∼ Γ

(
1− 1

βR

)
(b− a)(β − 1)N1/(βR)−1. (17)
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Substituting (16) and (17) into (15), we readily obtain

lim
N→∞

wrN,R =

(
1

R

)1/α

, lim
N→∞

prN,R = 0, R = 2, 3, . . . ,

which show that
lim

N→∞

prN,R

wrN,R

= 0. (18)

Equation (18) implies that, as the number of original subtasks is larger, task replication is
much more effective in the Pareto worker-processing time case, compared to the Weibull
worker-processing time case. This result matches with the observation of Figures 5b and
5c.

Figure 6a (resp. Figures 6b and 6c) shows the ratio of the mean total processing time
in the case of the optimal R to that in the case of R = 1 when the worker-processing
time distribution follows a hyper-exponential (resp. Weibull and Pareto) distribution. The
horizontal axis represents the coefficient of variation. These figures show that the ratios
of the mean total processing time increase gradually with the increase in the coefficient
of variation. Moreover, the ratios are approximately the same for the three values of the
number of workers, which implies that the total processing time depends significantly on
the variance of the worker-processing time distribution.

Finally, we discuss the effect of task replication on reducing the standard deviation
of the task-processing time. Table 3 shows the standard deviation in the cases of hyper-
exponential, Weibull, and Pareto distributions for M = 3× 107.

In Table 3, we observe that the standard deviation of the task-processing time increases
with the increase in the coefficient of variation and is insensitive to the number of repli-
cations for the case of a hyper-exponential distribution. On the other hand, the standard
deviation decreases with the number of replications for the cases of Weibull and Pareto
distributions. In particular, the case of a Pareto distribution shows a significant decrease
in the standard deviation. Note that the standard deviations for the cases of Weibull and
Pareto distributions decrease gradually when the number of replications is greater than or
equal to three. This implies that task replication is effective for decreasing the variance of
the task-processing time. However, a large number of replications is less effective for reduc-
ing the variance. Based on numerical experiments, we confirmed that three replications are
effective to reduce the variance of the task-processing time, even when the worker-processing
time follows a heavy-tailed distribution.

These results indicate that task replication becomes more efficient when the coefficient
of variation of the worker-processing time distribution increases. However, this efficiency
is very different when the tail of the distribution is changed, and the difference of the
mean task-processing time among distributions increases with the increase in the number
of workers and the coefficient of variation. Therefore, we should consider the tail of the
distribution as well as the first- and second-order statistics of the worker-processing time
when we consider the efficiency of task replication for large-scale parallel-distributed pro-
cessing. In addition, the results also show that three replications are effective to guarantee a
low variance of the task-processing time regardless of the tail of the worker-processing time
distribution.

5.4. Effect of the starting time of task replication

In this subsection, we discuss the effect of the starting time of task replication through
Monte Carlo simulation. In the proposed model, we assumed for analytical simplicity that
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(c) Pareto distribution

Figure 6: Ratio of the mean total processing time in the case of the optimal number of
replications to that in the case of no-replication with respect to the coefficient of variation

alternative subtasks are simultaneously executed when the processing of a task starts. In
some implementations of task replication [16], on the other hand, backup executions are
activated when the elapsed time of subtask processing is greater than a pre-specified thresh-
old. In order to investigate the usefulness of our analytical model, we conduct Monte Carlo
simulation experiments. In the simulation setting, backup executions of a subtask start
when the elapsed time of subtask processing exceeds ξb/M (ξ ≥ 0). Note that the case of
ξ = 0 corresponds to the setting of the analytical model. We calculated the 95% confidence
interval of the mean task-processing time and the mean total processing time.

Figure 7 shows the mean task-processing time in the case of a Pareto distribution (β =
2.69, M = 3×105). The horizontal axis represents ξ. In Figure 7, the mean task-processing
time increases more quickly according to ξ in the case of the larger number of replications.
For each R, the analytical result is slightly greater than the simulation result when ξ is
small. This discrepancy results from the approximation by extreme value theory. When ξ
increases, the simulation result grows linearly, while the analytical remains constant.

Figure 8 shows the mean total processing time in the case of a Pareto distribution
(β = 2.69, M = 3× 105). The horizontal axis indicates ξ. We observe in Figure 8 that the
simulation result of the mean total processing time decreases with the increase in ξ, while
the analytical result is the same for any ξ.
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Table 3: Standard deviation of the task-processing time

The number of replications
Distribution Coefficient of variation 1 2 3 4

0.20 4.26× 102 4.26× 102 4.25× 102 4.14× 102

hyper-exponential 0.30 8.92× 102 8.92× 102 8.92× 102 8.92× 102

0.40 1.52× 103 1.52× 103 1.52× 103 1.52× 103

0.20 5.38× 102 4.31× 102 3.79× 102 3.46× 102

Weibull 0.30 2.29× 103 1.25× 103 8.75× 102 6.80× 102

0.40 6.17× 103 2.49× 103 1.46× 103 1.00× 103

0.20 9.15× 103 1.19× 103 6.47× 102 4.89× 102

Pareto 0.30 1.99× 105 4.25× 103 1.51× 103 9.87× 102

0.40 6.75× 105 6.46× 103 1.94× 103 1.19× 103
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Figure 7: Mean task-processing time with simulation in the case of a Pareto distribution
(β = 2.69, M = 3× 105)

In Figures 7 and 8, the discrepancy between analytical and simulation results is small
when ξ is in [0, 0.1]. When ξ is greater than 0.1, however, we observe a large discrepancy
between them. This indicates that the analytical model is not applicable when the starting
time of task replication is not small. We need further study on formulation and analysis for
such a kind of task replication.

6. Conclusion

In this paper, we evaluated the efficiency of task-replication scheduling in large-scale parallel-
distributed processing from a theoretical point of view. To this end, the mean value and
standard deviation of the task-processing time were derived approximately with extreme
value theory, whereas the mean total processing time was evaluated exactly, for cases in
which the worker-processing time obeys a hyper-exponential, Weibull, or Pareto distribu-
tion. Through numerical analysis, we verified the proposed approximations by comparing
the exact expressions and the approximate formulas derived by applying extreme value the-
ory. We then calculated the optimal number of replications which achieves the shortest
task-processing time using the derived approximate formulas. We compared performance
measures between the case of the optimal number of replications and that of no-replication.
Finally, we considered the effect of task replication on reducing the standard deviation of
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Figure 8: Mean total processing time with simulation in the case of a Pareto distribution
(β = 2.69, M = 3× 105)

the task-processing time. We can claim that the efficiency of task-replication scheduling
is improved significantly when the coefficient of variation of the worker-processing time in-
creases. However, this efficiency depends significantly on the tail of the worker-processing
time distribution even when the means and variances of the distributions are the same.
In addition, we can also claim that the optimal number of replications which achieves the
shortest task-processing time mainly depends on the coefficient of variation of the worker-
processing time. Furthermore, three replications are effective to guarantee a low variance of
the task-processing time, regardless of the tail of the worker-processing time distribution.

The numerical examples also showed that our analytical model is not useful for evaluating
the backup-task scheduling for which backup executions are activated when the elapsed time
of subtask processing is greater than a pre-specified threshold. This type of backup-task
scheduling is implemented in real system such as Hadoop, and we need further development
of our analytical model to treat this case. This is our future work.
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emergent behavior of task replication in large distributed systems. Parallel Computing,
33 (2007), 213–234.

[6] J. Dean and S. Ghemawat: MapReduce: simplified data processing on large clus-

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



192 T. Hirai, H. Masuyama, S. Kasahara & Y. Takahashi

ters. Communications of the ACM, 51 (2008), 107–113.

[7] J. Dean: Designs, lessons and advice from building large distributed systems. Keynote
Presentation of the 3rd ACM SIGOPS International Workshop on Large Scale Dis-
tributed Systems and Middleware (LADIS 2009), (2009).

[8] M. Dobber, R.V.D. Mei, and G. Koole: Dynamic load balancing and job replication
in a global-scale grid environment: a comparison. IEEE Transactions on Parallel and
Distributed Systems, 20 (2009), 207–218.
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A. Preliminary Analysis Results

This section summarizes the preliminary results on basic extreme value theory, which are
used in Section 4.

Let {X,Xk; k = 1, 2, . . . , n} denote a sequence of i.i.d. random variables with distribu-
tion function F , which is non-degenerative, i.e., F (xF ) = 1, where xF = sup{x ∈ R :=
(−∞,∞);F (x) < 1}.

Let Xn = max1≤k≤n Xk for n = 1, 2, . . . . It follows from the fundamental Fisher–
Tippett theorem (see, e.g., Theorem 3.2.3 in [9]) that if there exist some cn > 0 and
dn ∈ R (n = 1, 2, . . . ) such that the distribution of (Xn − dn)/cn weakly converges to a
non-degenerate distribution Θ, i.e.,

lim
n→∞

P

(
Xn − dn

cn
≤ x

)
= Θ(x), (19)

for any x ∈ R such that Θ is continuous, then Θ must be one of the following three standard
extreme value distributions:

Fréchet : Φα(x) =

{
0, x ≤ 0,
exp{−x−α}, x > 0,

α > 0,

Weibull : Ψα(x) =

{
exp{−(−x)α}, x ≤ 0,
1, x > 0,

α > 0,

Gumbel : Λ(x) = exp{− exp{−x}}, x ∈ R.

For simplicity, according to [9], we introduce the following notation.

Definition 1. The random variable X and its distribution F are said to be in the maximum
domain of attraction of the extreme value distribution Θ (denoted by X ∈ MDA(Θ) and
F ∈ MDA(Θ)) if there exist some cn > 0 and dn ∈ R (n = 1, 2, . . . ) such that (19) holds.

In Section 4, we use asymptotic results associated with the two classes MDA(Λ) and
MDA(Φα), which are described in Subsections A.1 and A.2.

A.1. Maximum domain of attraction of a Gumbel distribution

Proposition A.1 (Theorem 3.3.26 in [9]). F ∈ MDA(Λ) if and only if there exists some
x0 < xF such that F has the following representation:

1− F (x) = c(x) exp

{
−
∫ x

x0

g(t)

a(t)
dt

}
, x0 < x < xF , (20)
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where c and g are measurable functions such that limx↑xF
c(x) = c > 0 and limx↑xF

g(x) = 1;
and where a(·) > 0 is an absolutely continuous function with respect to the Lebesgue measure
and its density a′(·) satisfies limx↑xF

a′(x) = 0. In addition, we can choose the normalizing
constants cn and dn in (19) as follows:

cn = a(dn), dn = F−1

(
1− 1

n

)
, (21)

where F−1(x) = inf{y;F (y) ≥ x}.
Proposition A.2 (Proposition 2.1 (iii) in [20]). If F ∈ MDA(Λ) and∫ 0

−∞
|x|kdF (x) < ∞,

for some integer k > 0, then

lim
n→∞

E

[(
Xn − dn

cn

)k
]
= (−1)k lim

x→1

dk

dxk
Γ (x),

where Γ denotes the Gamma function and cn and dn are given by (21).

A.2. Maximum domain of attraction of a Fréchet distribution

Proposition A.3 (Theorem 3.3.7 in [9]). F ∈ MDA(Φα) if and only if the tail distribution
1− F is regularly varying with index −α, i.e.,

lim
x→∞

1− F (xt)

1− F (x)
= t−α, t > 0. (22)

The normalizing constants cn and dn can be chosen as

cn = F−1

(
1− 1

n

)
, dn = 0. (23)

Proposition A.4 (Proposition 2.1 (i) in [20]). If F ∈ MDA(Φα) and∫ 0

−∞
|x|kdF (x) < ∞,

for some integer 0 < k < α, then

lim
n→∞

E

[(
Xn

cn

)k
]
= Γ

(
1− k

α

)
,

where cn is given by (23).
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