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Abstract A new queueing model for customers requesting service positions at a counter is proposed. Each
arriving customer requests a service at a particular position, and multiple servers provide services for these
customers at their requested positions. The servers can attend different counter positions, but they may
not change their order. This model was devised to evaluate the performance of a movable compact shelving
system in a recently built university library, and it was used to plan that system.

In this paper, we analyze two simple cases, and then some variations of the model are discussed in
connection with different service disciplines. The simulation results show some basic properties of the
model. We present in some detail the application of our model to a movable compact shelving system.
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1. Introduction

We propose a new queueing model for customers requesting services at particular positions at
a counter. In the model, each arriving customer requests a particular position at the counter
(Figure 1). There are multiple servers at the counter, and at the start of each transaction,
one of the servers who is assigned to the requested service moves to the requested position.
We assume that the servers are not allowed to change their order at the counter (the position
order constraint). This model was devised to evaluate the performance of a movable compact
shelving system in a recently built university library, and it was used to plan the composition
of that system (see Section 5). The model will be also applied to a gantry crane system at
a wharf † and to some other storage and service systems.

In the model, we consider the following service station situation. The station has a
waiting area and a counter. In the waiting area, customers form a queue in the order
of arrival. At the counter, multiple servers provide services to customers at the positions
requested by the customers. The servers can move along the counter, but their order cannot
change. That is, suppose that there are c servers and that the ith server is at position xi(t)
at time t, where 0 < xi(t) < l, i = 1, 2, · · · , c, and l is the length of the counter. The servers
must satisfy the constraint 0 < x1(t) < x2(t) < · · · < xc(t) < l for any t. As mentioned
above, we will refer to this as “the position order constraint”. The times required for the
customers and servers to walk to new locations are disregarded in this model.

Consider the example depicted in Figure 1, in which l = 1. Server 1 is serving Customer 2
at position x1 = 0.1, and Server 3 is serving Customer 1 at x3 = 0.6. Server 2 is idle at
x2 = 0.4, but this server cannot serve Customer 3, who is waiting in the queue, because

∗Professor Emeritus
†The authors are grateful to Dr. Yutaka Takahashi, Professor, Kyoto University, for suggesting this appli-
cation.
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Figure 1: A queueing model with service-position requests

Customer 3 is requesting a service at position x = 0.8, and Server 2 is not allowed to pass
Server 3. Thus, Customer 3 must wait in the queue until Server 3 has finished serving
Customer 1.

We will refer to a model of this type‡ as a queueing model with service-position requests.
In order to specify a queueing model, it is necessary to clarify the input process for arriving
customers, the service-time distribution, the service-position distribution, the number of
servers, the service discipline, and other factors. We will use a variant of Kendall’s notation:
A/B,C/c(ordered)/D for a c-server model with service-position requests, where A denotes
the input process, B denotes the service-time distribution, and D denotes the capacity of
the queueing system or the service discipline. The new component C denotes the service-
position distribution. In some models, the service discipline can be complex and must be
stated in words instead of by a symbol.

We note that if C is a continuous distribution on the interval (0, l) with distribution
function F (x), the behavior of the model A/B,C/c(ordered)/D is substantially equivalent
to that of the model A/B,U/c(ordered)/D, where U represents the uniform distribution on
(0, 1). This is because the order constraint is a condition on the relative positions of the
servers, and there is a one-to-one correspondence between the service positions of the two
models: x ∈ (0, l) ↔ F (x) ∈ (0, 1). Hence, most of the important characteristic quantities
are the same in both models, and we may consider the model A/B,U/c(ordered)/D to be a
standard queueing model with service-position requests when the service-position distribu-
tion is continuous. On the other hand, when C is a discrete distribution, the characteristic
quantities may depend on the individual probabilities of the atoms of the distribution, and
it is not easy to find a standard model.

The purpose of this paper is to propose queueing models with service-position requests
and to investigate their basic properties through analyses and simulations. The remainder
of this paper is constructed as follows. We first analyze two simple cases, in Section 2, a
loss model M/M,U/2(ordered)/loss, and in Section 3, a saturated model ∗/M,U/2(ordered)
with a first-come first-served (FCFS) service rule. Proofs of theorems and corollaries are
presented in the appendices. In Section 4, we discuss variations of the model brought
by different service disciplines, and some simulation results are investigated to see typical
behaviors of the model. Section 5 shows how the model was used in the application to the

‡We may include the single server case with c = 1, though the position order constraint becomes meaningless.
A single server model is essentially same as the corresponding ordinary single server queue except that service
positions differ for every customer.
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movable shelving system. It is a typical application of this model, and it provides some clues
for future studies. Readers who are mainly interested in the application are recommended
to start reading from Section 5, and then to go back to Section 4.

2. Loss Model M/M,U/2(ordered)/loss

As one of the simplest queueing models with service-position requests, we first consider an
M/M-type loss model with two servers.

Model

We consider an M/M,U/2(ordered)/loss model. There are two servers at the counter.
Customers arrive at the service station via a Poisson process with rate λ. Each customer
requests a position at the counter, where they will be served by one of the servers. Service
times are subject to a common exponential distribution with mean 1/µ, and service positions
are subject to the uniform distribution on (0, l), where l is the length of the counter. We will
use l (rather than setting l = 1) in order to clarify equations and results. We assume that
service times and service positions are mutually independent, and they are also independent
from the input process.

We will call the two servers the left server and the right server. They must satisfy the
position order constraint stated in the previous section. Namely, the left server cannot move
to the right of the right server, and the right server cannot move to the left of the left server.

Service discipline
Services for customers are executed according to the following service discipline. To save

space, alternative cases are listed in brackets.

1. Upon arrival: Suppose that a customer arrives at the service station and requests service
position x ∈ (0, l).

(a) If both servers are busy, then this customer is lost (i.e., the customer is denied
service and leaves the station).

(b) If the left [right] server is idle and the right [left] server is serving another customer
at position y ∈ (0, l), then (i) if y > x [if y < x], the left [right] server moves to
position x and serves the new customer, or (ii) if y ≤ x [if y ≥ x], this customer is
lost.

(c) If both servers are idle and if x ≤ 1
2 l [if x > 1

2 l], then the left [right] server moves
to position x and serves the customer.

2. Upon completion:

(a) When the service of the left [right] server is completed, the server becomes idle and
moves to position 0 [to position l].

Remark 2.1. The service discipline described above is just one of many possible disciplines.
For example, another service discipline, which also seems natural, is derived by changing
rules 2. (a) and 1. (c) above as follows (see Section 4).

2.(a’) When a service is completed, the server becomes idle and remains where the previous
service was performed.

1. (c’) Upon the arrival of a customer requesting a service at position x, if both servers are
idle, the nearest server moves to position x and serves the customer.

The authors think that this change makes the analysis of the model more difficult in this
case.
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Balance equations

In order to analyze the model with a Markov process, we define the following states of
the system:

S0 = {there are no customers at the station} ,

S1(x) = {the left server is serving a customer at position x,

and the right server is idle} , x ∈ (0, l),

S2(y) = {the right server is serving a customer at position y,

and the left server is idle} , y ∈ (0, l), and

S3(x, y) = {the left server is serving a customer at position x,

and the right server is serving a customer at position y} , 0 < x < y < l.

Then, the stochastic behavior of the system can be represented by a continuous-time Markov
process {X(t)} on the state space

S = S0 ∪

( ⋃
x∈(0,l)

S1(x)

)
∪

( ⋃
y∈(0,l)

S2(y)

)
∪

( ⋃
0<x<y<l

S3(x, y)

)
. (2.1)

The infinitesimal generator of the transition function of X(t) is described in Appendix A.
We note that the transition function is time homogeneous, the transition rates are uniformly
bounded, and the sample path of the process is a step function with probability one [1], and
thus its basic properties can be easily generalized from those of Markov processes with a
finite number of states (e.g., see Theorem 9.10, p.244 [2]).

As seen in Appendix A, the infinitesimal generator is rather complicated, and it is not
easily analyzed. Instead, we shall approach the analysis through the balance equations. We
assume that the Markov process {X(t)} has a steady state, and denote the steady state
probability and steady state probability densities as follows:

f0 : the probability that the state is in S0,

f1(x) : the probability density that the state is in S1(x), x ∈ (0, l),

f2(y) : the probability density that the state is in S2(y), y ∈ (0, l), and

f3(x, y) : the joint probability density that the state is in S3(x, y), 0 < x < y < l.

Then, (2.2) through (2.6) are the balance equations for the steady state, where hl/2(x) takes
the value of 1 for x ∈

(
0, 1

2 l
)
, and 0 otherwise. The meaning of each equation is explained

below. Note that, for example, l−1λ dt dx is the probability that a customer arrives at the
counter in time interval (t, t + dt) and requests a service position in the interval (x, x + dx)
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for some suitable t and x and for small quantities dt > 0 and dx > 0.

λ f0 = µ

∫ l

0

f1(x) dx + µ

∫ l

0

f2(y) dy, (2.2){
µ + l−1λ(l − x)

}
f1(x) = l−1λ hl/2(x) f0 + µ

∫ l

x

f3(x, y) dy, 0 < x < l, (2.3)

{
µ + l−1λy

}
f2(y) = l−1λ{1 − hl/2(y)} f0 + µ

∫ y

0

f3(x, y) dx, 0 < y < l, (2.4)

2µ f3(x, y) = l−1λ f1(x) + l−1λ f2(y), 0 < x < y < l, and (2.5)

1 = f0 +

∫ l

0

f1(x) dx +

∫ l

0

f2(y) dy +

∫∫
0<x<y<l

f3(x, y) dx dy. (2.6)

• The left-hand side of (2.2) is the rate at which the system moves from state S0 due to
the arrival of a customer, and the right-hand side is the rate at which the system moves
into state S0 due to the completion of the service provided by the left server in state
S1(x) or due to the completion of the service provided by the right server in state S2(y).

• The left-hand side of (2.3) is the rate at which the system moves from state S1(x) due to
the completion of the service by the left server or due to the arrival of a customer who
can be served by the right server. The right-hand side of (2.3) is the rate at which the
system moves into state S1(x) due to the arrival of a customer who can be served by the
left server or due to the completion of the service by the right server when both servers
are busy.

• Equation (2.4) is derived in a way similar to that of (2.3) by exchanging the roles of the
servers on the left and on the right.

• The left-hand side of (2.5) is the rate at which the system moves from state S3(x, y) due
to the completion of a service, and the right-hand side of (2.5) is the rate at which the
system moves into state S3(x, y) due to the arrival of a customer when one of the servers
is busy and the other is idle.

• Equation (2.6) is a constraint on the total probability.

Solution to the balance equations

By exploiting the special relation (2.5), we can solve the balance equations. The solution
is presented in the theorem below. A formal proof of the theorem is given in Appendix A.
To save space here, a rough idea of the derivation process is shown in a footnote§. In order

to simplify the equations, we let ρ =
λ
2µ

.

§From the model structure, we can easily guess the symmetric relation (2.10). By using (2.5) and (2.10), we
can reduce the balance equations (2.2) to (2.5) into an integral equation for f1(x) with f0 as a parameter.
Taking derivatives and using the method of separation of variables, we obtain the solution (2.8) for f1(x),
which includes f0 as a multiplicative constant. The value of f0 can be determined by using (2.6).
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Theorem 2.1. The balance equations (2.2) to (2.6) have the following solution:

f0 =

[
(1 + ρ)2 + (2 + ρ) log

(
1 + 1

2ρ
)2

1 + ρ

]−1

, (2.7)

f1(x) =


l−1C1

[
(2 + ρ)l

l + ρ(l − x)
+ log

l + ρx
l + ρ(l − x)

+ C2

]
, 0 < x ≤ 1

2
l,

− l−1C1

[
(2 + ρ)l

l + ρ(l − x)
+ log

l + ρx
l + ρ(l − x)

− C2

]
,

1
2

l < x < l,

(2.8)

where C1 =
ρ

2 + ρ
f0 and C2 = 2 + ρ + log{1 + ρ}, (2.9)

f2(y) = f1(l − y), 0 < y < l, and (2.10)

f3(x, y) = l−1ρ {f1(x) + f2(y)} , 0 < x < y < l. (2.11)

Remark 2.2. (a) The above solution of the balance equations (2.2) to (2.6) is unique (we
omit the proof) and it gives a stationary distribution of the Markov process {X(t)}.

(b) We see that the system has a stationary distribution for any choice of positive λ
and µ, since the value of f0 in (2.7) is always finite. This follows from the loss model
assumption.

(c) The density function f1(x) is not continuous at x = 1
2 l. This is because the equation

(2.3) includes a discontinuous function hl/2(x).

Loss probability

The loss probability, i.e., the probability in the steady state that an arriving customer
is lost, can be calculated as

P∗ = l−1

∫ l

0

x f1(x) dx + l−1

∫ l

0

(l − y) f2(y) dy +

∫∫
0<x<y<l

f3(x, y) dy. (2.12)

The (conditional) loss probability P (a) for a customer requesting service position a ∈ (0, l)
can be calculated by

P (a) =

∫ l

a

f1(x) dx +

∫ a

0

f2(y) dy +

∫∫
0<x<y<l

f3(x, y) dy. (2.13)

By performing the integrations in these equations, we obtain the following corollary (the
proof is given in Appendix A).

Corollary 2.1. The loss probabilities are given by

P∗ = 1 − 1
ρ

+

(
1 +

1
ρ

)
f0 = 1 −

{
1 + ρ +

2 + ρ
ρ

log
{1 + 1

2ρ}2

1 + ρ

}
f0, and (2.14)

P (a) =


1 −

{
1 + ρ + log

{1 + ρ}{l + ρa}
l + ρ(l − a)

}
f0, 0 < a ≤ 1

2 l,

1 −
{

1 + ρ + log
{1 + ρ}{l + ρ(l − a)}

l + ρa

}
f0,

1
2 l < a < l.

(2.15)
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Note that P (a) is decreasing on a in the interval
(
0, 1

2 l
)
, and it is increasing in

(
1
2 l, l

)
.

This means that P (a) depends heavily on a, and a customer who requests a service position
near the middle of the counter is less likely to be lost than a customer who requests a service
position near either of the ends (see Figure 3).

When the traffic intensity ρ is very small, the asymptotic loss probabilities are those
shown in (2.16) and (2.17) (the proof is given in Appendix A).

Corollary 2.2. As ρ tends to zero, we have

P∗ = 1
2 ρ + o(ρ), and (2.16)

P (a) =
|2a − l|

l
ρ + o(ρ), 0 < a < l. (2.17)

If we remove the position order constraint from our model assumptions, we can analyze
the model as if it were the ordinary M/M/2/2 model. On the other hand, if we add to
the model the constraints that the left server can only serve customers requesting service
positions in the interval (0, 1

2
l), and the right server can only serve customers requesting

service positions in (1
2
l, l), then the model can be regarded as a composite of two ordinary

M/M/1/1 queues. Let P
M/M/1/1
∗ be the loss probability of the ordinary M/M/1/1 model

with traffic intensity ρ, and let P
M/M/2/2
∗ be that of the ordinary M/M/2/2 model with the

same traffic intensity. Then we can easily prove the following inequalities (the proofs are
given in Appendix A).

Corollary 2.3. For any ρ > 0,

PM/M/2/2
∗ =

2ρ2

1 + 2ρ + 2ρ2
< P∗ <

ρ

1 + ρ
= PM/M/1/1

∗ . (2.18)

When the traffic is light, we have P∗ = 1
2
ρ + o(ρ) from (2.16), which is about half the

size of P
M/M/1/1
∗ = ρ + o(ρ) but far larger than P

M/M/2/2
∗ = 2ρ2 + o(ρ2).

Some numerical results

We shall now show some numerical results for the loss probabilities (2.14) and (2.15).

Figure 2 shows a graph of P∗ vs. ρ, together with corresponding graphs of P
M/M/1/1
∗ and

P
M/M/2/2
∗ . As stated in Corollary 2.3, P∗ is between P

M/M/1/1
∗ and P

M/M/2/2
∗ .

Figure 3 shows graphs of P (a) for various values of ρ. These are V-shaped, and we
see that customers requesting service positions near an end of the counter have larger loss

probabilities. In the figure, the value of P
M/M/1/1
∗ is indicated by thin horizontal lines

near a/l = 0 and 1, and the value of P
M/M/2/2
∗ is indicated by a thin horizontal line near

a/l = 0.5. These graphs show that P (0) is a little bit larger than P
M/M/1/1
∗ , and P (1

2
l) is a

little bit less than P
M/M/2/2
∗ . (These properties can be proved analytically from (2.15), but

we omit the proof.) The difference between P (0) and P
M/M/1/1
∗ is less than 9%, and the

difference between P (1
2
l) and P

M/M/2/2
∗ is less than 6%.

Intuitively, these properties might be roughly interpreted as follows (though this is not a
strict discussion). Near the ends of the counter, customers tend to receive services from only
a specific server, as in the M/M/1/1 model, but near the center of the counter, customers
can receive services from either of two servers, as in the M/M/2/2 model.
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Figure 2: Loss probability P∗
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Figure 3: Loss probability P (a)

3. Saturated Model ∗/M,U/2(ordered)/FCFS

As a second example of a simple queueing model with service-position requests, we consider
an M/M-type saturated model with two servers, in which there are always customers in the
queue, and they are served on an FCFS basis.

Model

We consider a saturated ∗/M,U/2(ordered) model. To represent the saturated situation,
we assume there to exist infinitely many customers waiting in the queue. Service times
are subject to a common exponential distribution with mean 1/µ, and service positions are
subject to the uniform distribution on (0, l), where l is the length of the counter. We assume
service times and service positions to be mutually independent.

There are two servers at the counter. Again, we will call them the left server and the
right server. They satisfy the position order constraint. Services for customers are provided
strictly in an FCFS way. We will refer to this model as ∗/M,U/2(ordered)/FCFS.

Services for customers are executed according to the following service discipline.

Service discipline

A new service is started immediately after the previous one is completed. We will
examine the moment that a service is completed. Suppose that, just prior to that, the left
server is at position x, the right server is at position y, the customer at the head of the queue
(Customer 1) requests service position z, and the next customer in the queue (Customer 2)
requests service position z′, where 0 < x < y < l and 0 < z, z′ < l. New services are started
according to the rules (a) and (b) below. To save space, alternatives are in brackets. We
note that when Customer 1 is served, every other customer in the queue moves one place
ahead, and when Customer 2 is served, the customers again move one place ahead. The
new top two customers are now called Customer 1 and Customer 2.

(a) If the left [right] server completes a service while the right [left] server is still serving,
then (i) if z < y [if z > x], Customer 1 is served at position z by the left [right] server,
or (ii) if z ≥ y [if z ≤ x], no new service is begun and the left [right] server becomes
idle.

(b) If the left [right] server completes a service while the right [left] server is idle (this occurs
only when z ≤ x < y [only when x < y ≤ z]), then Customer 1 is served at position
z by the left [right] server. Further, (i) if z′ > z [if z′ < z], then Customer 2 will then
be served by the right [left] server, or (ii) if z′ ≤ z [if z′ ≥ z], the right [left] server will
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continue to be idle.

The balance equations

In order to analyze the model using a Markov process, we consider the following states
of the system.

S1(x, z) = {the left server is serving a customer at position x, the right server is idle,

and Customer 1 requests service position z} , 0 < z < x < l,

S2(y, z) = {the right server is serving a customer at position y, the left server is idle,

and Customer 1 requests service position z} , 0 < y < z < l,

S3(x, y) = {the left server is serving a customer at position x, and the right server is

serving a customer at position y} , 0 < x < y < l.

The stochastic behavior of the system can be represented by a continuous-time Markov
process {X(t)} on the state space

S =

( ⋃
0<z<x<l

S1(x, z)
)
∪

( ⋃
0<y<z<l

S2(y, z)

)
∪

( ⋃
0<x<y<l

S3(x, y)

)
. (3.1)

Here, we do not show the infinitesimal generator, but the Markov process has stationary
transition functions, its transition rates are uniformly bounded, and its sample path is a
step function with probability 1.

Remark 3.1. The state space above is somewhat redundant. For the purpose of deriving a
Markov process, the auxiliary variable z can be omitted. However, it is easier to write the
balance equations with auxiliary variable z for the state representation, and so we use the
states described above.

Assuming the existence of the steady state of the Markov process {X(t)}, we denote the
state probability densities in the steady state as follows:

f1(x, z) : the joint probability density that the state is in S1(x, z), 0 < z < x < l,

f2(y, z) : the joint probability density that the state is in S2(y, z), 0 < y < z < l, and

f3(x, y) : the joint probability density that the state is in S3(x, y), 0 < x < y < l.

(3.2)

We then have the following balance equations. The meaning of each equation is explained
below.

µf1(x, z) = µ l−1

∫ l

x

f1(x
′, x) dx′ + µ l−1

∫ l

x

f3(x, y′) dy′, 0 < z < x < l, (3.3)

µf2(y, z) = µ l−1

∫ y

0

f2(y
′, y) dy′ + µ l−1

∫ y

0

f3(x
′, y) dx′, 0 < y < z < l, (3.4)

2µf3(x, y) = µ l−1

∫ l

x

f1(x
′, x) dx′ + µ l−1

∫ y

0

f2(y
′, y) dy′

+ µ l−1

∫ y

0

f3(x
′, y) dx′ + µ l−1

∫ l

x

f3(x, y′) dy′, 0 < x < y < l, (3.5)

1 =

∫∫
0<z<x<l

f1(x, z) dx dz +

∫∫
0<y<z<l

f2(y, z) dy dz +

∫∫
0<x<y<l

f3(x, y) dx dy (3.6)

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



156 K. Katou & Y. Takahashi

• The left-hand side of (3.3) is the rate at which the system moves from state S1(x, z) due
the left server completing a service. The right-hand side of (3.3) is the rate at which the
system moves into state S1(x, z). It consists of two terms:

(1) The first term comes from the event that a service is completed by the left server at
position x′ in state S1(x

′, x) (with rate µ) and a new service for Customer 1 is begun by
the same server at position x while Customer 2 requests service position z (with density
l−1), where z < x; this is case (b) (ii) in the service rule above.

(2) The second term comes from the event that a service is completed by the right
server at position y′ in state S3(x, y′) (with rate µ) and the server then becomes idle since
Customer 1 requests service position z (with density l−1), where z < x; this is alternate
case (a) (ii) (in brackets) in the service rule above.

• The leading term in equation (3.4) is found by exchanging the roles of the left server and
the right server in (3.3). Note that the right-hand side of (3.4) is derived from two cases
in the service rule above: alternate (b) (ii) (in brackets) and (a) (ii).

• The left-hand side of (3.5) is the rate at which the system moves from state S3(x, y)
due to the completion of a service. The right-hand side of (3.5) is the rate at which the
system moves into state S3(x, y). It consists of four terms:

(1) the first term comes from the event that a service is completed by the left server
at position x′ in state S1(x

′, x) (with rate µ), the same server begins a new service for
Customer 1 at position x, and the right server begins a new service for Customer 2 at
position y (with density l−1), where y > x; this is case (b) (i) in the service rule above.

(2) The second term comes from the event corresponding to the one in (1) above but
where the roles of the left and right servers are exchanged; this is alternate case (b) (i)
(in brackets).

(3) The third term comes from the event that a service is completed by the left server
at position x′ in state S3(x

′, y) (with rate µ), the same server begins a new service for
Customer 1 at position x (with density l−1), where x < y, and the right server continues
to deliver a service at position y; this is case (a) (i).

(4) The fourth term comes from the corresponding event in (3) above but where the
roles of the left and right servers are exchanged; this is alternate case (a) (i) (in brackets).

• Equation (3.6) is a constraint on the total probability.

Solution to the balance equations

Using the special structures in (3.3) to (3.5), we can solve the balance equations as in
Theorem 3.1 below. A formal proof of the theorem is given in Appendix B. We show a
rough idea of the derivation process in a footnote¶.

Theorem 3.1. We let

g(x) =
54l2

3 + 4 log 2
· l − x

(2l − x)2(l + x)3 . (3.7)

Then the balance equations (3.3) to (3.6) have a solution given by

f1(x, z) = g(x), 0 < z < x < l, (3.8)

f2(y, z) = f1(l − y, l − z) = g(l − y), 0 < y < z < l, and (3.9)

f3(x, y) = 1
2 {g(x) + g(l − y)} , 0 < x ≤ y < l. (3.10)
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Remark 3.2. The above solution is unique (we omit the proof), and it gives a stationary
distribution of the Markov process {X(t)}.
Throughput

From the solution given in Theorem 3.1, we can calculate the throughput of our model.
It is given in the following corollary (the proof is given in Appendix B).

Corollary 3.1. The throughput Λ of the saturated model ∗/M,U/2(ordered)/FCFS is given
by

Λ =
9

3 + 4 log 2
µ (= 1.559µ). (3.11)

Remark 3.3. The throughput is less than 2µ. This is because in the model, the servers
have some idle periods even in the saturated situation.

4. Models M/M,U/c(ordered)/FCFS and M/M,U/c(ordered)/PSP

In Sections 2 and 3, we considered very simple models. These were the only models that the
authors could analyze. In this section, using simulations, we will study some more-complex
M/M-type queueing models with service-position requests.

There are a variety of queueing models with service-position requests. We may choose
any arrival process, any service-time distribution, and any service-position distribution.
The number of servers is also an important parameter. Further, diverse service disciplines
exist. Compared with ordinary queueing models, the service disciplines in these models are
complex. This is because they give not only the rules by which customers are served, but
also the rules by which servers are selected to serve the customers.

Here we introduce two examples of service disciplines. For a customer who is requesting
service position x, a server will be said to be available if that server is idle and is able to
move to x under the position order constraint by moving, if necessary, other idle servers.

Discipline 1: the first-come first-served (FCFS) discipline

We begin with the FCFS discipline, which is the one used in the saturated model
∗/M,U/2(ordered)/FCFS in Section 3. In this discipline, customers are assigned to servers
in the order of their arrival, as follows.

1. Upon arrival: A customer arrives at the service station.

(a) If there are no customers in the queue and if there is at least one idle server available,
then the customer is immediately served by the nearest available server.

(b) Otherwise (that is, there is at least one customer in the queue or no server is
available), the customer goes to the end of the queue.

2. Upon completion of a service: The service being performed by Server i is completed.

¶From the right-hand sides of (3.3) and (3.4), we can easily see that f1(x, z) and f2(y, z) are independent
of z, that is, constants as functions of z. Further, by comparing the right-hand sides of (3.3) to (3.5), we
see that f3(x, y) = 1

2{f1(x, z) + f2(y, z)}. From the structure of the model, we can assume the symmetry
relation f2(y, z) = f1(l − y, l − z). Thus, we see that the functions f1(x, y), f2(y, z), and f3(x, y) are given
as functions of g(x) by (3.8) to (3.10), respectively, where g(x) satisfies the integral equation

(l + x)g(x) =
∫ l−x

0

g(z) dz + 2
∫ l

x

g(z) dz.

To derive equation (3.7) from the above integral equation and (3.6), we used a series expansion technique.
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(a) If there are no customers in the queue or if Server i is not available for the customer
at the head of the queue, then Server i becomes idle and remains in the same
position.

(b) If there is at least one customer waiting in the queue and Server i is available for
the customer at the head of the queue, then that customer is immediately served
by Server i and every other customer (if any) in the queue moves one place ahead.
In this case, we also check (c), below.

(c) If there is at least one customer waiting in the queue, and there is at least one server
available for the customer at the head of the queue, then that customer is served by
the nearest available server, and every other customer (if any) in the queue moves
one place ahead. This step (c) is repeated until the queue is emptied or there is no
available server for the customer at the head of the queue.

Discipline 2: the performable service priority (PSP) discipline

The second service discipline is a more practical one, which we will call the performable
service priority (PSP) discipline. In this discipline, a customer in the queue for whom at least
one server is available has priority over customers for whom there is no server available. The
assignment rule is further specified below. Suppose that there are c servers at the counter
and that they are numbered from left to right as Server 1, Server 2, . . . , Server c. We also
introduce two imaginary servers, Server 0 and Server c + 1. Server 0 is considered to be
always busy at position 0, and Server c + 1 is always busy at position l.

1. Upon arrival: A customer arrives at the service station.

(a) If there is at least one available server, the customer is served immediately by the
nearest available server.

(b) Otherwise (that is, if there is no available server), the customer goes to the end of
the queue.

2. Upon completion of a service: Server i completes a service.

(a) If there are no customers in the queue for whom Server i is available, then Server i
becomes idle and remains in position.

(b) If there is at least one customer in the queue for whom Server i is available, new
services are begun, as follows. Note that in this case one of Servers i−1 and i+1 or
both are busy.

(i) When Servers i− 1 and i + 1 are both busy, the first customer in the queue for
whom Server i is available proceeds to the counter and is served by Server i. All
customers who were behind that customer move one place ahead.

(ii) When Server i − 1 is busy and Server i + 1 is idle, then there exists some j
(> i) such that Server j is busy but Servers i, i + 1, . . . , j − 1 are idle. These
j − i idle servers can provide services for at most j − i customers in the queue
for whom Server i is available, and so it is necessary to determine a rule for
assigning servers to customers; we use the following rule.

(1) When there are greater than or equal to j − i customers in the queue for
whom Server i is available, the first j − i of these customers are served. We
sort these j − i customers according to the service positions requested and
assign Servers i, i+1 . . . j−1 in the order of their positions. The remaining
customers in the queue reform the queue in the order in which they arrived.

(2) When there are k (< j − i) customers in the queue for whom Server i
is available, we sort these k customers according to the service positions
requested and assign Servers i, i+1, · · · , i+k−1. The remaining customers
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reform the queue in the order in which they arrived.
(iii) When Server i−1 is idle and Server i+1 is busy, then for some j (< i), Server j

is busy but Servers j + 1, j + 2, . . . , i are idle. These i − j idle servers can
provide services for at most i− j customers for whom Server i is available. The
rule for assigning servers is similar to the one used in (ii) (1) and (2) above, but
the ordering of the service positions is reversed.

M/M,U/c(ordered)/FCFS and M/M,U/c(ordered)/PSP models

We now consider M/M-type, c-server models with Discipline 1 or Discipline 2 as the
service discipline. We will refer to the model as M/M,U/c(ordered)/FCFS when Discipline 1
is used, and as M/M,U/c(ordered)/PSP when Discipline 2 is used.

We let λ be the arrival rate and µ be the service rate of each server. The traffic intensity is

defined by ρ =
λ
cµ

. We denote by Wq∗ the mean waiting time and by Wq(a) the (conditional)

mean waiting time for a customer requesting service position a, 0 < a < l. We denote by
ρmax the stability threshold; that is, the model is stable for ρ < ρmax and is unstable
for ρ > ρmax. For the model M/M,U/c(ordered)/FCFS, we attach the superscript FCFS,

such as WFCFS
q∗ , and for the model M/M,U/c(ordered)/PSP, we attach the superscript PSP.

Similarly, we denote by W
M/M/c
q∗ the mean waiting time in the ordinary M/M/c model.

Remark 4.1. Models M/M,U/c(ordered)/FCFS and M/M,U/c(ordered)/PSP are related
to the ordinary M/M/c model in the following manner.

(a) If c = 1, we may regard each of them as the ordinary M/M/1 model, though service
positions differ for every customer.

(b) If we remove the position order constraint from the model assumptions, we may regard
each of them as the ordinary M/M/c model.

(c) In M/M,U/c(ordered)/PSP, if we add the constraint that Server j can serve only
customers requesting service positions in the interval ((j − 1)c−1l, jc−1l), j = 1, 2, . . . , c,
then the model can be considered to be a composite of c ordinary M/M/1 models.

Remark 4.2. (a) In M/M,U/c(ordered)/PSP with c ≥ 2, from (b) and (c) in Remark 4.1
above, we may expect that the following inequalities hold:

WM/M/c
q∗ < WPSP

q∗ < WM/M/1
q∗ . (4.1)

(b) In M/M,U/c(ordered)/FCFS with c ≥ 2, some servers may be idle even if there are

one or more customers in the queue, and so ρFCFS
max <1. The corresponding saturated model

∗/M,U/c(ordered)/FCFS should have throughput cµρFCFS
max . So, when c = 2, we know from

(3.11) that ρFCFS
max = 0.7795.

Some simulation results

The authors executed extensive simulation experiments for M/M,U/c(ordered)/FCFS
and M/M,U/c(ordered)/PSP. Each experiment simulated more than 30 million customers.
Confidence intervals are shown in Tables 1 and 2, but for simplicity, we omit the confidence
intervals in the graphs. Hereafter in this section, we always set µ = 1.

The mean waiting time in M/M,U/c(ordered)/FCFS The estimated value of

WFCFS
q∗ is depicted in Figure 4 for c = 1, 2, 3, and 6. We see that, for ρ < 0.3, WFCFS

q∗

for c ≥ 2 is smaller than W
M/M/1
q∗ (which is equal to WFCFS

q∗ for c = 1). However, for

ρ > 0.45, it becomes larger than W
M/M/1
q∗ . Further, the graph of WFCFS

q∗ grows more rapidly
as c increases.
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Figure 4: WFCFS
q∗ for µ = 1
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Figure 5: WPSP
q∗ for µ = 1

The stability threshold in M/M,U/c(ordered)/FCFS The mean waiting time

WFCFS
q∗ becomes infinity for ρ > ρFCFS

max . The stability thresholds ρFCFS
max for c ≥ 3 were es-

timated from simulation experiments on a saturated model ∗/M,U/c(ordered)/FCFS, like

the one analyzed in Section 3. Table 1 lists the estimated value of ρFCFS
max and the standard

errors (± half the width of the 95% confidence interval). We see that ρFCFS
max decreases as c

increases. It is likely that this is because as c increases, interactions among servers caused
by the position order constraint become larger.

The mean waiting time in M/M,U/c(ordered)/PSP The estimated WPSP
q∗ is

depicted in Figure 5 and its value and standard error are presented in Table 2 for some
selected cases. We see that the model is stable for ρ < 1 and that WPSP

q∗ decreases as c

increases. For c = 2, WPSP
q∗ is about a half W

M/M/1
q∗ , and as we predicted in (4.1), WPSP

q∗ is

always between W
M/M/1
q∗ and W

M/M/c
q∗ , though it is shown only for c = 3 in Figure 5. For

c ≥ 3, the dependency of WPSP
q∗ on c looks small for large ρ.

The mean waiting time conditioned on the service position requested Fig-
ures 6 and 7 show the graphs of WFCFS

q (a) and WPSP
q (a), respectively, estimated from sim-

ulations. Here, WFCFS
q (a) and WPSP

q (a) are estimated for a = (j−0.5)
100

l, j =1, 2, . . . , 100, from

simulation data of customers requesting service positions in the interval
(

j−1
100

l, j
100

l
)
. The

number of customers used to estimate a single WFCFS
q (a) or WPSP

q (a) was about 300,000
(= 30 million/100), and the estimated values may not be accurate.

We see that WPSP
q (a) is decreasing on c, irrespective of a, but the dependency of WFCFS

q (a)

on c is not so simple. All the graphs, except for the case c=1, are U-shaped∥, and WFCFS
q (0)

and WFCFS
q (l)

[
WPSP

q (0) and WPSP
q (l)

]
are larger than WFCFS

q (1
2
l)

[
WPSP

q (1
2
l)

]
. This indi-

cates that in a queueing model with service-position requests, the waiting times may not be

∥Although it is not presented here, the graph of WFCFS
q (a) for ρ near ρFCFS

max is rather flat, but still U-shaped.
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Table 1: Stability threshold ρFCFS
max (estimated)

c = 1 c = 2 c = 3 c = 6

1.0000 0.7795 0.6734 ± 0.0003 0.5259 ± 0.0003

Table 2: Mean waiting time WPSP
q∗ (estimated, µ = 1)

ρ c = 1 c = 2 c = 3 c = 6

0.005 0.00503 0.00269 ± 0.00003 0.00179 ± 0.00002 0.00092 ± 0.00002

0.1 0.1111 0.06074 ± 0.00015 0.04401 ± 0.00012 0.02662 ± 0.00010

0.3 0.4286 0.24503 ± 0.00043 0.19520 ± 0.00039 0.14501 ± 0.00034

0.5 1.0000 0.5939 ± 0.0012 0.4959 ± 0.0010 0.4244 ± 0.0010

0.7 2.3333 1.4117 ± 0.0038 1.2055 ± 0.0032 1.1311 ± 0.0035

0.9 9.0000 5.3205 ± 0.0367 4.4061 ± 0.0289 4.0816 ± 0.0469

uniform over the positions requested. The nonuniformity occurs even in an FCFS model,
where customers receive services in the order of their arrivals. However, the grade of nonuni-
formity is much more intense in PSP models. In this sense, the M/M,U/c(ordered)/PSP
model with c ≥ 2 might disadvantage customers requesting service positions near the ends

of the counter. However, we note that WPSP
q (a) is always smaller than W

M/M/1
q .

One possible explanation for the U shape might be a similar one to the intuitive ex-
planation for the V shape of the loss probability in the M/M,U/2(ordered)/loss given in
the last paragraph of Section 2; however, the authors have not yet succeeded in giving a
more persuasive explanation. Another interesting property is that the graphs of WPSP

q (a)
for c ≥ 2 start from and end at almost the same point. The authors do not have any proper
explanation for it, too.

5. Application to a Movable Compact Shelving System in a University Library

The Ookayama Campus Library of the Tokyo Institute of Technology was built in February
2011. Several years before that, it was found that the old library building was not sufficiently
earthquake resistant, and in 2007, the university decided to build a new building near the
old one. The total floor space was set to be approximately 8,600 m2. The queueing model
with service-position requests was devised during the planning of the storage system for the
new library.

The library’s collections included more than 640,000 volumes, and a large portion of
them were bound periodicals in the field of science and technology. It was planned to store
most of the collections in open-shelf stacks in the first- and second-level basements of the
new building. To use the space efficiently, an electrical movable compact shelving system
was considered.

Movable compact shelving systems

In [3], p.559, movable compact shelving systems are explained as follows.
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Figure 6: WFCFS
q (a) for ρ = 0.3 and µ = 1
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Figure 7: WPSP
q (a) for ρ = 0.3 and µ = 1

“Mobile storage systems feature storage units — shelving, file cabinets, map cases,
and other types — mounted on wheeled carriages that run on tracks in the floor.
Rather than having to provide space for an aisle between each range (row) of storage
units, a mobile system makes it possible to provide only one aisle for a number of
ranges. The system consists of a number of modules (also referred to as blocks and
pods). Each module consists of a fixed carriage at each end with movable carriages
between the fixed ones. One may create an accessible aisle anywhere within a module
by one of three methods: manually by pushing on a fixed handle on the end of the
mobile range, mechanical-assist using a crank handle, or electrically, using push-
button controls.”

The new library intended to store most of its vast collections of bound periodicals in a
movable compact shelving system. It is sometimes thought that movable compact shelving
systems reduce the ease of access to collections; it is true that only one face of the multiple
ranges in a module is accessible at any one time, and a user must open the aisle before
accessing the desired face of the range. However, typically, bound periodicals are retrieved
without browsing, and the desired aisle for a user can be automatically created by placing
a request at a terminal of the controlling computer. In this sense, bound periodicals are a
good fit for movable compact shelving systems.

Some plans

Figures 8 to 10 show three of the plans that were examined for the movable compact
shelving system in a room in the second-level basement of the new library. The room is
about 46.4 m × 9.6 m. Each plan has a number of double-faced movable ranges (carriages),
several single-faced fixed (stationary) ranges, and several double-faced fixed ranges. We will
consider a double-faced fixed range to be a union of two single-faced fixed ranges that belong
to different modules or are facing a passage.

Plan 1 in Figure 8 consists of 11 modules∗∗. Each module has a single-faced range at

∗∗Strictly speaking, Plan 1 consists of 11 modules and four single-faced fixed ranges next to Modules 5, 6, 9,
and 10, each of which is one side of a double-faced fixed range and faces a passage. In evaluation of plans,
we consider these four single-faced fixed ranges can be reached by users without waiting.
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Figure 8: Plan 1: Each module has a single aisle
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Figure 9: Plan 2: Some modules have two aisles
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Figure 10: Plan 3: One module has three aisles and others have one or two aisles
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each end and some double-faced movable ranges between them. Each module also has a
space for an aisle (90 cm). The number of positions where an aisle can be created is equal to
the number of movable ranges plus one. For example, Module 2 has 11 movable ranges and
12 positions where an aisle can be created. Each face of a range consists of four sections,
each of which is 90 cm wide and has six shelves. Hence, Module 2, for example, can store
about 17,000 (+ 6× 4× 2× 12× 30) volumes. The room can store a total of about 200,000
volumes in Plan 1.

Usually in movable compact shelving systems [3], as described above, each module has a
single aisle, as in Plan 1. However, from the viewpoint of queueing theory, we may consider
plans having modules with two or more aisles, such as in Plans 2 and 3 in Figures 9 and 10,
respectively. Plan 2 has four modules with two aisles, and Plan 3 has one module with three
aisles and three modules with two aisles. In these plans, a module with two [three] aisles is
derived by merging two [three] modules, each with a single aisle. Hence, the accommodation
capacity and the ratio of the number of aisles to the number of ranges are the same in all
three plans.

Simulation model

In order to evaluate these plans, the authors did extensive simulation experiments using
a queueing model with service-position requests. In the library application, a user of a
movable compact shelving system wants a book in a module and thus requests that an aisle
be created in the range where the book is stored. If we regard the module as a service station
and the requested aisle position as a service position, the stochastic behavior of customers
in the module can be modeled as a queueing model with service-position requests, although
in this case, the service-position distribution is discrete.

For the simulation, we chose the M/M,Ud/c(ordered)/PSP model, where Ud stands for
a discrete uniform distribution that takes d different values with equal probability. A user
who wants a book stored in a module can create an aisle in one of two ways: (i) give an
instruction to the computer from a terminal, or (ii) push a button on the side panel of the
range. Operation (ii) is reflected in the model as the priority of a customer who finds an
available server over customers who have no available servers; we note that this is the PSP
discipline, whereas the FCFS discipline cannot handle this operation.

In the model M/M,Ud/c(ordered)/PSP, the service-position distribution is discrete, so it
is necessary to add a rule for the case in which multiple customers request the same position.
We adopted a simple rule specific to this application:

• Any single server can serve any number of customers simultaneously if these customers
are requesting the same position.

Table 3: Modules in Plans 1 to 3

d: the number of possible positions where aisles can be created
c: the number of aisles created

Plan 1 Plan 2 Plan 3

Modules d c Modules d c Modules d c

2, 3, 7, 8, 10 12 1 10 12 1 10 12 1

1, 4, 5, 6, 9 13 1 5 13 1 11 15 1

11 15 1 11 15 1 1+2, 6+7, 8+9 25 2

1+2, 3+4, 6+7, 8+9 25 2 3+4+ 5 38 3
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Table 4: The probability of wait Q(d,c) in M/M,Ud/c(ordered)/PSP (estimated)

c = 1 c = 2 c = 3

d = 12 d = 13 d = 15 d = 25 d = 38

λroom λ Q(12,1) λ Q(13,1) λ Q(15,1) λ Q(25,2) λ Q(38,3)

0.1 0.0085 0.0085 0.0092 0.0091 0.011 0.011 0.018 0.0044 0.027 0.0030

1 0.085 0.084 0.092 0.91 0.11 0.11 0.18 0.050 0.27 0.038

2 0.17 0.17 0.18 0.18 0.21 0.21 0.35 0.11 0.54 0.091

4 0.34 0.34 0.37 0.36 0.42 0.42 0.70 0.27 1.1 0.24

10 0.85 0.78 0.92 0.83 1.1 0.92 1.8 0.80 2.7 0.81

Table 5: The mean waiting time Wq(d,c) (µ = 1) in M/M,Ud/c(ordered)/PSP (estimated)

c = 1 c = 2 c = 3

d = 12 d = 13 d = 15 d = 25 d = 38

λroom λ Wq(12,1) λ Wq(13,1) λ Wq(15,1) λ Wq(25,2) λ Wq(38,3)

0.1 0.0085 0.0085 0.0092 0.0092 0.011 0.011 0.018 0.0044 0.027 0.0030

1 0.085 0.092 0.092 0.10 0.11 0.12 0.18 0.050 0.27 0.036

2 0.17 0.20 0.18 0.22 0.21 0.26 0.35 0.11 0.54 0.086

4 0.34 0.49 0.37 0.55 0.42 0.69 0.70 0.30 1.1 0.25

10 0.85 2.8 0.92 3.6 1.1 6.0 1.8 2.3 2.7 2.2

As a special case of this rule, if an arriving customer finds that the position they wish to
request is already being served, then the arriving customer is immediately served.

We let λ be the arrival rate of the Poisson arrival process and µ be the service rate
for exponentially distributed service times. We assume that the arrival process, requested
service positions, and service times are stochastically independent.

Simulation results

Here, we briefly summarize simulation results for Plans 1 to 3. Plan 1 consists of eleven
modules, Plan 2 consists of seven modules, and Plan 3 consists of six modules (see foot-
note 7). These modules are listed in Table 3 together with d, the number of possible positions
where aisles can be created, and c, the number of aisles created.

We let λroom be the rate of arrival to the room, and we assume that the arrival rate to
a module with d possible positions for aisles is given by

λ =
d

Droom
λroom =

d
142

λroom. (5.1)

Here, Droom = 142 is the total number of ranges in each of Plans 1 to 3, with each double-
faced range counted as a unit, and we implicitly assume the arrivals are distributed uniformly
over the ranges.

Tables 4 and 5 show some simulation results for the probability of wait Q(d, c) and the
mean waiting time Wq(d, c) in M/M,Ud/c(ordered)/PSP, respectively, for various values of
λroom. The combinations of d and c are chosen so that they cover all the modules listed
in Table 3. The estimated values given in these tables are based on experiments that each
simulated more than 30 million customers. The results are sufficiently precise for evaluating
plans with two significant digits; for simplicity, we omit the confidence intervals.
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Table 6: The probability of wait QPlan i in
Plans 1 to 3 (estimated)

λroom QPlan 1 QPlan 2 QPlan 3

0.1 0.0089 0.0058 0.0050

1 0.089 0.062 0.055

2 0.18 0.13 0.12

4 0.35 0.29 0.28

10 0.81 0.80 0.80

Table 7: The mean waiting time WPlan i
q

in Plans 1 to 3 (estimated, µ = 1)

λroom WPlan 1
q WPlan 2

q WPlan 3
q

0.1 0.0089 0.0058 0.0050

1 0.097 0.064 0.056

2 0.21 0.14 0.13

4 0.53 0.38 0.34

10 3.4 2.8 2.7

Using the results in Tables 4 and 5, we can calculate the aggregated (i.e., weighted
averaged) probability of wait and the aggregated mean waiting time for Plans 1 to 3. For
Plan i, let QPlan i be the probability of wait and let WPlan i be the mean waiting time.
Further, for the k-th module in Plan i, we let dPlan i

k be the number of possible positions for
aisles, cPlan i

k be the number of aisles, and λPlan i
k be the arrival rate. Note that, on average,

λPlan i
k /λroom of the customers who arrive at the room go to the k-th module. Then, QPlan i

and WPlan i are given by

QPlan i =
∑

k

λPlan i
k

λroom
Q(dPlan i

k , cPlan i
k ) and WPlan i

q =
∑

k

λPlan i
k

λroom
Wq(d

Plan i
k , cPlan i

k ). (5.2)

From Tables 3 to 5, we can easily estimate the values of QPlan i and WPlan i
q . The results are

listed in Tables 6 and 7. We can see that, when the traffic is light, WPlan 2
q is about 70% of

WPlan 1
q , and WPlan 3

q is about 60% of WPlan 1
q .

Discussion

In the actual design process, after many discussions, it was decided to adopt Plan 2 for
the movable compact shelving system, and a system based on this plan was installed. We
list here some of the points considered in these discussions.

1. From the point of view of the mean waiting time, it is clearly effective to use larger
modules with multiple aisles. The performance of Plan 2 was considerably better than
that of Plan 1, but Plan 3 was only a little better than Plan 2.

2. It is difficult to quantitatively estimate the traffic intensity λroom, but it was anticipated
that λroom would be so small that waiting times would not cause serious problems. This
is because the collections stored in the system are mainly bound periodicals.

3. As in the case of M/M,U/c(ordered)/PSP, which was discussed in the preceding section,
in M/M,Ud/c(ordered)/PSP, the mean waiting time conditioned on the service position
requested (the one corresponding to WPSP

q (a)) is U-shaped, and customers requesting
positions near the ends of the counter are relatively disadvantaged. However, the con-
ditional mean waiting time is always less than W

M/M/1
q , the mean waiting time in the

single-server case, and thus it is considered to be acceptable.
4. If a module has two aisles, there is an additional advantage. By using the space for

two aisles, we can create a wider (180 cm) aisle in the module. This is very convenient
for the library staff, especially when they shift sections of books. However, in order to
use this function, each carriage (range) must have longer overhead wiring ducts, which
store the electric power and signal cables and connect adjacent carriages. If the widest
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possible aisle is increased, the length of the duct must be increased, and too wide of an
aisle (e.g., 270 cm, combining three aisles) is not practical.

5. In addition to rails, frames, and shelves, each module consists of many parts, including
motors, gears, wheels, electric control circuits, microprocessors, and sensors. For ex-
ample, even in the smallest module in Plan 1, there are more than 600 sensors. If one
of these parts fails, the entire module will be inaccessible to users until the failed part
can be fixed or replaced. So, from the point of view of reliability, smaller modules are
preferable. For this reason, a three-aisle module was considered too large.

6. Concluding Remarks

In this paper, we proposed a new type of queueing model for customers requesting service
positions at a counter. The model was first considered in the process of a performance
evaluation for a movable compact shelving system in a university library, as discussed in
Section 5. The characteristic of the model is in the position order constraint on servers. Two
very simple models are analyzed in Sections 2 and 3. The analyses show some interesting
characteristics of the models, including the V-shaped form of the loss probability P (a)
conditioned on the service position a in the M/M,U/2(ordered)/loss model. However, until
now, we have only been able to analyze these two models.

To understand the behaviors of more sophisticated models, simulation experiments were
performed for the models M/M,U/c(ordered)/FCFS and M/M,U/c(ordered)/PSP, and the
results are reported in Section 4. Through the simulations, we discovered that ρFCFS

max , the
stability threshold in the former model, is less than 1, and ρPSP

max, the stability threshold in

the latter model, is equal to 1. The mean waiting time WPSP
q∗ in the latter model is expected

to be between those of the ordinary M/M/1 and M/M/c models. The mean waiting times

WFCFS
q (a) and WPSP

q (a) conditioned on the service position a in these models are U-shaped.

Further, as a function of c, both ρFCFS
max and WPSP

q (a) are decreasing.

These properties are features of the queueing models with service-position requests, but
they have not yet been fully explained. In order to better understand their properties, we
need further study of these models as well as other queueing models with service-position
requests.

Appendix A. Generator for the Model M/M,U/2(ordered)/loss and Proofs of
Theorem 2.1 and Corollaries 2.1 to 2.3

The infinitesimal generator of the Markov process X(t) describing the stochastic
behavior of M/M,U/2(ordered)/loss

For the loss model M/M,U/2(ordered)/loss, the state space S is defined in (2.1). It
consists of a singleton, two intervals in IR1 and a Borel set in IR2. So, we can introduce a
natural topology on S, and let B(S) denote the family of Borel subsets of S. The infinites-
imal generator of the Markov process {X(t)} on S is defined by

G(ξ, A) = lim
t↓0

P (X(t) ∈ A|X(0) = ξ), ξ ∈ S, A ∈ B(S), (A.1)

if it exists. To give a concrete expression, we introduce some notations. For ζ ∈ S, we let
{ζ} denote a singleton in B(S). For ξ, ξ1, ξ2, η, η1, η2 ∈ (0, l) such that ξ1 < ξ2 and η1 < η2,
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we let

S1(ξ1, ξ2) =
⋃

ξ1<x<ξ2
S1(x), S2(η1, η2) =

⋃
η1<y<η2

S2(y), (A.2)

S31(ξ; η1, η2) =
⋃

η1<y<η2
S3(ξ, y), S32(ξ1, ξ2; η) =

⋃
ξ1<x<ξ2

S3(x, η), (A.3)

and S3(0, l) =
⋃

0<x<y<l

S3(x, y). (A.4)

Then, the generator G(ξ, A) for a typical pair (ξ, A) is written as (A.5) to (A.20) below
(see Service discipline in Section 2 and explanations just after the balance equations (2.2)
to (2.6)). Here x and y are positive numbers such that 0 < x < y < l.

G(S0; {S0}) = −λ (A.5)

G(S0; S1(ξ1, ξ2)) = l−1λ (ξ2 − ξ1), 0 < ξ1 < ξ2 < 1
2 l (A.6)

G(S0; S2(η1, η2)) = l−1λ (η2 − η1),
1
2 l < η1 < η2 < l (A.7)

G(S0, A) = 0, A ⊂ S1(
1
2 l, l) ∪ S2(0,

1
2 l) ∪ S3(0, l) (A.8)

G(S1(x); {S0}) = µ (A.9)

G(S1(x); {S1(x)}) = −l−1λ(l − x) − µ (A.10)

G(S1(x); S31(x; η1, η2)) = l−1λ(η2 − η1), x < η1 < η2 < l (A.11)

G(S1(x); A) = 0, A ⊂
(
S1(0, l)−{S1(x)}

)
∪ S2(0, l) ∪

(
S3(0, l)−S31(x; x, l)

)
(A.12)

G(S2(y); {S0}) = µ (A.13)

G(S2(y); {S2(y)}) = −l−1λy − µ (A.14)

G(S2(y); S32(ξ1, ξ2; y)) = l−1λ(ξ2 − ξ1), 0 < ξ1 < ξ2 < y (A.15)

G(S2(y); A) = 0, A ⊂ S1(0, l) ∪
(
S2(0, l)−{S2(y)}

)
∪

(
S3(0, l)−S32(y; 0, y)

)
(A.16)

G(S3(x, y); {S3(x, y)}) = −2µ (A.17)

G(S3(x, y); {S1(x)}) = µ (A.18)

G(S3(x, y); {S2(y)}) = µ (A.19)

G(S3(x, y); A) = 0, A ⊂ S − {S3(x, y)} − {S1(x)} − {S2(y)}. (A.20)

For a general pair (ξ, A), ξ ∈ S, A ∈ B(S), the expression for G(ξ, A) is easily induced from
the above cases.

Proof of Theorem 2.1

A direct integration of f1(x) in (2.8) leads us to∫ l

0

f1(x) dx =

∫ l/2

0

f1(x) dx +

∫ l

l/2

f1(x) dx

=
1
ρ

C1

[
log{1 + ρ} +

1
2
C2 ρ

]
− 1

ρ
C1

[
{1 + ρ} log{1 + ρ} − 1

2
C2 ρ

]
= C1

[
C2 − log{1 + ρ}

]
= ρf0. (A.21)
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Here we use the expressions for C1 and C2 in (2.9) to get the last expression. From (2.10),∫ l

0
f2(y) dy takes the same value as (A.21). Then we have∫ l

0

f1(x) dy +

∫ l

0

f2(y) dy = 2ρf0, (A.22)

and this proves that the solution (2.7) through (2.10) satisfies the equation (2.2).
To show the solution satisfies the equation (2.3), we notice that from (2.11) and (2.10)∫ l

x

f3(x, y) dy = l−1ρ

∫ l

x

f1(x) dy + l−1ρ

∫ l

x

f2(y) dy

= l−1ρ(l − x)f1(x) + l−1ρ

∫ l−x

0

f1(y) dy. (A.23)

For the calculation of the last integral, first we consider the case 1
2 l < x < l. A direct

integration of f1(x) in (2.8) leads us to

l−1ρ

∫ l−x

0

f1(y) dy = l−2C1

[
−{l + ρ(l − x)} log

l + ρx
l + ρ(l − x)

+ l log {1 + ρ} + C2 ρ (l − x)

]
=− l−2C1{l + ρ(l − x)}

[
(2 + ρ)l

l + ρ(l − x)
+ log

l + ρx
l + ρ(l − x)

− C2

]
+ l−1C1 [2 + ρ + log{1 + ρ} − C2]

= l−1{l + ρ(l − x)}f1(x) (from (2.9)). (A.24)

Hence (A.23) is written as∫ l

x

f3(x, y) dy = l−1{l + 2ρ(l − x)}f1(x). (A.25)

Noticing that hl/2(x) = 0, this proves that the solution satisfies the equation (2.3) when
1
2 l < x < l. Next we consider the case 0 < x < 1

2 l. The last term of (A.23) is calculated as

l−1ρ

∫ l−x

0

f1(y) dy = l−1ρ

∫ l/2

0

f1(y) dy + l−1ρ

∫ l−x

l/2

f1(y) dy

= l−1C1 log{1 + ρ} + 1
2 l

−1C1C2ρ

+ l−2C1{l + ρ(l − x)} log
l + ρx

l + ρ(l − x)
+ l−2C1C2 ρ

(
1
2 l − x

)
= l−2C1{l + ρ(l − x)}

[
(2 + ρ)l

l + ρ(l − x)
+ log

l + ρx
l + ρ(l − x)

+ C2

]
− l−1C1 [2 + ρ − log{1 + ρ} + C2]

= l−1{l + ρ(l − x)}f1(x) − 2l−1ρf0 (from (2.9)). (A.26)

Substituting this to (A.23), we easily see that the solution satisfies (2.3) when 0 < x < 1
2 l,

since hl/2(x) = 1 in this case.
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The equation (2.4) is easily derived from (2.3) by using (2.10), and hence it is satisfied
by the solution. The equation (2.5) is essentially the same as (2.11), and it is satisfied by
the solution.

Finally, in order to check the solution satisfies the equation (2.6), we calculate the integral
of f3(x, y) as follows. From (2.11) and (2.10) we have∫∫

0<x≤y<l

f3(x, y) dx dy = ρl−1

∫ l

0

∫ l

x

f1(x) dy dx + ρl−1

∫ l

0

∫ y

0

f2(y) dx dy

= ρl−1

∫ l

0

(l − x)f1(x) dx + ρl−1

∫ l

0

yf2(y) dy = 2ρl−1

∫ l

0

(l − x)f1(x) dx. (A.27)

Further,

2ρl−1

∫ l

0

(l − x)f1(x) dx = 2ρl−1

∫ l/2

0

(l − x)f1(x) dx + 2ρl−1

∫ l

l/2

(l − x)f1(x) dx

= ρ−1l−2C1

[
{3l2 + 2ρl2 + ρ2(l − x)2} log{l + ρ(l − x)}

+ {(1 + ρ)2l2 − ρ2(l − x)2} log{l + ρx} + ρ{2 + ρ}lx − C2ρ
2(l − x)2

]l/2

0

−ρ−1l−2C1

[
{3l2 + 2ρl2 + ρ2(l − x)2} log{l + ρ(l − x)}

+ {(1 + ρ)2l2 − ρ2(l − x)2} log{l + ρx} + ρ{2 + ρ}lx + C2ρ
2(l − x)2

]l

l/2

= {2 + ρ}
{

2 log
{
1 + 1

2 ρ
}
− log{1 + ρ}

}
f0 + ρ2f0 (from (2.9)). (A.28)

Substituting (A.22) and (A.28) into (2.6) and using the expression (2.7) for f0, we see that
the solution satisfies the equation (2.6). ¤
Proof of Corollary 2.1

For P∗, we calculate (2.12). From (A.27), we easily see that

l−1

∫ l

0

x f1(x) dx =

∫ l

0

f1(x) dx − 1
2ρ

∫∫
0<x<y<l

f3(x, y) dx dy. (A.29)

The integral l−1
∫ l

0
(l − y)f2(y) dy has the same expression as above. From (A.21) we know

that
∫ l

0
f1(x) dx = ρf0, and from (2.6) we know that

∫∫
0<x<y<l

f3(x, y) dx dy = 1−f0−2ρf0.

Hence we have

P∗ = l−1

∫ l

0

x f1(x) dx + l−1

∫ l

0

(l − y) f2(y) dy +

∫∫
0<x<y<l

f3(x, y) dy

= 2

∫ 1

0

f1(x) dx +

(
1 − 2 · 1

2ρ

) ∫∫
0<x<y<1

f3(x, y) dx dy

= 2ρf0 +

(
1 − 1

ρ

)
(1 − f0 − 2ρf0) = 1 − 1

ρ
+

(
1 +

1
ρ

)
f0. (A.30)

This proves the first expression of (2.14). The equivalence of the second expression to the
first is easily confirmed by using (2.7).
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For P (a), we calculate (2.13). Assume that 0 < a ≤ 1
2 l. A direct integration leads us to

∫ l

a

f1(x) dx = l−1

[
ρ(l − a) − l + ρa

2 + ρ
log

{l + ρa}{1 + ρ}
l + ρ(l − a)

]
f0, and (A.31)

∫ a

0

f2(y) dy = l−1

[
ρa − l + ρ(l − a)

2 + ρ
log

{l + ρa}{1 + ρ}
l + ρ(l − a)

]
f0. (A.32)

Then, using
∫∫

0<x<y<l
f3(x, y) dx dy = 1−f0−2ρf0, from (2.13) we have (2.15) for 0 < a ≤ 1

2 l.

The expression for 1
2 l < a < l can be obtained in a similar manner. ¤

Proof of Corollary 2.2

Since f0 = 1 − 2ρ + 5
2ρ

2 + o(ρ2), (2.16) and (2.17) are easily derived from (2.14) and
(2.15), respectively. ¤

Proof of Corollary 2.3

From (2.14), we have

PM/M/1/1
∗ − P∗ =

(2 + ρ) f0

ρ(1 + ρ)
log

(1 + 1
2
ρ)2

1 + ρ
> 0. (A.33)

Using the inequality log(1 + x) ≤ x for x > −1, we also have

P∗ − PM/M/2/2
∗ =

(1 + ρ) f0

ρ(1 + 2ρ + 2ρ2)

{
ρ2 − (2 + ρ) log

(1 + 1
2
ρ)2

1 + ρ

}
≥ (1 + ρ) f0

ρ(1 + 2ρ + 2ρ2)
· ρ2(2 + 3ρ)

4(1 + ρ)
> 0. (A.34)

These inequalities prove (2.18). ¤

Appendix B. Proofs of Theorem 3.1 and Corollary 3.1

Proof of Theorem 3.1

For brevity of expressions, we put G =
54

3 + 4 log 2
. First we decompose the fraction in

(3.7) into partial fractions.

G−1g(x) =
l2(l − x)

(2l − x)2 (l + x)3
=

2
9

l

(l + x)3
+

1
27

1

(l + x)2
− 1

27

1

(2l − x)2
. (B.1)

Then the indefinite integral of G−1g(x) is given by

∫
G−1g(x) dx =−1

9

l

(l + x)2
− 1

27

1

l + x
− 1

27

1

2l − x
+ C. (B.2)
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Using (3.8) and (3.10), the right-hand side (rhs) of (3.3) is calculated as follows:

rhs of (3.3) = µ l−1

∫ l

x

g(x′) dx′ + 1
2 µ l−1

∫ l

x

{g(x) + g(l − y)} dy

= µ l−1

∫ l

x

{g(y) + 1
2 g(l − y)} dy + 1

2 µ l−1(l − x) g(x)

= Gµ l−1

[
−1

9

l

(l + y)2
− 1

27

1

l + y
− 1

27

1

2l − y

+
1
18

l

(2l − y)2
+

1
54

1

2l − y
+

1
54

1

l + y

]l

x

+ 1
2 µ l−1(l − x) g(x)

= Gµ l−1

{
1
9

l

(l + x)2
+

1
54

1

l + x
+

1
54

1

2l − x
− 1

18

l

(2l − x)2

}
+ 1

2 µ l−1(l − x) g(x)

= Gµ l−1

{
1
9

l

(l + x)2
+

1
54

1

l + x
− 1

54

l + x

(2l − x)2

}
+ 1

2 µ l−1(l − x) g(x)

= 1
2 µ l−1(l + x) g(x) + 1

2 µ l−1(l − x) g(x) = µ g(x) = µ f1(x, z). (B.3)

This proves that the solution (3.8) through (3.10) satisfies the equation (3.3). Further it
is easily seen that the solution also satisfies the equations (3.4) and (3.5), as stated in
footnote 5.

To see the solution satisfies the equation (3.6), we calculate the integrals as follows.∫∫
0<z<x<l

f1(x, z) dz dx +

∫∫
0<y<z<l

f2(y, z) dz dy +

∫∫
0<x<y<l

f3(x, y) dy dx

=

∫ l

0

∫ x

0

g(x) dz dx +

∫ l

0

∫ l

y

g(l − y) dz dy +

∫ l

0

∫ l

x

1
2 {g(x) + g(l − y)} dy dx

= 2

∫ l

0

x g(x) dx +

∫ l

0

(l − x) g(x) dx =

∫ l

0

(l + x) g(x) dx

= G

∫ l

0

(l + x)

{
2
9

l

(l + x)3
+

1
27

1

(l + x)2
− 1

27

1

(2l − x)2

}
dx

= G

[
−2

9

l

l + x
+

1
27

log(l + x) − 1
9

l

2l − x
− 1

27
log(2l − x)

]l

0

= G
{

1
18

+
2
27

log 2
}

= G · 3 + 4 log 2

54
. (B.4)

Hence if we put G =
54

3 + 4 log 2
as we have done at the beginning of the proof, the solution

satisfies the equation (3.6). ¤
Proof of Corollary 3.1

The throughput of the model is calculated by

Λ = µ

∫∫
0<z<x<l

f1(x, z) dz dx + µ

∫∫
0<y<z<l

f2(y, z) dz dy + 2µ

∫∫
0<x<y<l

f3(x, y) dy dx. (B.5)

By using the function g(x), it is expressed as Λ = 2µ
∫ l

0
z g(z) dz + 2µ

∫ l

0
(l − z)g(z) dz =

2µl
∫ l

0
g(z) dz. Then a direct integration leads us to Λ = 1

6 Gµ, and this proves (3.11). ¤
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