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Abstract  This article presents parameter estimation of phase-type (PH) distribution. PH distribution is
widely used in model-based performance evaluation such as reliability and queueing system, and is defied by
an absorbing continuous-time Markov chain (CTMC). Since non-Markovian model can be approximated by a
CTMC by replacing general distributions with PH distributions, the parameter estimation is a challenging
issue in stochastic modeling. We focus on the statistical inference algorithms to estimate not only the
parameters of PH distribution with grouped, truncated and missing data but also the probability density
function, and give two examples of PH fitting in reliability engineering.
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1. Introduction

Stochastic models are frequently used for evaluation of system performance indices in queue-
ing and reliability analyses. In particular, dynamic system behavior of computer sys-
tems, telecommunication network systems, or production systems, is described as a state-
dependent stochastic process. In such model-based performance evaluation, discrete-time
and continuous-time Markov chains (DTMCs/CTMCs) are quite popular to model the sys-
tem behavior [12]. The time-homogeneous DTMC and CTMC are mathematically tractable
and can provide both stationary and transient system performance indices through analyti-
cal approaches. However, when some of state transitions are represented by non-Markovian-
type distributions such as Weibull, normal, log-normal distributions, it becomes difficult to
take analytical approaches in many cases. In such cases, although Monte-Carlo (MC) sim-
ulation approach may be practically useful in some situations, it may not be often suitable
when the high accuracy of system indices is required. For example, in reliability analysis
of mission-critical systems, five through nine nines of quantitative reliability are demanded
in practice. Hence, the analytical approach, if possible, is more preferred to simulation
approach in quantitative reliability assessment.

Phase-type (PH) distribution is defined for a non-negative random variable which is
an absorbing time on time-homogeneous DTMC or CTMC process. It is known that the
stochastic model described by PH distributions is reduced to a time-homogeneous Markov
process with DTMC or CTMC. Furthermore the PH distribution can get close to any prob-
ability distribution with any precision if the number of states of the underlying DTMC
or CTMC infinitely increases [5]. This property provides advantages to both approxima-
tion and estimation in model-based performance analysis. For example, PH expansion is
regarded as one of the most useful approximation techniques for non-Markovian models,
where non-Markovian-type distributions are replaced by PH distributions under the situ-
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ation where the probability density function (p.d.f.) or cumulative distribution function
(c.d.f.) of non-Markovian-type distribution is known. PH expansion approximates the non-
Markovian models to Markov models which are analytically tractable, and the PH-expanded
Markov model approximates the non-Markovian model accurately if the number of states
of the underlying DTMC or CTMC is appropriate. In the estimation, even though the true
distribution is unknown, PH distribution is expected to be close to the true distribution
when the number of states of the underlying DTMC or CTMC infinitely increases*. That
is, by assuming that the true distribution is a family of PH distributions, we develop a
non-parametric-like estimation approach.

In both cases, key issues are how to determine the appropriate number of states of the
underlying DTMC or CTMC and how to determine parameters of PH distributions. These
are called the PH fitting problem. The article mainly focuses on the second issue, i.e., how
to determine PH parameters when the number of states of the underlying DTMC or CTMC
is fixed. Since the essential difference between approximation and estimation is whether
we know the p.d.f. or c.d.f. of the true distribution or not, PH approximation is used to
indicate the PH fitting when the p.d.f. or c.d.f. of the true distribution is known. On the
other hand, PH estimation means the PH fitting when we do not know the true distribution.
Furthermore, the terminology, PH fitting, is used when it is not necessary to distinguish
whether we know the true distribution or not in the article.

Since PH distributions generally involve a large number of parameters, PH fitting is
not so tractable. In past, there are two major approaches for PH fitting with moments
and Kullback-Leibler (KL) divergence. The former determines PH parameters so as to fit
theoretical moments of PH distribution to moments from samples or p.d.f. In PH estimation,
the moments are estimated from samples. In PH approximation, the moments are calculated
from the p.d.f. of distribution. On the other hand, KL-based PH fitting is to find PH
parameters that minimize KL divergence from a PH distribution to the true distribution.
In the context of PH estimation, this corresponds to maximum likelihood (ML) estimation
of PH distribution.

This tutorial article presents a survey of PH fitting and introduces the state-of-the-
art PH fitting algorithm for PH distributions defined on CTMC presented by [67]. More
specifically, we give KL-based PH approximation and estimation procedures with the EM
(expectation-maximization) algorithm [17,87] and uniformization technique. We also refer
to the numerical tool implemented with the statistical software R. Further, we give two
examples of PH fitting; PH estimation for software reliability assessment and PH approxi-
mation for dynamic reliability modeling based on a Markov regenerative process (MRGP).
We introduce the so-called phase-type software reliability model (PH-SRM) [59,60,63] and
mention how to use the PH estimation algorithm to the parameter estimation of PH-SRM.
In the second example, we apply the PH approximation (PH expansion) to describe a par-
allel system with single repair facility by means of the MRGP and evaluate the pointwise
availability.

The organization of this article is as follows. In Section 2, we describe the mathematical
definition and properties of PH distribution. Section 3 overviews PH fitting and introduces
an efficient ML estimation algorithm when grouped, truncated and missing data are given.
In Section 4, we formulate PH-SRM in the context of software reliability engineering, and
present how to use the PH estimation algorithm to get model parameters of PH-SRM.
Section 5 demonstrates the PH apporximation of MRGP. We describe the definition of

*In practice, the bias of estimates should be considered.
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MRGP and provide the Kronecker representation of the approximate MRGP. Finally, we
conclude the article with future research directions of PH fitting in Section 6.

Abbreviation and acronym

PH: Phase type

CTMC: Continuous-time Markov chain
DTMC: Discrete-time Markov chain

MC: Monte-Carlo

p.d.f.: probability density function

c.d.f.: cumulative distribution function

KL: Kullback-Leibler

ML: Maximum likelihood

EM: Expectation maximization

MRGP: Markov regenerative process

PH-SRM: Phase-type software reliability model
APH: Acyclic PH

GPH: General PH

CF1: Canonical form 1

CF2: Canonical form 2

CF3: Canonical form 3

LS: Laplace-Stieltjes

AIC: Akaike information criterion

BIC: Bayesian information criterion

MM: Moment matching

LLF: Log-likelihood function

MCMC: Markov chain Monte Carlo

I1D: independent and identically distributed
NA: Not available

MAP: Markovian arrival process

SRM: Software reliability model

NHPP: Non-homogeneous Poisson process
CPH-SRM: PH-SRM with CF1

HEr-SRM: PH-SRM with hyper-Erlang distribution
GO: Goel-Okumot model

ISS: Inflection S-shaped model

Q-R ISS: Quasi-renewal time-delay model based on ISS
Beta-Mix: NHPP-based SRM with beta mixture
MSE: Mean squared error

MLL: Maximum log-likelihood

DF': Degrees of freedom

EXP: Exponential (transition)

GEN: General (transition)

DE: Double exponential

WEIL: Weibull distribution

LOG: Log-normal distribution

CV2: Squared coefficient of variation

MRSPN: Markov regenerative stochastic Petri net
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2. PH Distribution
2.1. Definition

The PH distribution is defined as a probability distribution for time to absorption in a time-
homogeneous CTMC with an absorbing state. Without loss of generality, we consider an
absorbing CTMC on the finite state space {1,2, ..., m, m+1} with the following infinitesimal

generator:
T T
= 2.1
QPH (0 0) ) ( )
where the state m + 1 indicates the absorbing state. Also, T is an infinitesimal generator
between transient states {1,2,...,m}, and 7 is a column vector for transition rates to

the absorbing state. Let 7; and \;; denote the i-th entry of 7 and the (i, j)-entry of T,
respectively. By using the column vector 1 whose all elements are 1, the vector 7 is given
by 7 = —T'1. The above absorbing CTMC process is called a phase process, denoted by J,
where x indicates time, and the transient state of phase process is called phase in general.
The PH random variable is defined by the first passage time to the absorbing state on the
phase process J,, i.e.,

X =inf{z > 0; J, =m+ 1}. (2.2)

Suppose that the initial phase Jy is determined by a probability (row) vector a =
(v, ..., ay,) over the transient states. Then the p.d.f. and c.d.f. of X can be written with
the PH parameters (o, T, 7): T

fru(z) = aexp(Tx)T, 0<x < o0, (2.3)
Fpp(z) =1—aexp(Tz)l, 0<z < oo, (2.4)

respectively.
2.2. Properties

It is known that PH distribution consists of the mixture/convolution of exponential distri-
butions. Hence it involves some well-known probability distributions as the special cases.
The exponential distribution is the simplest PH distribution when the number of phases (the
number of transient states in the phase process) is 1. Similarly, since the Erlang distribution,
hyper-exponential distribution, hypo-exponential distribution and mixture of Erlang distri-
butions can be obtained from the mixture/convolution of exponential distributions, they
are also subclasses of PH distributions. These subclasses do not have any cyclic structure
between transient states, and then belong to a class of acyclic PH distribution (APH). Since
the APH distribution is mathematically tractable and a superclass of commonly-used dis-
tributions such as the exponential and Erlang distributions, the APH distribution is quite
important in applications. Also the PH distribution whose parameters do not have any
constraint is called the general PH distribution (GPH). The relationship among subclasses
of PH distributions is summarized in Figure 1.

Cumani [16] derived three canonical forms of APH distribution; CF1, CF2 and CF3, and
proved that all of APH distributions can be reconfigured to any one of the canonical forms

fIn fact, since the PH representation (a0, T, 7) is redundant, the PH distribution is essentially defined only
by (e, T). In our PH fitting, it is noted that the diagonals of T" are computed from non-diagonals of T' and
T, so we use the PH representation (o, T, 7).
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General PH distribution

Acyclic PH distribution
(Canonical forms: CF1, CF2, CF3)

Mixture of Erlang
distribution
(Hyper-Erlang distribution)

Hypo-exponential
distribution

Erlang
distribution

iaf distfibution

Hyper-exponential
distribution

Figure 1: Relationship among subclasses of PH distributions

which have 2m — 1 free parameters. Specifically, CF1 (canonical form 1) is defined by

o= (a1 Qg v am) , (2.5)
-6 A
B B 0
T — , T = 0 , (2.6)
_ﬁm—l 6771—1 ﬁ
_ﬁm "

where 0 < 3; < --- < ,,. Throughout the article, blanks in a matrix indicate zero entries.
When the parameter constraint 0 < §; < --- < 3, does not hold in Equation (2.6), the
resulting PH distribution is called a bidiagonal PH distribution [28] to distinguish it from
CF1.

On the other hand, CF2 and CF3 are given as variants of CF'1. Concretely speaking, by
using CF1 parameters, CF2 can be represented in the form;

a:(l 0 --- O), (2.7)
_ﬁm alﬁm O52ﬁm e am—lﬁm anﬁn
—h b1 0
T = ,oT=| |- (2.8)
_ﬁm72 6m72 0
_ﬁm—l 5m—1
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Also, CF3 is given by

a=(10 - 0), (2.9)
_ﬂm (1 - Vm)ﬂm
_6m71 (1 — f)/mfl)ﬁmfl ’Ymﬁm
T — - , T = : , (2.10)
—Fy (1 —72)0 72%
_ﬁl Y1P1

where v; = o;/(1 = 3", ., a;). When the parameter of CF3 are allowed to be complex
numbers, the structure of CF3 reduces Coxian distribution [19,85]. That is, CF3 is a special
case of Coxian distribution in which the parameters are restricted to be real numbers.

PH distribution has closure properties for convolution, mixture, minimum and maxi-
mum operations. Let X, and Xp be independent PH random variables with parameters
(aa, Ta,74) and (ap, T, Tp), respectively. Then X = X4 + Xp becomes a PH random
variable with the following parameters:

e convolution

ac = (s 0), TC:(TA T;;‘;B), Tc:(o). (211)

B

A mixture of X4 and Xp is expressed as X¢ = xX4 + (1 — x)Xp where x is the indicator
random variable with probability p. This means the random variable X chooses either of
X4 or Xp with probability p. The random variable Xs becomes a PH random variable
having the parameters:

e mixture
Ty TA
ac = (pa 1—-pag), Tc= , To = . 2.12
c (p a ) B) c ( TB) c (7‘3) ( )
In a fashion similar to the previous discussion, let XZ" = min(X4, Xp) and X2 =

max (X4, Xp) be minimum and maximum of X4 and Xp, respectively. Then they are PH
random variables with the following parameters:
e minimum

ac:aA®aB, TC:TA@TB, T:TA®1+1®TB, (213)
e maximum
TA@TB TA®I I®TB 0
aC:(aA®aB 0 O), TC: TB s T = TR s
Ta TA
(2.14)
where ® and @ are the Kronecker product and sum, respectively.
Furthermore, let Xi,..., X, be independent PH random variables. Then we suppose
that X4 and Xp are random variables that are generated by convolution, mixture, mini-
mum and maximum operations of Xy,..., X,,. According to the above properties, X4 and

Xp are also PH random variables but they may not be independent. However, it is clear
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System failure

failure A failure B Component faiure

. Q AND gate
Q OR gate

Figure 2: An example of fault tree

O

that a random variable generated by convolution, mixture, minimum and maximum opera-
tions of X4 and Xp becomes a PH random variable generated by independent PH random
variables X1, ..., X,,. Thus, although the expressions of p.d.f. are more complex, the closure
properties hold even in the class of X4 and Xp.

In the reliability engineering, it is commonly supposed that a system failure is caused by
multiple component failures. This causal relationship is often modeled by fault trees. The
fault tree analysis is a kind of root-cause analysis which represents the condition that causes
an event occurrence by using AND/OR conditions [7]. Figure 2 illustrates an example of
fault tree. In this tree, leaf nodes correspond to component failure events, and AND/OR
gates express the failure conditions for upper events. The AND gate means that the upper
event occurs only when all the leaf events occur. The OR gate indicates that the upper
event occurs when at least one event occurs.

In AND gate, X4 and Xp denote random variables of event occurrence time for lower
events A and B. Then the upper event occurrence time is given by max(X 4, Xg). Similarly,
in the case of OR gate, the upper event occurrence time is given by min(X 4, Xp). That is,
the top event occurrence time is given by min-max operations of component failure times. In
Figure 2, e.g., the system failure (top event) occurs at min(X;, max(Xs, X3), max(Xs, Xy)).
From this insight, when X1, ..., X4 are mutually independent, we have the following propo-
sition.

Proposition 2.1. In the fault tree model, when component failure times are assumed to
be independent PH random wvariables, the system failure time also becomes a PH random
variable which is constructed by min-mazx operations of component failure times.

By combining the above proposition with Equations (2.13) and (2.14), it is easily seen that
when component failure times follow independent APH random variables, the system failure
time also becomes an APH random variable. Furthermore, since any APH distribution can
be transformed to the canonical forms, we have the following proposition.
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Proposition 2.2. In the fault tree model, when component failure times are assumed to
be independent APH random variables, the probability distribution of system failure time is
expressed as the canonical forms.

This property implies that even if we do not know the exact failure mechanism for the
system failure such as fault trees, the system failure time distribution is represented by a
canonical form of PH distributions. In particular, since component failure times are often
independent exponential random variables in the reliability engineering, the canonical forms
are appropriate for representing the probability distribution of system failure time.

3. PH Fitting
3.1. Historical survey

The purpose of PH fitting is to determine PH parameters (o, T, T) so as to approximate
the target distribution by the fitted PH distribution. In particular, the PH estimation is
the PH fitting from data under the situation where we do not know the true distribution
and the PH approximation is the PH fitting from p.d.f. or c.d.f. of the true distribution.
In both cases, the accuracies of estimation and approximation depend on the number of
phases and the subclasses. For example, if the number of phases is 1, the corresponding PH
distribution is the exponential distribution. Needless to say, the exponential distribution
does not possess the relatively high fitting ability. Hence we encounter the following three
research questions on PH fitting:

(i) What is the appropriate subclass of PH distributions?
(ii) How many phases are required?
(iii) How should the estimates of (o, T, 7) be determined?

On the research question (i), three kinds of phase structures, GPH, APH and mixture of
exponential /Erlang distributions, are typically used. In particular, since APH distribution
can be transformed to the canonical forms, PH fitting for APH distribution is discussed in
the context of parameter estimation of canonical forms.

It is worth mentioning that the research question (ii) has been still open as an unre-
solved problem for PH fitting. Several approaches have been proposed in past researches.
Particularly, in the PH approximation, the number of phases is determined by the criterion
of approximation. For example, when the criterion is given by the moments of a target
distribution, the accuracy of approximation can be defined by how many moments should
be used. Osogami and Harchol-Balter [71] and Bobbio et al. [10] gave the moment-based
method for APH distribution with the first three moments, and revealed the minimum
number of phases that is necessary to match the first three moments. A more sophisticated
approach is based on the Laplace-Stieltjes (LS) transform. O’Cinneide [54-57] discussed
the characteristics of PH distribution, and provided the lower bounds on the number of
phases of PH distribution by means of poles of LS transform. He and Zhang [28] derived
the phase reduction algorithm to find the minimal representation of Coxian distribution
based on O’Cinneide’s works. On the other hand, in the PH estimation, the theoretically
valid approach in the sense of statistics would be to use information criteria such as AIC
(Akaike information criterion) [2] and BIC (Bayesian information criterion) [78]. They are
used in many applications of statistical model selection problem. The information criterion
essentially handles the penalty term incurred by increasing the number of model param-
eters. That is, this method leads to find the appropriate number of phases by means of
information criteria.
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On the research question (iii), there are many variations proposed in the past literature,
where the methods can be classified into three types. The first method is moment-based
approach, which is often called moment matching (MM) method and is mainly used in
the PH approximation. The concept of MM method is to find PH parameters so that
the population moments can fit the moments derived from samples or p.d.f. of the true
distribution. As mentioned before, the accuracy of MM method depends on how many
moments is used. In general, it is difficult to develop the MM method with a large number
of moments. In fact, many authors focused on only the first two or three moments to
determine PH parameters.

The main concern for the earliest PH fitting was the MM method with special structure
such as a mixture of Erlang distributions and CF3 with 2 phases using the first two mo-
ments in application of Markov model [48]. Altiok [4] presented a method to approximate
general distributions by PH distributions via LS transform of the mixture of exponential
distributions. van der Heijden [85] gave a simple formula for the MM method of CF3 with
the first three moments. Aldous and Shepp [3] showed that the number of phases is easily
determined by the coefficient variation for Erlang distribution. Johnson and Taaffe [34-37]
and Johnson [33] conducted several works on PH fitting for the mixture of Erlang distribu-
tions with non-linear programming techniques in terms of the difference of p.d.f. as well as
moments. In the context of the MM method for APH distribution, Telek and Heindl [80]
presented a method for 2-phase APH distributions. Osogami and Harchol-Balter [71] and
Bobbio et al. [10] proposed the MM methods that provide the minimum number of phases
to fit to the first three moments. van de Liefvoort [84] and Telek and Horvath [81] extended
the PH distribution to the matrix-exponential distribution, and discussed the MM methods
with high-order moments. In PH fitting, the problem of how to approximate a heavy-tailed
distribution was often discussed. The heavy-tailed distributions are distributions whose
tails are not exponentially decayed. Feldmann and Whitte [20] discussed the method to
approximate the heavy-tailed distribution with the mixture of exponentials.

Here we remark on the computational risk in the use of MM method in the PH estimation.
It has no doubt that the MM method works well for PH approximation, because moments
are exactly computed from the p.d.f. However, in the PH estimation, we should always
consider the estimation errors for moments. In general, an estimate of high-order moment
is rather sensitive to errors caused by random samples. Thus it is difficult to obtain the
accurate estimates of high-order moments when the number of samples is small. In addition,
there is the situation where we cannot know even the first moment exactly in the case where
some data are missing.

The second approach is to use KL (Kullback-Leibler) divergence which is called KIL-
based approach in this article. The KL-based approach reduces the maximum likelihood
(ML) estimation when we do not know the true distribution. The ML estimation is a
commonly used technique to estimate model parameters by maximizing the likelihood so
that the observed data are drawn from the model. The advantage of ML estimation is that
it can estimate parameters from any type of data and can enjoy several rich properties in
statistics, such as asymptotic normality in PH fitting. Then this approach is superior to
the moment-based approach in the PH estimation. Also, when we know the p.d.f. of the
true distribution, the KL-based approach is to determine PH parameters that minimizes the
KL divergence to the true distribution. Since the KL divergence is defined by the integral
of the true distribution and a PH distribution, the KL-based approach is also used in the
PH approximation through techniques of numerical quadrature. On the other hand, since
the computation cost of KL-based approach is relatively high compared to moment-based
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approach, the challenging issue is to reduce the computation cost. The EM (expectation-
maximization) algorithm [17,87] is frequently used for PH fitting.

Bobbio and Cumani [9] presented the ML estimation for canonical forms by solving the
non-linear programming. In their method, the linear programming was iteratively applied
to solve the non-linear programming to maximize the log-likelihood function (LLF). The
method was almost similar to the steepest decent method but introduced constraints to
ensure the parameter constraints of canonical forms. Also Bobbio and Telek [11] carried
out experiments on ML estimation for APH distribution. Asmussen et al. [6] proposed an
EM algorithm for GPH distribution, and also presented an idea of using numerical quadra-
ture for PH approximation. Olsson [70] extended the EM algorithm for PH estimation
with censored data. Okamura et al. [66] improved Asmussen’s EM algorithm with respect
to time complexity of the number of phases. Also, they proposed an improved algorithm
for estimating APH distribution with EM algorithm. Moreover, in [67], the PH fitting
with EM algorithm is extended to handle grouped, truncated and missing data. On the
other hand, for PH fitting with the mixture of Erlang distributions (hyper-Erlang distribu-
tion), Thummler et al. [82] and Panchenko and Thumler [72] developed the EM algorithms
which can determine the phase structure of hyper-Erlang distribution. Compared to APH
distribution, the hyper-Erlang distribution is inferior to representation ability because the
hyper-Erlang distribution is a sub-class of APH distribution. However, their algorithm is
much faster than the EM algorithms for APH distributions. Based on the EM algorithms
for hyper-Erlang distributions, Reinecke et al. [77] proposed the method to combine the
data clustering and PH fitting to fit to heavy-tailed distribution according to the idea of
Feldmann and Whitte [20].

The third method is Bayes estimation, which is only used for the PH estimation. In the
Bayesian paradigm, it is assumed that unknown model parameters are random variables.
By observing field data, the corresponding probability distribution of model parameter is
updated according to the Bayes theorem. The updated probability distribution of model
parameter is called the posterior distribution, and the probability distribution of model
parameter before the update is called the prior distribution. The main feature of Bayes
estimation is to compute the posterior distributions of parameters. The Bayes estimation
enables us to evaluate not only interval estimation of parameters but also the predictive
distribution in many cases. However, the computation of posterior distribution is often
more expensive than moment-based and KL-based approaches as well.

Bladt et al. [8] proposed an MCMC (Markov chain Monte Carlo) algorithm for GPH dis-
tribution with Markov jump process to approximate the posterior distributions. Watanabe
et al. [86] considered an improved MCMC algorithm by using the uniformization technique
to improve the computation speed. Yamaguchi et al. [92] and Okamura et al. [68] pro-
posed the variational Bayes algorithms for the mixture of Erlang distributions and GPH
distribution. The presented methods are much faster than MCMC-based algorithms.

3.2. KL-based PH fitting

The KL-based approach is to determine PH parameters that minimize KL divergence. Con-
sider the situation where a p.d.f. f(z) is approximated by a PH distribution with p.d.f.
fpu(x). The KL divergence K L(f, fpy) between f(z) and fpy(z) is defined as follows.

f()
L(f, fou) = / @) log 1T da

— | sz stapde ~ [ fa)log fon (o). (3.1
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The KL divergence means the distance between f(x) and fpy(z). If f(z) and fpy(x) are ex-
actly same, the KL divergence becomes 0. Since the first term of Equation (3.1) is a constant
with respect to the PH parameters, we find fpy(t) maximizing [ f(2)log fpu(x)da.

In the PH estimation, since the true distribution f(x) is unknown, we estimate the second
term of Equation (3.1) from observed data. For example, let x1,. .., z, be IID (independent
and identically distributed) samples from the true distribution. The second term can be
estimated as the following LLF":

/OOO f(z)log fpy(x)dx ~ Zlog fra(z), (3.2)

and the PH parameters are determined to solve the maximization problem the above LLF.
In the PH approximation, the p.d.f. of the true distribution is known. When applying a
suitable numerical quadrature to the second term of Equation (3.1), we have

/OO f(z)log fpu(x)dx ~ Zwi log fpu(x,). (3.3)
0 i=1

The above equation implies that the KL-based PH approximation reduces the ML esti-
mation with the weighted IID samples (z1,w1),. .., (zn, w,). Also, the accuracy of PH
approximation is evaluated by the KL divergence between them.

3.3. EM algorithm

The EM algorithm is an iterative method for ML estimation under the situation where there
exists unobserved data [17,87]. Let D and U be observable and unobservable data vectors,
respectively, and we estimate a model parameter vector 6 from only the observable data

D. Then the problem corresponds to finding a parameter vector that maximizes a marginal
LLF:

A

0 = argmax L£(0; D), (3.4)
0

L(0;D) =logp(D;0) = log/p(D,L{; 0)du, (3.5)

where p(-) is a probability density or mass function.
From Jensen’s inequality, for any model parameter vector 8, we have

Lwﬂ»:mg/mp¢amﬂ4

D .
:log/—p< U O)p(Z/{]D; 0')du

p(U|D; 6
D,U;0)
> [ pu1D: 6105 PPH50) 1y — 200,907, 3.6
> [ o0 0 B = 2 (0:0) (36)
Since the distribution of unobservable data is
p(D,U;0)
U\D:; 0) = 3.7
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the lower bound of the marginal LLF Z(0;80’) can be rewritten by

2(0;0') = /p(um; 0') log p(u|p’§2z/{|g(z;§/{’9)wdu
= /p(uu); 6') log %duﬂog/p(p,u; 6)dlA. (3.8)
Then we have the following formula:
L(0;D) — 2(0;6') = KL(p(U|D; &), p(U|D; 9)). (3.9)
Also the difference £(0; D) — L(6'; D) holds
L(6;D) — L(0",D) = 2(0;6') — 2(6';0") + KL(p(UD; 0'), p(U|D; 9)). (3.10)

Since KL(-,-) > 0, the model parameter vector 0 that satisfies Z(0;60) — Z(0';6") > 0
yields £(0; D) — L(0"; D) > 0. In other words, when we find 6 that maximizes Z(0;80") for
a fixed @', the marginal LLF for @ is greater than that for '

Let Q(0]0") denote the expected LLF of the complete data vector (D,U) with respect
to the distribution for unobservable data vector under a provisional parameter @', i.e.,

Q(016") = [ pu|D:0")1og (D14 0) . (3.11)
Then the lower bound Z(8;0’) is rewritten in the form:
2(6:6) = Q(616") ~ [ pUID:6") og (U Ds 8t (3.12)

Since the second term of the above equation is constant with respect to 6, we obtain
Z(0;0') — 2(6';0') = Q(0|0") — Q(0'|0'). Thus the maximization of Z(80;80") is reduced to
the maximization Q(0]6").

According to the above discussions, the EM algorithm consists of E-step and M-step.
E-step computes the expected LLF Q(6|@’) with a given provisional parameter vector 6'.
In the M-step, we find a new parameter vector 8 that maximizes the expected LLF:

0 — argmaxQ(6]0"). (3.13)
0

Since the marginal LLF for 0 is surely greater than that for 8, we can perform the same
E- and M-steps by replacing 8 with 8. These steps are repeatedly executed until the
parameters converge. It should be noted that the EM algorithm does not guarantee that
the parameters converge to ML estimates. That is, the EM algorithm may converge to a
local maximum of the marginal LLF. To avoid the convergence to a local maximum, it is
important to choose appropriate initial guesses of parameters.
3.4. PH estimation with grouped, truncated and missing data
Here we introduce a PH estimation algorithm proposed by [67] based on ML estimation with
EM algorithm. It can be applied to estimating GPH parameters with grouped, truncated
and missing data.

The grouped data consists of several time intervals and the number of events that occur
in the time intervals. The time points that generate time intervals are called break points
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Table 1: Examples of grouped, truncated and missing data for PH fitting (break points:
0,10, 20,...,90,100)

Data (a) Data (b)
Time interval | The number of events Time interval | The number of events
[0, 10] 1 [0, 10] 1
[10, 20] NA [10, 20] NA
[20, 30] 4 20, 30] 4
(30, 40] 10 (30, 40] 10
[40, 50] NA 40, 50] NA
[50, 60] 30 (50, 60] 30
[60, 70] 10 (60, 70] 10
[70, 80] 12 70, 80] 12
(80, 90] 4 80, 90] 4
[90, 100] 0 (90, 100] 0
(100, oo] 5 [100, o] NA

in this article. Table 1 (a) presents an example of the grouped, truncated and missing data
on break points 0, 10,20, ...,100. In this table, the values in intervals [10,20] and [40, 50]
are missing and denoted as NA (not available). Furthermore, the bottom row means that
5 samples are truncated at 100. Similarly, Table 1 (b) gives another example. In this case,
several samples are truncated at 100 but we cannot know the exact number of truncated
samples. In this way, it is worth noting that the incomplete data such grouped, truncated
and missing data frequently appear in field data analysis.

Consider the grouped data on the break points 0 = 2o < x; < --+ < xg, i.e., the data
consist of the number of samples for K + 1 intervals [0, x1), [x2, 3),..., [Tk, 00). For the
sake of notational convenience, let X *4) be the I-th sample in the k-th interval. In addition,
we assume two kinds of intervals; observable and unobservable intervals. Let Z and Z be the
sets of indexes of observable and unobservable intervals. Note that Z and Z are disjoint, and
that Z U T gives all the indexes, i.e., ZUZ = {1,2,..., K +1}. We can count the numbers
of samples in only the observable intervals, but the numbers of samples in the unobservable
intervals are unknown, i.e., the data are missing in the unobservable intervals.

Let D = {ny }rezr be the numbers of samples in observable intervals. Define the following
unobserved variables:

e U;: the number of samples in the k-th unobserved interval [z}, zx), k € 7.

° BZ-(k’l): an indicator random variable for the event that the phase process of X ¥ begins
with phase 7.

Zi(k’l): the total sojourn time of phase ¢ on the phase process of X*.

o Yi(k’l): an indicator random variable for the event that the phase process of X®*! is ¢

just before the absorption.

Mi(f;’l): the total number of phase transitions from i to j on the phase process of X*1.

Since the estimates of CTMC parameters are given by frequencies and sojourn time for
each state under the situation where the CTMC process is completely observed, the M-step
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formulas of PH parameters are obtained from Equation (3.13) in the following:

ng k,l k,l
Seer B[S0 BMY| D] + Sr B[ 2 B D)

Q; — : (3.14)
> ker M+ D ez BlUR| D]
Z [ nk kl‘D]+Z [ Ug kl‘D}
kel kel =1
Ti (k) ) (3.15)
Zkez [ k i ) D] + Zkef [ l kl ’ D}
n k,l U kl
ZkGIE [ l:kl Mz(g )’ D} + ZkefE [ l kl )’ D}

n k,l U, k,l)
Seer B[S0 250 D] + g B | ,;125 '|p|

Note that all the expected values are computed by the provisional PH parameters 8 =
(a0, T, T).

Next we derive the analytical forms of the expected values in Equations (3.14)—(3.16).
Since it is known that the posterior distribution of unobserved samples U = {U}, .7 be-
comes a negative multinomial distribution [49], the expected value of Uy, k € T becomes
the similar expression of the expected value of negative multinomial distribution:

N [*F f .
f””’“ ! pir{ kel
ZZEI fPH( )dx

where N =%, ;- ny, and fpg(x) is the p.d.f. of PH distribution.
Define the following row and column vectors for a PH random variable X and its phase
process J,:

E[UL|D] = (3.17)

[f(2)li = P(Ja =), [b(x)]i = P(X = z|Jo = 1), (3.18)

where i # 0 and, for the sake of notational convenience, P(X = x) means the p.d.f.

Since X*Y are IID samples, the expected value of Bi(k’l) in the observable interval is
given by

nZkB(k’l) D npP(Jo =1, zp—1 < X < xy)
=1 ' P(xk_l < X <)

T Lo P(lo=9)P(X =]y = i)dw i [,1 | calb(a)]ide
— [2F P(X = x)dx L pr( )dx

In the case of unobservable interval, by using the posterior distribution of Uy, the expected
value becomes

= nkE[Bi|xk_1 < X< J}k] =

(3.19)

U
Z gD

D] = ZnE[BAUk =n, 251 < X < 2] P(Uy = n|D)

a;[b(x )] E[U|D] [;F | ailb(x)]idz
- Z I lpr<x> P =alD) = < e
Nfzk . i[b(z)];dx
= Zzez fPH(ZU) (3.20)
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Similarly, we have

iy(kvl) D Tk fx:_l P(X =, ']J;_ = Z)d.l?
=1 l P(rp_1 < X < )
n [0 P(Jy =0)P(J, =0J; =d)de  ny [;" [f(2)imde

ST Paa <X N pr( w82

Dl = foik_l[-f(x)]ﬁidx
ez Jo, feu(z)da’

(3.22)

where J = lim,/ o+ Jy_s.

For ZZ(k’l) and Mi(f;’l), the expected values in the observable interval are

3 ALY o o PX =2, Jy = i)dudz

= P(-’Bk—l < X <)

k xfr;il Jy P(J, = i)P(X = z,|J, = i)dudx
P(xk 1 < X < xy)

0 b(x — u));dudx
[ lff fPH( . idude. o

B D

P(l’k_l < X< ZL’k>

o fS Py =0)P(J, =gl = i)P(X = x,|J, = j)dudz
P(%k 1 <X < l'k)

o fo Jidij[b(z — u)] jdudx

B ka ) fPH(:U)dx ' (3.24)

Also the expected values in the unobservable interval become

o
By z"D
=1

U,

(3.25)

ka 1 fom[ i - U)] dudx
et ) fPH(:U)dx ’
ka 1 Jo [f @)]idij[b(x — w)]jdudz
D] Ziez - fPH(x)dm '

(3.26)

To compute the expected values, we define the following vectors and matrices based on
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f(z) = aexp(Tzx) and b(z) = exp(Tz)T:

f.= h f(z)dr = a(=T) ' exp(Tty,), (3.27)
xy,
Fo= [ f@ar=F- (3.23)
Tr—1
b, = /OO b(x)dx = exp(Txy)1, (3.29)
T,
b — / " b(e)dr = b1 — B, (3.30)
o1
H, = /OO /Ou b(x — u) f(u)dudr = /Ork exp(T (xy, — u))lacexp(Tu)du + 1 F,,
- % +1f,, (3.31)
i, - / h /O " b(x — ) F(u)dudz = Ty o — Tp+ 17, (3.32)
Tp_1
where Y, = [ exp(T'(zx — u))1laexp(Tu)du. By using the above vectors and matrices,

the expected values are rewritten as

Nab
E[U,|D] = — 2% (3.33)
Zz’ez ab;

[ ng i ; B ; [ Uk ] No; B i

B[S 0| p| = mailbidi B|S | p| = Noulbid: (3.34)
o | ab; | =1 ] > ez @by
© ng - - M Uk 7 ~

B|S v p| = [ F] i B[S v p| = NIflimi. : (3.35)
| =1 abk L I=1 | EuEI ab“
[ ng 7 ﬂ' Y [ Uk | N IT? i

B[S 2| p| - e H el B[S 28| p| = NH i (3.36)
| =1 ] abk L I=1 i ZueI abu
[ i [Hls [ Uk N [H

E Z Mi(?l) D| = =5 E Z Mz‘(?l) D| =" (3.37)
| =1 ’ abk =1 ’ ZuGI ab“

It can be seen that }'k, b., H) are replaced by f,, by, H}, respectively, at k = K + 1,
because tx 1 goes to infinity.

Much computation time of the EM algorithm for PH distribution is spent for the calcu-
lation of convolution integral of matrix exponential. In [61,66], the effective computation
algorithm for the convolution integral of matrix exponential was proposed based on the
uniformization. Let Y (¢;v1,v5) be the convolution integral of matrix exponential;

Y(z;v1,09) = /Or exp(T(z — u))vvy exp(Tu)du, (3.38)

where v, and v, are arbitrary column and row vectors, respectively. Algorithm 1 presents
a pseudo code to compute Y(z;v1,vs). In this algorithm, ¢ is an error tolerance for
the computation of Poisson probability. The function PoiBound(u,e) gives the first point
where the c.d.f. of Poisson distribution with mean p becomes more than 1 — . The func-
tion PoiProb(n, u) is the Poisson probability mass function with mean parameter p, i.e.,
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Algorithm 1 Uniformization-based convolution integral of matrix exponential

function convint(z, w;, v3) : return value Y
r < max(abs(diag(T))); P« I +T/r; R« PoiBound(rz,¢)
’01(0> — Vq

for i=1:R do
Ul(i) — P’Ul(’i — 1)
end for
v3(R) < PoiProb(R + 1,72)v,
for i=R—1:0 do
V2(1) < v2(i + 1)P 4 PoiProb(i + 1, rz)v,
end for
T—0
for i1=0:R do
Y — Y + vy (i)vs(i)/r
end for
end function

e Mu™/nl. Also I means the identity matrix. The time complexity of Algorithm 1 is pro-
portional to a square of the number of phases. In particular, when T is a sparse matrix,
the time complexity is proportional to the number of non-zero elements of T .

Applying the algorithm to the computation of expected values, we define

K+1
H =) w.H, (3.39)
k=1
where
wy = {n’“/ﬂb’“ kel (3.40)
N/> e by, kel
From H = H;_, — H;, and H, = Y (21, ) + 1f,, we get
K+1 K
H=> wlf,+> Y(Argbii,cr), (3.41)
k=1 k=1
where Az, = z;, — 211 and
K
cp = Z(MHI —wi)aexp(T (b — ) (3.42)
1=k

Algorithm 2 indicates our E-step procedure for PH distributions under grouped, trun-
cated and missing data according to the above formulas. In this algorithm, the func-
tion convint(x,v;,vy) denotes the convolution integral of matrix exponential presented
in Algorithm 1. By using the results of Algorithm 2, the parameters are updated as
a; — o;[Bli/(N +U), 7 — 7[Y];/[H]iy and Aij — Aij[H];i/[H]is.

As mentioned before, any APH distribution can be transformed to three types of canon-
ical forms [16]. In the M-step, the parameters are updated by using the results of E-step;

;[ Bl; Ni[H i1, . MY ]
: — T =1,... —1 _
N + U7 )\Z — [H]LZ or 7 )l 7m 9 )\m — [H]m’m

Q<

(3.43)
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Algorithm 2 E-step procedure for PH distributions with grouped, truncated and missing
data
B+—0;Y«~0;, H—O
fo—a(-T)™" by« 1; N«—0; U0
for k=1:K do . .
fro— feo1exp(TAx); fr— foor — Frs be «— exp(TAxy)bp_1; by — by — by,
if k€7 then
Afe—N?%nk;lfe—U?%aEk
end if
end for
if K4+ 1€Z then
N<—N+TLK+1; UHU—F(){EK
end if
for k=1:K do
if k€7 then
w(k) — ny/oby;
else
w(k) — N/U
end if
B — B+uwk)by; Y <Y +wk)f,
end for
if K4+ 1€Z then
w(K + 1) « ng41/abg
else
w(K + 1)« N/U
end if
B~ B+wK+1)b,; Y «Y +wK-+1)f,
ck — (WK +1)—w(K))a
for k=K —1:1 do
ci — Cpr1exp(TAzpy1) + (w(k+ 1) —w(k))a
end for
for k=1:K do
H — II-+YU(k)1}};+—Convint(l&xk,5k,1,ck)
end for

H«— H+w(K+1)1fg
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Algorithm 3 Re-sorting algorithm
for i=1:(m—1) do
for j=1:(m—1) do
if A\; > A\j;1 then
aj — o+ a1 (1 — N1 /A));
Qjp1 — Q1A /A
swap(Aj, Aj+1);
end if
end for
end for

However, this procedure does not ensure that the restriction of CF1 holds. Okamura et al.
proposed Algorithm 3 as the re-sorting algorithm of Ay, ..., A\, for the bidiagonal PH dis-
tribution. After every M-step execution, Algorithm 3 is performed to ensure the restriction.

3.5. Tools

Several PH fitting software tools are available. EMpht [18] is a C program tool for PH
fitting with EM algorithms by Asmussen et al. [6] and Olsson [70]. PhF'it [29,76] consists of
a Java-based interference and computation engines written by C language. This tool deals
with continuous and discrete PHs. Furthermore, it can be applied to PH fitting from a
p.d.f. momentmatching [50] is a set of MATLAB files to execute three moment matching
algorithms [71]. BuTools [13] are program packages for Mathematica and MATLAB/Octave.
The tool provides MAP (Markovian arrival process) fitting as well as PH fitting based on
the MM method. G-FIT [23] is a command line tool to provide EM algorithms for the
hyper-Erlang distribution [72,82]. jPhasel'it [38] is a library for Java to handle PHs. In
this library, both of PH fitting algorithms with MM and EM algorithm are implemented. In
particular, EM algorithm for hyper-Erlang distribution [82] was implemented in this tool.
HyperStar [31] is a Java-based GUI tool to estimate hyper-Erlang distribution and to plot
graphs. It implements the cluster-based algorithm [77]. mapfit [47,62] is a package of R
for PH/MAP fitting, which is distributed by CRAN. This package provides the fast EM
algorithms for PH/MAP [61,66] and PH/MAP fitting with grouped data [65,67].

4. Phase-Type Software Reliability Model

In this section, we present the phase-type software reliability model (PH-SRM) proposed by
[59,60,63] as an application example of PH fitting in the reliability engineering. The software
reliability model (SRM) is a well-known stochastic model for estimating the number of bugs
and software reliability quantitatively [46,51,52,74]. It is also used to estimate the number of
remaining bugs before/after testing with the bug detection data collected in testing process.
During the last four decades, non-homogeneous Poisson processes (NHPPs) based SRMs
have gained much popularity for modeling the behavior of software-fault detection process.
The NHPP-based SRMs are mathematically tractable, and then a number of NHPP-based
SRMs have been proposed in the literature. Goel and Okumoto [26], Littlewood [44,45],
Yamada et al. [90], Musa and Okumoto [53], Ohba [58], Goel [25], Laprie et al. [43] and
Gokhale and Trivedi [27] presented typical NHPP-based SRMs. Even in recent years, many
researchers still proposed NHPP-based SRMs with different mean value functions under
different modeling scenarios such as imperfect debugging, change points, testing efforts and
fault correction process [30,32,64,73,88].
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Table 2: Relationship between fault detection time distributions and NHPP-based SRMs

Distribution

\ NHPP-based SRM

Exponential
2-stage Erlang
k-state Erlang
Pareto

Weibull
Gompertz
Hyperexponential
Hypoexponential
Truncated logistic
Log-logistic
Truncated normal

Goel-Okumoto model [26]
Delayed S-shaped model [90]
k-stage Erlangian NHPP [39,94]
Littlewood [44, 45]

Goel [25]

Yamada [89]

Hyper-exponential model [43]
Time-domain dependent model [22]
Infection S-shaped model [58]
Gokhale and Trivedi [27]
Okamura et al. [64]

Log-normal Achcar et al. [1]

4.1. NHPP-based SRM

Langberg and Singpurwalla [42] showed that almost all of the NHPP-based SRMs follow
a simple debugging scenario, which causes a unified modeling framework for NHPP-based
SRMs. Suppose that

(A-1) The total number of software faults is a Poisson random variable with mean w.
(A-2) All of the software fault detection times are IID random variables having a c.d.f.
Let M(x) be the cumulative number of software faults before time x. Provided that the
total number of software faults is given by N, the number of faults detected before time ¢
follows the binomial distribution with success probability F'(z). Then we have

P(M(x) = y|M(c0) = N) = (4.1)

Y

(") e

where F(z) = 1 — F(x). Since N is a Poisson random variable with mean w, the probability
mass function (p.m.f.) of M(x) is given by

(4.2)

The above p.m.f. is equivalent to the NHPP with mean value function wF(x) [42].

Equation (4.2) implies that each of NHPP-based SRMs can be characterized by a par-
ticular fault detection time distribution. Table 2 presents relationship between typical fault
detection time distributions and corresponding NHPP-based SRMs.

4.2. PH-SRM

Okamura and Dohi [59, 60, 63] proposed PH-SRM (phase-type software reliability model)
by substituting the PH distribution to the fault detection time distribution in NHPP-based
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model. Then the p.m.f. of M (t) is given by

P(M(a) = y) = LA gt (13)
Fpp(x) =1— aexp(Tx)T. (4.4)

Since PH distribution can express any distribution approximately, PH-SRM can also express
all of the NHPP-based SRMs. Okamura and Dohi [59,60,63] considered two specific PH-
SRM; CPH-SRM and HEr-SRM that use CF1 and hyper-Erlang distribution, respectively.
The fundamental procedure of software reliability assessment with NHPP-based SRMs is (i)
to collect the fault data in testing phase, (ii) to estimate model parameters from the collected
data, (iii) to compute the reliability measures from the estimated models. Since PH-SRM
involves many parameters, we have to say that Step (ii) is not an easy task. Okamura and
Dohi [63] developed the EM algorithm for PH-SRM when grouped fault detection data are
given.

Let D = {(x1,11), ..., (zKk,yx)} be grouped data, where y; are the cumulative number
of faults in time interval [0, z;). Here we define 0 < X; < X3 < -+ < Xy as all of ordered
fault detection times, where N is the number of total faults detected in [0,00). Note that
X,; and N are unobserved variables. Based on the EM principle, we formulate EM-step of
PH-SRM as follows.

w — E[N|D], (4.5)

(a,T,7) — E [ZlongH(X[k])

k=1

D] . (4.6)

By applying the result of [69] to Equation (4.5), we have
W< Yg + WFPH(Z'K). (47)

On the other hand, Equation (4.6) implies the EM-step for ordinary PH distribution with
grouped and truncated data, provided that the total number of faults follows a Poisson
distribution. Since N/U is the expected total number of events in Algorithm 2, we obtain
the E-step of Equation (4.6) by replacing N/U with w in Algorithm 2.

In the PH-SRM, the data fitting ability depends on the number of phases. As the
number of phases increases, the data fitting ability of PH-SRM also increases. On the
other hand, the overfitting problem may arise when the number of phases is excessively
large. Information criteria offer plausible measures to prevent the overfitting. The most
well-known information criterion is AIC [2], which is defined by

AIC = — 2(maximum log-likelihood) + 2(degrees of freedom), (4.8)

where the degrees-of-freedom is generally identical to the number of free model parameters.
The model with the smaller AIC can be regarded as as the better model. Although AIC
is quite convenient for the model selection problem, we must carefully treat the definition
of degrees-of-freedom. In particular, when dealing with the models involving redundant
parameters like mixture models, the degrees-of-freedom is not identical to the number of
free parameters. The PH-SRM is the case. It should be noted that there are some open
problems to be solved for degrees-of-freedom of PH distribution.
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Table 3: Data fitting results

Model | MSE MLL DF AIC | CTIME
GO 990.20 -359.88 2 72376 |
ISS 295.33 -317.93 3 64185 | —
Q-R ISS 230.60 -296.44 5 60288 | —
Beta-Mix 278.47 -327.65 2 659.30 | —
31-CPH-SRM | 44.10 -246.43 23 538.86 | 1.2
20-HEr-SRM | 275.22 -302.10 8  620.20 | 237.0

4.3. Numerical experiment

We compare PH-SRMs with two NHPP-based SRMs in terms of data fitting ability. Many
researchers proposed NHPP-based SRMs under different modeling scenarios. Hwang and
Pham [30] proposed an NHPP-based SRM under the scenario that the fault removal is
delayed. Based on this scenario, they presented a piecewise continuous mean value function.
Kim et al. [40] also discussed a different NHPP-based SRM from the statistical point of view.
They incorporated the Beta distribution to represent unknown probability in the model, and
unified both finite and infinite failure models. In the above papers, the authors examined
the data fitting ability with the exactly same data, and concluded that both models were
superior to other well-known SRMs such as Goel-Okumoto model [26], inflection S-shaped
model [58], and some others [91], [75], [93]. Here we demonstrate the data fitting ability of
our PH-SRM by compared with these latest SRMs under the same data set used in [30,40].
The data was originally reported by Tohma et al. [83], which consists of 111 observations
of the number of detected faults (grouped data) in actual software testing. The tested
programs were for the monitoring and real-time control system with about 200 modules,
where each module has around 1000 lines of code. Hwang and Pham [30] and Kim et al. [40]
derived ML estimates of their SRMs for this data set. The estimated model parameters can
be cited in [30,40].

To evaluate the data fitting ability of our PH-SRM, we estimate model parameters of
CPH-SRM and HEr-SRM with the same data. In PH-SRM, we determined the best number
of phases from the view point of AIC, and chose 31-CPH-SRM as the best model from 2-
CPH-SRM through 50-CPH-SRM. On the other hand, the computation time of parameter
estimation for HEr-SRM exponentially increases with the number of phases. Thus, in the
case of HEr-SRM, we examined AICs for up to 20-HEr-SRM. As a result, 20-HEr-SRM was
selected as the best one among them.

Table 3 presents the summary of fitting results for all the SRMs. GO and ISS denote
Goel-Okumoto model [26] and inflection S-shaped model [58], respectively. Q-R ISS means
the quasi-renewal time-delay model based on inflection S-shaped mean value function in [30],
which was the best model on the original paper [30]. Beta-Mix is an NHPP-based SRM
with beta mixture proposed by [40]. Although the above paper just focused on the simplest
two mixture models, we chose the best mixture model among others. As the data fitting

criteria, we compute mean squared error (MSE), maximum log-likelihood (MLL), degrees of
freedom (DF) and AIC *. Note that the definition of MSE here is also different from [30,40],

iNote that AIC of Q-R ISS is different from the original paper [30]. The AIC computed in [30] seems to be
incorrect.

Copyright© by ORSJ. Unauthorized reproduction of this article is prohibited.



94 H. Okamura & T. Dohi

500 T T T T T

450 + E

A
T
400 | g

300 i
e
250 | y -

200 1

the cumulative number of faults

150 | E

100 y 4

actual  +

50 Q-RISS b

Beta-Mix -------
31-CPH-SRM

0 1 1 1 1

0 20 40 60 80 100 120
time

Figure 3: The estimated mean value functions

so, for the grouped data {(z1,v1),..., (zk,yx)}, MSE is computed by
1 &y 2
MSE = — (A . ) : 4.9
% ; (@) — (4.9)

where A(x) is the estimated mean value function of NHPP-based SRM. The column CTIME
indicates the computation time to obtain ML estimates for 31-CPH-SRM and 20-HEr-SRM.
Figure 3 also illustrates the estimated mean value functions for Q-R ISS, Beta-Mix and 31-
CPH-SRM. Form the results, 31-CPH-SRM has extremely high data fitting ability compared
to others. In fact, although DF of 31-CPH-SRM is higher than others, the mean behavior
of 31-CPH-SRM is very close to the actual data in Figure 3. The same observation can
be obtained from the result of MSE. This is an evidence that the SRM with high degrees
of freedom requires to represent the fault detection processes with many change points on
the data trend. Although PH-SRM is built by applying PH distribution to software fault
detection time distribution in the framework of Langberg and Singpurwalla [42], PH-SRM
is not based on any modeling scenario dissimilar to Q-R ISS, and is superior to the others in
terms of data fitting ability. From this simple example, we understand that it is enough to
select an appropriate fault detection time distribution in NHPP-based software reliability
modeling.

5. PH Approximation for Markov Regenerative Process

Markov modeling is one of the most important techniques to evaluate reliability and perfor-
mance of systems. A Markov regenerative process (MRGP) is known as one of the widest
class of stochastic counting processes that are mathematically tractable. MRGP consists of
several discrete states and time sequence of state transitions, and is an extension of both
CTMC and the renewal process. Since MRGP allows state transitions triggered by general
distributions, it is often used to analyze stochastic Petri nets. The Markov regenerative
stochastic Petri net (MRSPNs), which are governed by MRGP, are heavily used in com-
puter science [14,24,41]. In this section, we discuss the transient analysis of MRGP by
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applying PH approximation. The fundamental idea is to replace general distributions of
MRGP with PH distributions that approximate the general distributions. Since the original
MRGP is well approximated by a time-homogeneous CTMC, we can derive numerically
transient probabilities with commonly-used techniques for CTMC such as uniformization.
In particular, this section presents a systematic way to approximate MRGP with a CTMC
via PH approximation.

5.1. Markov regenerative process

Consider a stochastic process {S(t); t > 0} with discrete state space. If S(t) has time points
at which the process probabilistically restarts itself, the process is called regenerative. When
state transitions at the regeneration points are governed by a DTMC, the process S(t) is
an MRGP. Deﬁne a regeneration time sequence 77 < Ty < --- and their time intervals
AT, =T, —T,_1, 1 =1,2,.... Then the time intervals can be represented by a Markov
renewal sequence [15]. Suppose that the time sequence is time-homogeneous, i.e.,

P(S(T,) = j, AT, < t | S(Tp_y) = i)
= P(S(T1) = j, ATy < t | S(Ty) = i) = K, (). (5.1)

The state probability of MRGP is given by

Vij(t)=P(S@) =7 |5(0) =)
(t = j, AT, <t]S(0)=i)+ P(S(t) = j,ATy >t | S(0) =)

= P(
:Z P (t—u)=715(0)=0)dK;,(u)

0

+ P(S(t) = 5, AT, > t | $(0) = i). (5.2)

t) =
d E(t) are matrices whose elements are given by K; ;(t), Vi ;(t) and

(5(
In general, K (t), V (t) an
>t | S(0) = i), respectively. Then we have the Markov renewal equation

P(S(t) = j,ATh
for MRGP [14, 21];

V(t) = B(t) + /t JK (W) V (¢ — ), (5.3)

where E(t) and K (t) are called local and global kernels.

To apply PH approximation, we consider the following MRGP whose space space is finite
and each state is classified to subspaces:
e The state space is separated into subspaces S¥ and SY, ... S%.

e The subspace S” (EXP state) is a set of the states in which there exist only exponen-
tial (EXP) transitions. Cy is defined as an infinitesimal generator of CTMC for EXP

transitions in the subspace S¥. Also C4,...,Cx are transition rate matrices for EXP
transitions that transfer the state from the subspace S¥ to the subspaces SY, ..., S¢,
respectively.

e The subspace S& (GEN states) is a set of the states where there exist both EXP transi-
tions and general (GEN) transitions that are triggered by general distributions.

— InS¢, ..., 8¢, there is no EXP transition that transfers the state to other subspaces,
i.e., all the EXP transitions of S& are the transitions between two states of S¥. Q,
denotes the infinitesimal generator of EXP transitions of SZ.

— In SY, there are M; GEN transitions that are triggered by general distributions;
G’El) (t), I =1,...,M;. These transitions are competitive. That is, when one GEN
transition occurs, the ages of the other distributions are renewed.
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— The GEN transitions have respective probability matrices to determine the outgo-
m% state Just after the transition occurs. The probability matrices are defined by
Zl()), . ZZK The subscript corresponds to the state of subspaces S¥ (state 0),

SE .. S -

In this section, we refer to the MRGPs where each state has only one general transition and
two or more transitions as single-GEN and multiple-GEN, respectively.

5.2. PH approximation

In this section, we consider the KL-based PH approximation. As mentioned in Section 3, the
KL-based PH approximation is reduced to ML estimation of PH distribution with weighted
IID samples, i.e.,

0 — argmaxz w;log fpu(x;; 0), (5.4)
o =
where (z1,w;), (T2, ws), ..., (g, wk) are weighted IID samples. If we obtain the weighted

IID samples, the PH parameters are obtained from the EM algorithm for PH distribution
efficiently. However, since the computation time of EM algorithm depends on the number
of samples, the number of samples is preferred to be as small as possible.

This article uses the double exponential (DE) formula [79] to generate the weighted
ITD samples. This method achieves the highly-accurate quadrature with relatively small
integration points. The DE formula is based on the fact that the trapezoidal quadrature
is the best in terms of precision for the functions whose tails are expressed by double
exponential functions. Thus the first step of DE formula is to change the original integration
to an infinite integration of the function which decays according to double exponential
function. Concretely, we can use the following function in the case of PH approximation:

™ —x
é(z) = exp (§(x e )) . (5.5)
By substituting the above function to fo x)log fpy(x)dz, the integration is transformed
to
/ f(x)log fpu(x)dr = / f(@(2))log fru(p(x))¢' (v)dz, (5.6)

where ¢'(x) is the first derivative of ¢(z). The second step of DE formula is to apply the
trapezoidal rule to the above integration. Then we have

/ F(6(x))10g fru(9(x))¢'(v)de =~ Y he'(ih) f($(ih))log fru(d(ih)), (5.7)

=K~
where h is a step size and K*(= —K~) is a upper (lower) limit of integration points.
According to Equation (5.7), the weighted samples (x1,w;),. .., (x,,w,) can be generated
by
TiK—41 = gb(lh), (58)
Wi_g-41 = hd'(ih) f(p(ih)), i=K ,...,0,..., K", (5.9)

where n = K™ — K~ + 1. Based on the above weighted samples, the EM algorithm for PH
distribution is applied to obtain PH parameters. Also the accuracy of PH approximation
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can be obtained the KL divergence. When we apply the DE formula, the KL divergence is
given by

K K
KL(f, fra) = Zwi log f(z;) — mngwi log fpu(x;; 0). (5.10)
i=1 '

i=1

Finally we derive a Kronecker representation for the approximate MRGP. To obtain the
Kronecker representation, we focus on the fact that regeneration point processes becomes
PH renewal processes via the PH approximation. Suppose that the general distribution G;(t)
approximates a PH distribution with (o, T, 7;). Let M (t) be the number of regenerations
experienced before time ¢. Then a pair of (M(t), S(t)) becomes a MAP (Markovian arrival
process) under the approximate MRGP. Define Dy and D; as infinitesimal generators of
the MAP without and with arrivals, respectively. By taking superposition of the non-
regeneration point process and the PH renewal processes, they can be expressed as

Cy Ci1®a; -+ Cgag
D, = @ et ) , (5.11)
Q.oTxk
(0] O (0]
D, - P1,0‘® & Py ® Ay P, ® Ak | (5.12)
PK,O‘® fKPK,1®AK,1"'PK,K®AK,K

where A;; = T;0a;. The state process S(t) is represented by a CTMC with infinitesimal
generator Do+ D). Then, the transient solution of S(¢) can be obtained from the commonly-
used technique for CTMC such as the uniformization. In the case of multiple-GEN, the
Kronecker representation can be rewritten:

Civa;,—Cival e --oal (5.13)
QeT —QaTV® - .aT?, (5.14)

Por,—»Pler"el1e o1
+Plo1or e 01

+PY®110 o1, (5.15)

)

where o, T and TZ(»I) are the parameters of PH approximation for Ggl)(t).

5.3. Numerical experiment

In the numerical experiment, we first investigate the accuracy of KL-based PH approxima-
tion from the p.d.f. information, where the PH fitting for Weibull (WEI) and log-normal
(LOG) distributions are conducted. For simplicity, suppose that all the first moments are
given by unity. Given the squared coefficient of variation (CV?), we determine the param-
eters of the above probability distributions. Table 4 presents CV? and the third moment
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Table 4: Distribution types, moments and the number of weighted samples
dist.  CV?  3rd  # of samples

WEI1 0.1  1.3008 238
WEI2 2.0 16.4203 600
LOG1 0.1 1.3310 182
LOG2 2.0 27.0000 o971

Table 5: PH fitting results
# of phases CV? 3rd  time (sec.)

WEI1 10 0.1168  1.3695 2.96
20 0.1001  1.3013 2.39
100 0.1000  1.3009 10.43
200 0.1000  1.3008 26.36
WEI2 10 1.9851 15.9087 10.37
20 1.9977 16.3110 29.86
100 1.9983 16.3349 158.55
200 1.9999 16.4147 395.07
LOG1 10 0.1000  1.3201 3.61
20 0.1000 1.3311 7.02
100 0.1000  1.3310 18.55
200 0.1000  1.3310 95.99
LOG2 10 1.9418 21.9953 63.07
20 1.9801 24.4015 119.25
100 1.9481 22.2787 350.49
200 1.9811 24.4760 748.60

for each distribution function used in this experiment. The weighted samples are generated
with the DE formula with K = 5000 and h = 0.01. Since the number of samples directly
affects the computation of PH fitting, we remove the samples whose weights are less than
1.0e-13. Table 4 also gives the number of generated weighted samples for each distribution
function. Table 5 presents the result of EM algorithm with the generated weighted samples.
This table shows CV? and third moments of approximate PH distributions. The compu-
tation times are measured in seconds on Intel CoreDuo 2.0GHz. It can be seen that the
approximate moments get close to the theoretical ones as the number of phases increases.
This observation implies that the number of phases is an important factor to guarantee the
accuracy of approximation.

Next we give a reliability example to use PH approximation of MRGP. Consider a parallel
system with two machines A and B. Suppose that two machines share a single repair facility
working on FCFS (first-come first-serve) schedule, and that the failure rates of machine
A and machine B are constant, i.e., the failure times are exponentially distributed with
mean times 1/A4 and 1/\g, respectively. When either machine A or B fails, the failed
machine undergoes repair operation. The times for repairing machines A and B obey general
distributions G 4(t) and Gp(t), respectively. The system is available whenever at least one
machine is operative. Based on this simple model, we compute the pointwise (transient)
system availability defined by the probability that the system is available at a single time
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Figure 4: Transition diagram of parallel system with single repair facility

point.

Figure 4 depicts the state transition diagram for the parallel system with single repair
facility [21]. The dotted arrows indicate regenerative transitions. This model contains
two different regenerative transitions denoted by G 4(t) and Gg(t), and is represented by a
single-GEN MRGP. Then the parameters corresponding to the structured MRGP are given
by

Co=(—(Aa+ ), Ci=(A4,0), Cy = (Ap,0), (5.16)
Q, = ( _SB AOB ) , (5.17)
PLO:(é)?PLl:O?PL?:(? 8), (518)
a-( ). (5.19)

1 0 0
P2,0:(0>;P2,2:O7P2,1:<10). (5.20)

Note that the MRGP becomes the multiple-GEN case if the failure time distributions are
general distributions.

Since the behavior of pointwise system availabilities depends on the initial state of sys-
tem, we consider two kinds of initial states of system:

e Init 1: both machines are available.
e Init 2: one machine fails.

Figures 5 through 12 show the behavior of point availabilities where the repair distribu-
tion is assumed to be WEI1, WEI2, LOG1 or LOG2. Throughout this example, we assume
that A4 = 0.1 and Ag = 0.1 and that an identical distribution with mean 1 for G ()
and Gg(t). It is also assumed that the number of phases for KL.-based PH approximation
(KL-PH) is fixed as 10, 50, 100 or 200. To compare with KL-based PH approximation, we
conduct the moment-based PH approximation (MM) [10]. In all of the figures, we observe
that the approximate pointwise availabilities take almost same values as the number of
phases increases. Since there is no remarkable difference between the approximate poitwise
availability values with 100 and 200 phases in all the results, we conclude that the point-
wise availability values with 100 and 200 phases are almost similar to the exact one. In
the cases of WEI2 and LOG2, the results of moment-based PH approximation are far from
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Figure 5: Pointwise system availabilities for parallel system (Init 1 & WEI1)
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Figure 6: Pointwise system availabilities for parallel system (Init 2 & WEI1)
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Figure 7: Pointwise system availabilities for parallel system (Init 1 & WEI2)
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Figure 8: Pointwise system availabilities for parallel system (Init 2 & WEI2)
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Figure 10: Pointwise system availabilities for parallel system (Init 2 & LOGI)
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Figure 11: Pointwise system availabilities for parallel system (Init 1 & LOG2)
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Figure 12: Pointwise system availabilities for parallel system (Init 2 & LOG2)
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those of KLL-based PH approximation. This implies that the accuracy of moment-based PH
approximation is insufficient to analyze the transient solution. In particular, since WEI2
and LOG2 have relatively large CVs, the KL-based PH approximation is more efficient in
these cases.

6. Conclusion

In this article, we have summarized the PH estimation and PH approximation based on KL
divergence. We have also shown the efficiency of our algorithm in numerical experiments
with two reliability examples. The great advantage of PH distribution is to approximate ar-
bitrary probability distribution with positive support. In the first example on software relia-
bility modeling, we have built PH-SRM which provided the best goodness-of-fit performance
among a large number of NHPP-based SRMs. Moreover, by applying a state-of-the-art PH
fitting, we have determined model parameters of PH-SRM even if the number of phases is
rather large. This enables us to estimate quantitative software reliability in software testing
phase with high accuracy. In the second example on system availability modeling, we have
demonstrated how to apply PH approximation to an MRGP. Compared to the moment-
based approach, KL-based approach has been able to provide the high accurate results on
pointwise availability.

In future, we will have a plan to improve the computation effort of the current PH
fitting algorithm. As shown in Section 5, EM algorithm for PH distribution takes much
computation time in the case where the coefficient variation of probability distribution is
large. This is caused by the fact that the estimated PH distribution involves a stifft CTMC
in its phase structure. In such a case, the algorithm presented in Section 3 may not work
well in some patterns. Hence, we will consider a more effective computation method even if
the underlying CTMC is stiff. Moreover, it is known that PH approximation causes a state
explosion leading to a large CTMC. We will try to develop numerical techniques to handle
the large CTMC analysis.
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