Journal of the Operations Research Society of Japan (© The Operations Research Society of Japan
Vol. 59, No. 1, January 2016, pp. 1-34

SEARCH GAMES: LITERATURE AND SURVEY

Ryusuke Hohzaki
National Defense Academy

(Received August 31, 2015; Revised November 26, 2015)

Abstract  The purpose of this paper is to review literature published to date on search games, almost all
of which have originated from search theory. Search theory itself is a research field of operations research
that arose from realistic research efforts into air defense operations in England during World War II while
the concept of search theory originated in anti-submarine warfare operations conducted by the U.S. Navy
against German U-boats during the same war. The search game is an application of game theory to search
problems in search theory. Search games have two main players: searchers and targets.

There are some models in the search game: binary search game, linear search game, hide-search game,
hide-allocation game, evasion-search game, princess-monster game, ambush game, search allocation game,
path-constrained search game and search-search game. We fully survey literature on these models. We also
outline other games which are closely related to the search game. Search theory has been evolving to be
not method-oriented but problem-oriented for practical applications. Therefore we focus on the description
of the discovery of problems and their modeling in this paper while we seldom mention the methodologies
the authors devised for their search problems.
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1. Introduction

The purpose of this paper is to review literature published to date on search games, almost
all of which are known to have originated from the field of search theory. Search theory
itself is a research field of operations research (OR) that arose from realistic research efforts
into air defense operations in England during World War II, while the concept of search
theory originated in anti-submarine warfare (ASW) operations conducted by the U.S. Navy
against German U-boats during the same war. The search game is an application of game
theory, which was developed by Von Neumann (1944) [233], to problems in search theory.
Here, it should be noted that while OR and game theory became popular around the world
after WWII, we can deduce that researchers and practitioners exchanged information and
knowledge during wartime from the fact that Morse and Kimball applied game theory to the
analysis on the passage control of submarines by ASW aircraft in restricted waters in their
well-known book Methods of Operations Research (1951) [178], which is the most famous
OR textbook.

From the history mentioned above, it can be seen that search theory focuses on realistic
problems encountered by searchers attempting to locate targets. In fact, search theory can
be defined as the study of finding effective ways to search for targets in the search activities
that take place between searchers and targets. In this sense, it may be helpful to think of
the search problems that look for optimal solutions in optimization problems as examples
of search theory, but these will be excluded from our review because the problems are not
directly descended from search theory in a historical context. Classically, search problems
have two main players: searchers and targets. Therefore, before starting our review of
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search game literature, we will begin with an overview of the historical developments of
search theory.

1.1. Search theory development and search game classifications

Koopman first showed us the OR methodologies developed for ASW operations undertaken
by the U.S. Navy in Search and Screening (1946) [156]. This book marks the beginning
of academic studies into search theory. Screening in the title refers to using naval ships
and aircraft to protect convoys against submarine attacks. The details of these academic
discussions on search theory are found in various papers [158-160] published in Operations
Research, the journal of the Operations Research Society of America, then. More specifically,
he discussed the kinematic search problems of searchers and targets in maritime environ-
ments in Koopman (1956) [158], the basics of sensor-based target detection in (1956) [159],
and optimal distributions of search efforts, such as search times and forces, in (1957) [160].
While these remain the primary themes in search theory, the third theme has attracted the
most attention in papers published in OR-related journals.

Now, let us review the variational problem Koopman proposed in the third reference. Let
X be a random variable indicating the real-valued position of a target on a one-dimensional
line R and p(z) be the probability density function of X. If a searcher distributes his or
her search effort based on density ¢(z) at position x € R, he or she can detect the target
with a probability 1 — exp(—(z)). Thus, what is the most effective distribution of a total
amount ® of effort for the detection of the target? An optimal distribution that maximizes
the detection probability is given by an optimal solution {p*(z),z € R} of the following
variational problem:

(K) max / " p(a) {1 — exp(—p(a)) do

{e(@)} J
s.t. / p(x)der =@, p(x) >0, = € R. (1.1)

According to Ibaraki and Katoh (1988) [139], this problem, which is named Koopman’s
problem, is regarded as an original problem in the more general research field of optimal
resource allocation. If we redefine Koopman’s problem in a discrete search space consisting
of n cells K = {1,--- ,n}, we have the following formulation:

(Ka)  max Z pi {1 — exp(—¢;)}

Pi
s.t. Z%’:‘I’, 0; >0,i=1,---,n, (1.2)
i=1

where {p;,i € K} is the probability distribution of the target over the cells and ¢; is
the amount of search effort distributed into cell ¢ by the searcher. From the Euler-Lagrange
equation for problem (K.) and the method of Lagrange multipliers for problem (K), we first

find an optimal multiplier A* by solving the respective equations / log(p(z)/N)dx = & and
Z log(p;/A) = @, and lastly find an optimal distribution of the search effort by substituting

the multiplier into ¢*(z) = log(p(x)/\*) or ¢f = log(pi;/\*).
As in these problems, during the early history of search theory, researchers discussed the
effective distribution of search resources after determining the probability distribution of a
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stationary target. De Guenin (1961) [68] and Kadane (1968) [146] generalized and extended
Koopman’s problem in a continuous search space and a discrete space, respectively, while
Stone gathered excellent theoretical results for search problems with a stationary target
in his book Theory of Optimal Search (1969) [224] and won the Lanchester Prize. As
an objective function in the stationary-target problem, these researchers adopted the risk
criterion of combining target value and search costs, and whereabouts probability defined as
a target detection probability plus a true guess probability of the target position following
the search operation as well as the detection probability.

In the 1970s, the stationary-target problem was extended to search problems of moving
targets, and an additional element, time, was explicitly embedded into search models. In
terms of target motion, researchers created various movement types that were appropriate
to particular search problems. These include a target path that changes its geographic
position as time goes by, a Markov movement in which the next position depends solely on
the present position, and a deterministic motion that is a kind of fixed target path produced
when randomized parameters are determined before the motion.

Now, let’s take the target path as an example. Here, we will denote a finite discrete
geographic space by K and a finite discrete time space by T'. If a target takes path w
from among a finite number of paths €, it is assumed to be at cell w(t) € K at time
t € T. A searcher has the total amount of arbitrary-divisible resources ®(t) available
at each time t € T and makes a distribution plan for his or her search resources while
knowing the probability distribution of the target path 7 = {m(w),w € Q}, where w(w) is
the probability of choosing a path w. Next, we will denote a searcher’s resource distribution
by ¢ = {p(i,t),i € K,t € T}, where ¢(i,t) is the amount of resources distributed in
cell 7 at time t. Assume that for detection of the target at cell ¢ at time ¢, only the
resources ¢(i,t) distributed just-in-time are effective and the detection probability is given
by 1 — exp(—a;p(i,t)), where parameter «; indicates the effectiveness of unit resource in
cell 7 for detection. Since the target on path w is at cell w(t) at time ¢, a searcher having a
plan ¢ detects the target on the path w with probability 1 — exp(—a,@¢(w(t),t)) at time
t. Since the searcher detects the target when the detection occurs at most once at a time,
we have 1 — exp(— > ,cr aw@@(w(t),t)) as the total detection probability. Therefore, we
formulate an optimal search resource distribution problem with detection probability as its
objective, as follows:

(P)  max m(w) {1 — exp(— Z i e(w(t), t))}

{#} s
st Y (i, t) <O(t), teT, ¢(i,t)>0,ic K teT. (1.3)
ie K

Pollock (1970) [196] and Dobbie (1974) [71] discussed optimal search problems for a target
moving between two cells in an analytical manner, while Iida (1972) [140], Brown (1980) [52],
and Washburn (1983) [237] developed computational methods for the optimal distribution
of search resources for a moving target. Washburn’s algorithm is called the forward and
backward (FAB) algorithm.

From a theoretical point of view, numerous problems related to the optimal distribution
of search resources belong to the concave programming problem. In addition to the optimal
resource distribution problem, researchers have studied other search problems in order to find
optimal search routes, optimal search plans with some constraints on resource distribution
and search routes, and other variations. These include the works of Eagle and Yee (1990)
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[76] along with Hohzaki and Iida (1997) [127], who made use of branch-and-bound and
relaxation methods for discrete optimization.

As discussed above, determining the optimal search policy of a searcher has been the
primary focus of research in the early history of search theory. This results from the fact that
ASW operational success previously depended primarily on search plans because submarine
mobility is generally poor in relation to that of ASW forces. However, because submarine
mobility has significantly improved in the current era, it is natural that researchers expand
their thema to game-theoretical modeling of search problems or search games in ways that
not only discuss the searcher’s plan but also take target movements into consideration.
This is making game theory increasingly relevant, and in current search games, the target
is assumed to be an active competitor against the searcher.

Reviewing what we have discussed thus far, searchers decide how to distribute search
resources and can choose search routes, while stationary targets generate an existence distri-
bution in the search space and moving targets choose paths across the search space. Almost
all search game studies now treat searchers and targets as players. In Table 1, we classify
search games by the combinations of a searcher’s strategy (S’s strat.) and a target strategy
(T’s strat.) and each game is identified by the names used most commonly in references, al-
though with some slight modifications. For example, the search game involving both moving
targets and searchers is most often called the search-and-evasion game or the search-evasion
game. However, we changed it to the evasion-search game (ESG) for brevity and naming
coherency. It should be noted that the classification of Table 1 is not permanently accept-
able because model definitions are sometimes extended or slightly modified from different
points of view, and because models assigned names by one specialty might need a different
nomenclature when it is utilized by researchers from other fields.

Table 1: Classification of search games by player strategies

\S’s strat. special moving resource distribution
T’s strat.
special Smuggling game Inspection game
stationary Binary search game Linear search game Hide-allocation game

Hide-search game
Path-constrained Evasion-search game Ambush game
moving search game Princess-monster game Search allocation game
Network interdiction game

resource Search-search game
distribution Blotto game

Attack-defense game

1.2. Inspection and smuggling games

The smuggling game (SG), which is shown in Table 1 (both special strategies by target
and searcher), is a non-cooperative game in which smugglers work to move contraband in
secret, and customs officials work to detect the smuggling and capture the smuggler. Thus,
the SG has a story similar to the search game. Historically, SGs are seen as offshoot from
the inspection game (IG) listed in Table 1. In this section, we will provide outlines of both
games before fully surveying search game literature because we regard them as special cases
of the search game. However, for additional information on the IG, please refer to Avenhaus
(1986) [24] as a textbook and see Avenhaus (2002) [25] and Hohzaki (2013) [122] for a review
and explanation of the game.

In 1962, Dresher (1962) [73] first proposed an IG model for use in analyzing the effec-
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tiveness of inspections related to arms reduction treaties. After the development of Phase
I of the IG, which included Dresher’s work, analysts utilized Phase II of the game from the
1960s to the 1980s in order to make an effective inspection plan of the International Atomic
Energy Agency (IAEA) for application to the Non-Proliferation Treaty for Nuclear Weapons
(NPT). In Phase III (after the 1980s), the IG was applied to new arm reduction treaties
such as the Treaty on Intermediate Nuclear Forces and the Treaty on Conventional Forces
in Europe. Important IG references are as follows: Maschler (1966) [171] and Kuhn (1963)
[162] in Phase I, Bierlein (1968) [46] and Avenhaus (1986) [24] in Phase II, and Brams and
Davis (1987) [51] and Avenhaus and Canty (1996) [26] in Phase III.

During the 1980s through 1990s, when the United States faced serious problem related
to drugs smuggled from Central and South American countries; the IG was used to analyze
effective ways to shut down the flow of drugs under the name of smuggling game. Thomas
and Nisgav (1979) [229], Baston and Bostock (1991) [33] and Garnaev (1994) [101] were
studies on the SG.

Now, let us review the model of Dresher’s multi-stage IG. In the Dresher’s game, there
are two players: an inspectee and an inspector. During n stages, the inspectee has at most
a chance to violate a treaty in order to obtain a reward while the inspector dispatches an
inspection team m times (m < n) to the inspectee’s country. At each stage, the inspectee
has two options, ‘violate’ or ‘comply’, and the inspector can choose to either ‘inspect’ or ‘not
inspect’. When the inspectee violates the treaty, an inspection brings the inspector definite
exposure of the inspectee’s illegal behavior and reward of one, and the inspectee loses the
same amount of reward. No inspection brings the inspectee a reward of one and the inspector
loses the same amount. Legal behavior on the part of the inspectee brings nothing to either
player. This problem is a sequential two-person zero-sum (TPZS) game with parameters n
and m. Using the notation I(n,m) as the value of the game, we have the following payoff
matrix, in which the inspector is a row-player, the inspectee is a column-player, and both
players have two pure strategies each.

Table 2: Payoff matrix of Dresher’s inspection game

Inspector\ Inspectee legal action tllegal action
B inspection Iln—1,m-—1) 1
I(n,m) = val no inspection ( I(n—1,m) -1

The val symbol indicates the value of the matrix game following the symbol. Because
we can express any equilibrium of the matrix game with two rows and two columns in an
analytical manner, we have a recurrence formula for a relationship between I(n,m) and
I(n —1,-). From this formula, we have an analytical form of I(n,m).

o == (") /2 0)

Dresher’s game has two strategies {legal action, illegal action} for the inspectee and
{inspection, no inspection} for the inspector. As a substitute for this game, we can consider
an equivalent search game that has a special set of strategies: {hide, not hide} for a target
corresponding to the inspectee and {search, not search} for a searcher corresponding to
the inspector.

In the years following its development, the IG became generalized and increasingly com-
plicated due to the need to take into account imperfect detection of illegal actions, increases
in the number of inspectees and inspectors, and the acquisition of other information, as can
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be found in Sakaguchi (1994) [215], Hohzaki et al. (2006) [135] and Hohzaki (2012) [120].
Additionally, while sequential or stochastic multi-stage games have been used to model nu-
merous smuggling problems, each game has a comparatively small number of pure strategies
for the smuggler and custom officials. IGs were often modeled as non-cooperative games,
with analysis focusing on the inspector’s strategy of resource distribution (such as budget
and personnel) in order to determine inspection effectiveness, as in Avenhaus and Kilgour
(2004) [27] and Hohzaki (2007) [114]. That is why we categorize the SG as a game that
combines two special strategies and the IG as a game with a special target strategy and a
resource-distribution strategy for the searcher.

As we explained above, even though the IGs and SGs could be regarded as search games
for effectively searching for contraband and illegal actions, they are not direct descendants
from Koopman’s work. Therefore, we will conclude our review of those games at this point.

1.3. Policy explanations and chapter structure of this paper

Herein, we will provide an explanation of the basic policy used in this survey paper. First,
we acknowledge that search theory does not have so many inherent methodologies that
provides high generality and high applicability to problems in other research fields. Ad-
ditionally, we know that we must often borrow methodologies from discrete/continuous
optimization, mathematical programming, game theory, graph/network theory, geometry,
and others fields, and then modify them for application to individual search problem. For
addressing practical problems, search theory has been evolving towards being solution-
oriented rather than method-oriented. Its interest exists in the discovery of problems and
modeling. Therefore, we must apologize because, in this paper, we will seldom mention the
methodology the authors devised for their search problems.

In Section 2, we outline some textbooks and survey papers on search theory, published
to date that have bountiful contents from basic theory to up-to-date search theory devel-
opments. Following that section, we describe the expository writing for each search game
model based on its classification in Table 1. These include the binary search game (BSG) in
Section 3, the linear search game (LSG), hide-search game (HSG), and hide-allocation game
(HAG) in Section 4, the evasion-search game (ESG) in Section 5, the princess-monster game
(PMG) in Section 5, the ambush game (AG) in Section 7, the search allocation game (SAG)
and path-constrained search game (PCSG) in Section 8, the search-search game (SSG),
Blotto game (BG), and attack-defense game (ADG) in Section 9 and miscellaneous other
search game models in Section 10.

2. Textbooks and Survey Papers on Search Theory

In this section, we will introduce a number of textbooks and survey papers on search theory.
As discussed above, the theory originated from Search and Screening by Koopman (1946)
[156], in which he covered a wide range of general information on the theory from his
examinations of the physical and kinetic characteristics of search operations and the realistic
usage of the radar and sonar device invented during WWII. However the book does not
specifically discuss search games.

Differential Games by Isaacs (1965) [144] is a textbook that discusses ESGs defined in
a continuous geographic and time space. Although some researchers sometimes refer to
this type of evasion-search game as pursuit-evasion game (PEG), Isaacs’ proposed game is
named the princess-monster problem (PMP). In this game, which is set in a dark circular
arena, a princess and a monster start from respective points. The princess wants to avoid
being found by the monster while the monster wants to find the princess. Neither player
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has any visual information on the other, but detection occurs if both players come to within
a certain preset distance of each other. The maximum speeds of both players are limited.
The game payoff is the time until the first detection occurrence. Because the motions of
both players are expressed by differential equations, the PMP is a differential game, which
is defined as a game with constraints expressed by differential equations. The use of an
optimal control method is often necessary to solve a differential game, as demonstrated in
Dockner et al. (2000) [72].

Search Games by Gal (1980) [95] explicates HSGs with stationary targets and ESGs
with moving targets using a special search space of lines, trees, or circles, while Search and
Detection by Washburn (1981) [236] is an introductory textbook that describes the basics of
search theory. The 4th edition, which was published in 2002, shows a simple ESG model on
a continuous space. In Geometric Games and their Applications by Ruckle (1983) [209], we
can study a number of AGs defined in various geometric spaces, while Search Games and
Other Applications of Game Theory by Garnaev (2000) [102] discusses AGs, HSGs, SSGs,
BGs, as well as 1Gs.

The first half part of The Theory of Search Games and Rendezvous by Alpern and Gal
(2003) [18], is an extended version of Gal’s textbook mentioned above, with addition of a
discussion about HSG and ESG in geometric search spaces. In the second half, the authors
introduce rendezvous search, a special search problem in which multiple players start from
randomized points and rendezvous with each other primarily in geometric search space. The
search problem often utilizes the criterion of time until the rendezvous. Additionally, since
there are some differences between players’ recognition about their initial situations and
orientations, rendezvous is often more difficult than it would appear at a glance. Although
rendezvous search is interesting, it was not chosen as a target for our survey because it has
not yet been formulated into a game.

Chapter 8 of Two-Person Zero-Sum Games by Washburn (2014) [239] consists of 15
pages where the author provides search game examples such as HSGs, which are regarded
as a matrix game. It also explains BGs in brief in Chapter 6. Search Theory by lida and
Hohzaki (2007) [141] is a Japanese textbook that devotes numerous pages to the discussion
of one-sided search problems. In Chapter 10, the focus changes to search games, especially
SAGs.

Next, we will introduce a number of survey or explanatory papers related to search
theory. Enslow (1966) [78] cites and outlines 13 papers related to search games, while
Dobbie (1968) [70] introduces 10 papers on search games in a section of ‘two-sided search’.
Additionally, Moore (1970) [177] refers to four papers on the HSG, focusing on the problem
of finding ways to look for targets sequentially in possible regions. This author also mentions
SAGs while considering the density of distributed search resources in a continuous search
space. Nakai (1989) [180] authored a survey paper on the general contents of search problems
in which he cites about 134 references in total, while Benkoski (1991) [43] sets two categories
(one-sided and two-sided search) and two subcategories (stationary and moving target) in
each category in order to classify past research. This author uses 62 references to cite
ambush search games and tactical games involving military affairs.

Moreover, Hohzaki (2008) [117] mainly explicates optimization methods of search theory
and search games in Section 4, while Gal (2011) [96] explains the so-called infiltration game,
which is a variation of the search game, from the standpoint of infiltrators or invaders. It
also surveys PMPs, along with ESGs and HSGs according to the classification by the shape
of the search space, e.g., line, tree, star, and plane. Alpern (2011) [8] primarily explains
rendezvous searches using a few exceptional examples of the HSGs and rendezvous-evasion
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games, in which two players attempt to meet as quickly as possible without being detected
by their opponent (searcher). Washburn (2011) [238] is an explanatory paper for BGs, which
he defines in a general way while describing TPZS BG models. Evans and Bishop (2013) [79]
is an ordinary paper rather than a survey paper, and was written to explain how the authors
solved a static spatial search game (SSSG) for a special HSG model in which a target is
hiding in place and a searcher of looking into that place to detect the target. The authors
contribute Section 3 to the plethora of search game surveys: HSGs, ESGs, SAGs, AGs and
rendezvous search. Hohzaki (2013) [123] explains and surveys SAGs, as the manuscript title
indicates.

3. Binary Search Game

In his early research, Johnson (1964) [145] dealt with a BSG, which has other names of a
dichotomy search game and a high-low search game. Blue chooses an integer k from a set
of integers 1,--- ,n and Red guesses the integer. Red is told whether the guessed integer
is higher or lower than the chosen integer (true number). Blue and Red are players, and
the game payoff is the number of guesses until the chosen and the guessed integer match by
coincidence. Blue (maximizer) takes a mixed strategy with p; as the probability of choosing
an integer k, while Red (minimizer) determines a pure strategy for an ordered set of n
integers as well as a mixed strategy for the probability of choosing it. Each number of an
ordered set tells us which integer to call after learning whether the previous guessed number
is higher or lower. Table 3 shows an example of an ordered set, say set ¢, for a game with
n = 7. 5;; indicates the order that integer j is called in the set ¢. In this example, integer 3
is called in the first place. In the second place, call 6 if 3 is lower and call 1 if higher. If the
second call 6 is lower, call 7 and the game ends. If 6 is higher, call 4 in the third place. If
the second call 1 is not true, call 2 and end. If the third call 4 is not true, it is lower than
the true integer and the game ends with call 5. Red determines the probability of taking
this set of calls 7, t;, as a mixed strategy.

Table 3: Example of an ordered set

i 1234567
S; 2 313 4 2 3

Thus, we derive an equilibrium to solve the game with the payoff given by
V = min max t;S;;p; = max min t;S;ipi
{t:} () ZEJ: e {ti,sij};zj: o

using p; and ;.

Johnson analyzed the general properties of optimal strategies and showed us equilibrium
points in the case of n < 11. Gal (1974) [91] extended Johnson’s results for the same
problem.

In his book, Ulam (1976) [231] asked a question that relates to the binary search problem.
His question, which was called Ulam’s problem, became a target of binary search researches.
In Ulam’s problem, Blue chooses an integer from 1 to 1,000,000. Red is allowed to ask up
to 20 questions, to each of which Blue is supposed to answer either yes or no. If we suppose
that Blue is allowed to lie once or twice to Red’s questions, how many questions does Red
need to get the right answer? This is Ulam’s question. Ulam’s problem is a BSG that
considers lying. Gal (1978) [93] proposed a BSG, where Blue chooses a real number from a
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continuous interval [a, b] and Red guesses it. The probability of a lie in each of Blue’s yes or
no answers is given. If the final interval reduced by Red’s guesses contains the true number
after n guesses of Red, Blue obtains a payoff based on the length of the final interval.

As explained above, in many models, the BSG defined on a discrete number of intervals
is played until the true and guessed numbers coincide. However, in games defined in a
continuous interval, the accuracy of the finally guessed number or the accumulation of each
difference between each guessed and true number is adopted as the payoff. Other versions
of the BSG were studied by Rivest et al. (1980) [201], Ravikumar and Lakshmanan (1984)
[199], Baston and Bostock (1985) [30], Alpern (1985) [4], Pelc (1986, 1989) [191, 193] and
Niven (1988) [185]. Spencer (1984) [222], Pelc (1987) [192] and Czyzowicz and Pelc (1988)
[62] researched Ulam’ problem. In the last paper, the authors determined that at least 29
calls are needed to reach the right answer.

4. Linear Search, Hide-Search, and Hide-Allocation Games

In the HSG model, the searcher moves in a search space to find a stationary target while
the target hides in an attempt to avoid detection.

The simplest search space within which a target can hide is a line. Beck and Newman
(1970) [41] discussed an LSG. A hider chooses one point on a line to hide, but the dis-
tance between the origin and hiding point, called the hiding distance, is constrained in a
probabilistic fashion. The searcher moves from the origin to find the target in a continuous
motion with speed 1. Perfect detection, which means that detection is certain, occurs when
the searcher passes the hiding point. The payoff of the game is the time until target detec-
tion. The authors found a minimax searcher strategy. Gal (1972) [90] is a generalization
of the Beck and Newman’s model. Gal (1974) [92] and Gal and Chazan (1976) [97] also
dealt with Beck and Newman’s game with the modified detection time payoff divided by
the hiding distance and derived a minimax searcher strategy. They then tried to extend
their models to a two-dimensional (2D) search space. Fristedt (1977) [88] discussed Gal’s
model and Fristedt and Heath (1974) [89] adopted various payoffs depending on the hiding
distance and detection time in their LSG. We have numerous references on the HSG of a
hiding target versus a searcher because we can find examples of such search games in our
real life and society.

Now, let us model a simple HSG on a discrete search space consisting of n cells. A target
(hider) hides in a cell and a searcher looks into a cell just once to detect the hider under
the assumption that perfect detection occurs if the searcher looks into the hiding cell. The
detection at cell 7 brings the searcher reward «;. When the game is in equilibrium, the hider
and the searcher have the same mixed strategy in which the hiding or looking probability
of cell 7 is given by (1/a;)/ > ;_,(1/ay) and the value of the game is 1/> 7, (1/cy).

Von Neumann (1953) [232] considered the above game to be a preliminary model and
discussed a TPZS HSG based on the search space of a matrix. A hider hides in an element
of the matrix, say (7, j), and the searcher chooses a row or a column. If the element is in the
chosen row ¢ or the chosen column j, the searcher detects the hider and obtains reward g;;.
Norris (1962) [186] proposed an HSG basic model in which a hider chooses a cell to hide in
and a searcher sequentially looks into the cells. However, in this game, even if the searcher
looks into the hider’s cell, there is a probability that the hider will be overlooked (imperfect
detection). The game payoff is defined by the number of looks required to detect the hider.
Norris obtained an analytical form of equilibrium for the game defined on a two-cell space.
Bram (1963) [50] extended Norris’s game to a general discrete search space with multiple
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cells. Neuts (1963) [184] added the acquisition of the hider’s value by its detection and the
search cost expenditure to the Norris model, and considered a discount factor for the reward
at each looking stage of the game. He dealt with the following two models: a multi-stage
game model in which the hider hides once and the searcher repeats looking until the hider
is detected, and the repeated game model in which the players repeat a subgame that the
hider hides once and the searcher looks once. Efron (1964) [77] considered a repeated HSG
with the number of looks of the searcher as payoff by adding constraints that prevent the
hider from reusing the past hiding cell and the searcher from reexamining a cell that had
been examined previously. Roberts and Gittins (1978) [203] and Gittins and Roberts (1979)
[104] extended the two-cell model and n-cell model, respectively. Flood (1972) [81] derived
an equilibrium of Von Neumann’s game in a more general way by using the methodologies
for optimal allocation problems. Sakaguchi (1973) [214] complemented the results of Neuts
(1963) and analyzed the modified game with the acquisition of the hider’s value and the
discount factor. Subelman (1981) [227] modified the multi-looking game so that the searcher
is restricted to a limited number of looks and the payoff is given by the total detection
probability of the hider. For this game, a pure searcher strategy is not represented by the
order in which cells are examined, but by a simpler form of how many times the searcher
looks into each cell. Berry (1986) [44] proposed some heuristics for an optimal search and
compared the detection probabilities that resulted from the proposed heuristics. The HSG
by Ruckle (1990) [210] has a special model, in which a hider puts gold and a landmine in
different cells and a searcher is rewarded only if he finds the gold before encountering the
landmine.

After the early research mentioned above, the HSG was discussed under some special
geometric space and network-structured space settings. Bostock (1984) [48] studied a search
game on a network with two nodes and three arcs between the nodes. In the Kikuta model
(1990, 1991) [149, 150], a searcher continues searching for a hider in a cell of a multi-cell
discrete space while expending traveling costs and search costs to move between and search
in cells. The game payoff is the total traveling cost. Anderson (1990) [21] modeled a TPZS
HSG, in which a searcher uses a maximum speed 1 to search for a hider hidden at a point on
a continuous geographic and time space. The payoff is the time that the searcher expends
to detect the hider. Reijnierse and Potters (1993) [200] derived a relationship between an
optimal search path and Euler paths for a search game defined on a cyclic graph. Kikuta
and Ruckle (1994) [152] and Alpern (2011) [9] investigated a so-called find-fetch game, which
ends when a searcher finds a hider and returns to the starting point. The former research
considered the find-fetch game with the search cost as payoff while the latter game used the
return time of the searcher. The model created by Alpern and Reyniers (1994) [20] is a find-
fetch game where two searchers meet at a preplanned point on a line after finding a hider.
This game is a combination of the rendezvous search and the search game. In addition to
the games mentioned so far, Cao (1995) [55], Alpern (2008, 2010) [6, 7] and Dagan and Gal
(2008) [63] studied HSGs defined on trees, and Pavlovic (1995) [190], Kikuta (2004) [151],
Alpern et al. (2008) [13] and Alpern and Baston (2009) [12] discussed HSGs on networks.

Another type of HSG is called an accumulation game. In this game the hider conceals
several treasures simultaneously or sequentially in different places and the searcher picks
them up while searching for them. If the searcher cannot gather a given number of treasures
during a given time period, the hider wins the game and obtains some reward. There are
several versions of the accumulation games depending on the properties of hiding places,
discreteness or continuity of the treasure, information about previously searched places, and
the capacity of treasure location. These are investigated by Kikuta and Ruckle (1997, 2002)
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(153, 154], Ruckle and Kikuta (2000) [212], Zoroa et al. (2004) [249], Alpern et al. (2010)
[14].

The game between a submarine versus an ASW airplane has provided a good theme for
search games. Here, the submarine moves on a chosen fixed course at a chosen fixed speed on
a 2D sea area and the airplane searches for the submarine using its detection sensor without
knowing the submarine’s course and speed. The course and speed selection by the submarine
is equivalent to a choice of a point in a circle that represents a set of speed vectors. The
airplane’s search can be visualized by sequentially placing a small disk that represents the
detection range of its sensor in the speed circle. If any part of the small disk overlaps a speed
vector chosen by the submarine, the airplane is assumed to have detected the submarine.
Danskin (1968, 1990) [66,67] solved a geometric submarine vs. airplane game in the speed
circle, taking the detection probability as payoff. We could categorize the game as an ESG
because the submarine moves in practice, or as a hide-allocation game (HAG) if we regard
the sequential placement of detection disks as search resource allocations.

As an HAG example, in which a searcher looks for a stationary target by distributing
search resources, we look at Nakai (1988) [183] and lida et al. (1994) [143]. Nakai considered
a variety of HAGs with continuously divisible search resources, even though he also discussed
one-sided search problems.

5. Evasion-Search Game

If the HSG has a moving target (evader), we call it the evasion-search game (ESG). For
elaborate target motion, a simpler search space is more convenient for ESG modeling. In
the early phase of the research, ESGs were studied on a line.

In the model created by Meinardi (1964) [173], the evader moves to reach a point on a line
while knowing the searcher’s position. This author did not explicitly derive any equilibrium
for his multi-stage ESG, but instead focused on improving the evader motion in order to
make its distribution more uniform on the line. Lee (1983, 1985) [166,167] investigated a
model, in which an evader starts from a cell n of cells {0, 1,--- ,n} aligned on a line bound
for a destination cell 0 that would provide a shelter. On the way to the shelter, the evader
can move to a few neighboring cells adjacent to his or her current cell. A searcher knows the
current position of the evader and decides the next cell to move to and look into. The game
payoff is the number of detections until the evader reaches his or her destination under the
assumption of perfect detection. Like Lee’s model, there were numerous ESG models with
start and destination points for the evader. Nakai (1983, 1986) [179, 181] and Lalley (1988)
[164] studied a game in which a searcher overlooks an evader and the payoff is defined as
the non-detection probability until a final time, or the accumulated local reward obtained
from each non-detection. For an ESG defined on a discrete cell space and a discrete time,
the dynamic programming method is usually powerful enough to derive its equilibrium by
manipulating some recursive equations.

An ESG with an evader goal is often simulated as a passage control problem of a sub-
marine in a strait, and is often called an wnfiltration game. Many researchers have used a
submarine as an attractive player. In Dubins’ ESG model (1957) [74], a ship (an evader)
has two options for his or her next position and a bomber (searcher) drops a bomb on
the ship once at the most. The bomber knows the ship’s current position, but there is a
significant time lag between dropping the bomb and its explosion. The game payoff is the
probability of the bomb’s hitting the ship. For the ESG emulation of an ASW airplane
equipped with depth charges versus a submarine, there are several versions that can be pro-
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duced by changing the number of depth charges, the effective range or power of the depth
charge, time lag of the depth charge explosion, velocities of players and others. These are
reviewed in Charnes and Schroeder (1967) [56], Langford (1973) [163], Baston and Bostock
(1989) [32], and Garnaev (1993) [100]. As a more complicated ASW game, Brown et al.
(2011) [54] investigated an ESG game with a task force consisting of an aircraft carrier and
destroyers vs. a submarine that receives information about the position of the task force
and is attempting to infiltrate the task force in order to destroy the aircraft carrier.

Some researchers set the search space to arbitrary cell spaces and networks. Washburn
(1980) [235] investigated a multi-stage ESG with a traveling cost as payoff, in which the
evader and searcher choose their next cells to move to, but only the evader knows the
searcher’s present position. The play continues until the evader is detected or a final time
under the perfect detection assumption. Thomas and Washburn (1991) [230] also studied
a multi-stage ESG that used the evader’s recognition of the searcher’s position and a limit
on the searcher’s speed. Eagle and Washburn (1991) [75] considered a multi-stage ESG
with information about the players’ positions, in which the payoff is the total reward given
by accumulating reward determined by the players’ positions at each stage. He named the
game the cumulative search-evasion game. The model of Baston and Garnaev (1996) [35] is
a TPZS ESG defined on a network with two nodes and n arcs connecting the nodes, in which
there are limits on the evader’s maximum speed and the number of looks by a searcher.

The Ruckle game (1981) [207] has a payoff of the time until the detection of an evader
in a search situation where neither the searcher nor the evader have any information about
their opponents and where the players move in a probabilistic way on a cyclic network. In
the Corwin model (1981) [59], an evader takes a probabilistic move (Markov motion) but the
searcher takes action involving a sequence of ordered looks. If the searcher does not detect
the evader during the limited number of looks, the searcher anticipates the last position
of the evader. The game has the whereabouts probability as payoff, explained in Section
1.1. In the Auger TPZS game (1991) [23], a searcher makes an effort to intercept an evader
moving toward a goal node on a network. Alpern (1992) [5] generalized Auger’s results.
Anderson and Aramendia (1992) [2] also studied an ESG with the payoff of detection time
on a network, but they formulated the game into an infinite-dimensional linear programming
problem, which had not been previously seen in ordinary solution methods. The Kierstead
and DelBalzo (2003) [148] solution method was distinctive because they found sub-optimal
strategies for an ESG under complicated circumstances using a genetic algorithm.

At this point, let us take the time to list some special ESG models: Owen and Mc-
Cormick (2008) [188] and Alpern et al. (2011) [16]. In the former model, a fugitive evades
authorities that are trying to find him in a continuous search space, while taking account
of the increasing risk that someone may inform the authorities about him if he stays at one
position for a long time. The latter model is a biological ESG between a predator and prey.
By means of the ESG and the HSG, the authors worked to answer the following question:
which is the best hunting method for the predator, cruising (positive movement to seek
prey) or ambushing (hiding in ambush to wait for prey)?

6. Princess-Monster and Differential Games

An ESG defined on a continuous search space, known as the princess-monster game (PMG),
was first proposed by Isaacs (1965) [144]. In this ESG type, it is necessary to derive an
equilibrium from some differential equations that represent player motions and an integrated
function that represents the payoff. That is why the game is called a differential game (DG).
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The PMG is a differential game specialized to the evasion-search of two players. For the
DG, we often construct a basic equation called a Hamilton-Jacobi-Bellman (HJB) equation,
which comes from optimal control theory, and then derive an equilibrium of optimal player
trajectories satisfying the HJB equation.

The PMG is also known as the lion-and-man problem (LMP) and robot-and-rabbit prob-
lem (RRP), which are slightly different models. The PMG was defined in a dark circular
arena, as explained in Section 2. There are several PMG variations depending on the search
space, player velocities, acquisition of player information, discreteness or continuity of search
space, and so on.

As for the PMGs defined on a circle, which would be the easiest to solve, Zelikin (1972)
[244] and Alpern (1974) [3] assumed a uniform distribution for a monster’s initial position
on the circle, and Wilson (1972) [242] and Forema (1974) [86] took general distribution
functions for that distribution in their PMGs and assumed that the princess knows the
initial position of the monster.

Croft (1964) [60] defined an LMP in a circular arena, which is the same as the Isaacs’
problem except that both players, the lion and the man, are always visible to each other.
They proved that the lion would not catch the man if a polygonal trajectory was used during
a finite time period. Flynn (1973, 1974, 1974) [82-84] proved the existence of a trajectory
that brings the lion to the closest distance d* to the man in a finite time as well as the
existence of a trajectory for the man that maintains a distance more than d* — ¢ (¢ > 0)
from the lion. Lewin (1986) [169] gave an analytical expression for the optimized distance
d* by the relative ratio of lion and man velocities.

Halpern (1969) [106] considered a Stackelberg game resembling the RRP. Here, a robot
with a higher velocity is programmed to get close to a rabbit with a lower velocity, but the
rabbit wants to stay away from the robot and has the advantage of knowing how the robot’s
program works. The author solved a maximin optimization in order to obtain the players’
optimal movement.

Alpern et al. (2008) [15] solved a PMG that is defined in an interval [—1, 1] on a line and
has princess and monster players that move at the same speed 1. The researchers proved
that the game value V', defined as the time when both players meet for the first time, is
15/11 <V <13/9. A PMG on a circle and a plane was discussed by Foreman (1977) [87].
The PMG on a network has the following general model. For a PMG on a network, arcs
of which have unit length in total, the value of the game is the time needed for a searcher
traveling at unit speed to find the princess moving on the network. This is called the search
value of the relevant network. Alpern and Asic (1985) [10] showed that the search value is
not larger than 15/16 for the network with one node and two loops of length 1/2 each on
the node. Alpern and Asic (1986) [11] dealt with a PMG on a network consisting of two
nodes and three arcs of length 1/3 each between the two nodes. The search space Garnaev
(1991) [98] handled for his PMG is a continuous square. If two searchers start from a same
point on a circle and move in reverse directions, they are certain to find an evader moving
on the circle prior to their rendezvous. Like this problem, Parsons (1976) [189] asked how
many searchers are needed to be certain of finding an evader on various networks. In the
PGM devised by Dendris et al. (1997) [69], the searcher does not have any information but
an intelligent evader knows the searcher’s position. Since the evader is only allowed to move
in the region that has not yet been searched, the available free region becomes smaller as
time goes by. When there is no free region for the evader, the game ends.

Garnaev (1992) [99] handled networks with two nodes and a convex region as the domain
space of his PMG, and assumed imperfect detection in which a searcher detects an evader
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with probability p when they are at the same place and with lower probability ¢ when they
are on two neighboring arcs. In a 2D convex region 2, Gal (1979) [94] and Fitzgerald (1979)
[80] considered PMGs with the first time of detection as payoff when a searcher enters
detectable range ¢ from an evader. They showed an equation lim._,o2cV (¢) = ||, where
V(e) is the value of the game and |Q] is the area of Q. Lalley and Robbins (1988) [165]
proposed an algorithm for generating a sequence of trajectories that approach the minimax
searcher’s strategy regardless of €.

Now, let us cite other PMG research efforts. Melikyan (1973) [174] took account of
information acquisition, and Olsder and Pourtallier (1995) [187] counted information as
a cost in their PMG. Chkhartishvile and Shikin (1995) [57] found the relation between
detectable range and player velocities that make detection occur in their PMG when an
evader senses the position of a higher-speed searcher. Worsham (1974) [234] handled a
PMG defined on a discrete time space, in which players have a restricted memory of players’
past positions, and produce sub-optimal trajectories. Hagedorn and Breakwell (1976) [105]
considered a PMG with multiple searchers and Stipanovic et al. (2010) [225] proposed a new
method that substitutes a Liaponov function for the HJB equation. Their method can be
easily applied to PMGs with multiple players. Bhattacharya et al. (2009) [45] considered a
PMG where players play the game while avoiding various obstacles put in the search space.

As a PMG textbook, we refer readers to Dockner et al. (2000) [72], from which the
basic theorems of general differential games can be learned. These theorems have a number
of applications, primarily in economics. An ESG defined in a continuous geographic and
time space is sometimes called a pursuit-evasion game (PEG). In explanatory papers on
PEGs, Krasovskii et al. (1987) [161] introduces Isaacs’ theory and describes the dynamics
of playing the games, while Melikyan (1998) [175] focuses on the applications of PEGs with
differentiable functions.

7. Ambush Game

As in the submarine passage control problem by Morse and Kimball (1951) [178] described in
Section 1, searchers lie in ambush for evaders in ambush game (AG). Ruckle first developed
the AG model. AGs often need geometric knowledge to be handled correctly. Ruckle (1983)
[209] specializes in geometry-related AGs.

In an AG, a searcher literally detects or captures an evader from ambush. The evader
adopts a movement strategy and the searcher determines an ambush position or a distri-
bution plan of search resource as a barrier against the evader’s movement. Here, we will
provide a rough overview of the original model devised by Ruckle et al. (1976) [211]. First,
Player I tries to pass through a square region with length and width of 1 from the left to
right side along a continuous curve. Player II emplaces a length of barriers in the region.
If the evader’s path touches the barriers, a capture or detection event occurs. The game
payoff might be either the time to detection or the distance the evader has traveled. Player
I is a maximizer and Player II is a minimizer. Through a series of papers of Ruckle et al.
(1976) [211], Ruckle (1981) [208], Ruckle and Reay (1981) [213] and Ruckle (1979, 1979)
[205, 206], Ruckle proposed several AG versions where two players choose several intervals
from a fixed interval [0, 1] and the payoff is determined based on whether two intervals has
any intersection or the length of the intersection.

Baston and Bostock (1987) [31], Lee (1990) [168], and Zoroa and Fernandez-Saez (1999)
[246] performed an in-depth consideration of a TPZS AG on a lattice region. In these works,
an evader chooses a point from [0, 1] as a crossing point and a searcher emplaces two barriers
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of length a and b (a < b) in an attempt at interception. Ruckle (1983) [209] solved AGs
of (i) a =10, (ii) a = 1/3,b = 1/2 and (iii) « = 1/5,b = 1/2. Baston and Bostock (1987)
showed a perfect form of equilibrium in the case of b > 1/2 and some cases of b < 1/2, Lee
(1990) in the case of b < 1/3, Zoroa and Fernandez-Saez (1999) in the case of a < b < 1/2.
We have examined other research papers that discuss AGs on a lattice, such as Zoroa and
Zoroa (1993) [251] and Zoroa and Fernandez-Saez (2001) [247]. Zoroa et al. (2009) [252]
considered a game with the payoff weighted by invasion points.

AGs involve a choice of numbers from intervals or sets as the player’s strategy. Baston
et al. (1989) [34] studied an AG called a number search game, where each player chooses a
set of sequential integers and the payoff is the number of shared integers. Some researchers
considered a cyclic set of numbers {1,2,--- ,n} where cell n is thought to be next to cell 1.
The boundary around a country can be considered a cyclic set. Researchers such as Zoroa
and Fernandez-Saez (2003) [248], Alpern et al. (2011) [19] and Zoroa et al. (2012) [250]
analyzed rational player choices from a cyclic set using AGs. Zoroa and Fernandez-Saez
(2003) proposed a general solution method to produce equilibrium. Alpern et al. (2011)
considered a TPZS AG, in which an infiltrator intrudes into a borderland represented by m
cyclic-numbered cells during n time points and a patrol team moves in the same land in an
attempt to catch the infiltrator. This model could be also regarded as an ESG defined on a
borderland of lattice shape. Zoroa et al. (2012) also considered an AG on a cyclic-numbered
lattice, where a searcher emplaces some stationary obstacles to intercept an infiltrator.

In the model of Alpern et al. (2013) [17], the searcher chooses one from two search
options: a search in a finite region and an ambush during time periods. If an evader stays
in the region selected for the search or if he moves during the ambush time periods, the
searcher detects the evader. The payoff is the detection time. Hohzaki and Iida (2001)
[131] studied an AG with a distribution strategy of search resource on a network. Here,
an evader chooses a path to travel along and a searcher distributes a limited amount of
search resources on an arc. The detection probability of the evader on an arc depends on
the property of the arc and the amount of resources distributed there. The total detection
probability is the payoft.

Arnold (1962) [22] and Baston and Kikuta (2004, 2009) [37,38] are studies on sub-
marines interceptions in confined waterways. Arnold (1962) discussed optimal invasion
points of submarine and optimal points to install sound sensor while taking into consider-
ation sonar detection sensitivities. Baston and Kikuta (2004, 2009) analyzed the same AG
with additional information acquisition in strait barrier operations.

As surveyed so far, AG researchers tend to be theoretical and handle comparatively
simple search spaces in their research efforts. It would take more time to extend their
results to general search spaces.

8. Search Allocation and Path-Constrained Search Games

In a search allocation game (SAG), the searcher distributes search resources in an attempt
to detect a moving target. Considering the way used to name search games so far, we should
probably name such a game an evasion-allocation game, but that name has never been used
in the past. For information on basic modeling and a short survey of SAGs, please refer to
Hohzaki (2013) [123].

One of the early SAG studies was Stewart (1981) [223], in which an SAG was modeled
on a two-cell space and a discrete time space. Here, a target starts from cell 1 and goes to
a goal cell 2. The target strategy is to decide when to go to cell 2 and when to move to
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the goal. The searcher strategy is to make a search resource distribution plan in two cells.
The author obtained equilibrium for the special SAG model with the detection probability
as payoff.

We can easily review the formulation of SAG on a discrete cell space K and a discrete
time space T by recalling the objective described in Problem (P) in Section 1.1. To begin,
let us denote a mixed strategy of the target by 7 = {m(w),w € Q}, where Q is a set of target
paths and 7(w) is the probability of taking path w. We denote a pure searcher strategy by
v ={p(i,t),i € K,t € T}, where (i, t) is the amount of resources to be distributed in cell
1 at time ¢t. The expected detection probability is given by

R(p,m) =) w(w) {1 —exp(— Y aupp(w(t), t))} . (8.1)

we teT

If the searcher gains reward 1 when the target is detected but not otherwise, while the target
losses the same amount of reward if detected, the SAG is a TPZS game with the payoff of
R(p, ). lida et al. (1996) [142] proposed a basic SAG, after which Hohzaki and lida (1998)
[128] discussed basically the same model except that the payoff includes a certain reward
gain on detection and losses of search cost. Hohzaki and lida (1999) [129] generalized the
results by producing a general payoff function.

After these basic model propositions, researchers added practical conditions to the SAG
model. For example, in an effort to achieve high applicability, Hohzaki et al. (2002) [132] and
Hohzaki (2006) [112] considered some practical constraints on target movement and energy
possession. In addition, in Hohzaki (2006) [112], the author showed an especially notable
correspondence between a discrete SAG defined in a discrete search space and a continuous
SAG defined in a continuous space. In this study, the continuous SAG equilibrium is given as
a convergence point of equilibria of discrete SAGs from a computational point of view, even
though the continuous SAG is formulated into a variational problem and is difficult to solve.
In addition to practical conditions on target motion, various features of search resource were
incorporated into the SAG model, such as those mentioned by Dambreville and Le Cadre
(2002, 2002) [64, 65] and Hohzaki (2008, 2012) [116,119]. As in actual search operations, the
target’s mobility, which is mainly a function of his/her energy, affects operational results.
When considering this situation, Hohzaki and Ikeda (2009) [133] discussed a SAG in which
a target factors in an energy supply strategy as well as a movement strategy. The event
that occurs when a searcher overlooks a target is a kind of Type I error in statistics. Type
IT errors, in which the searcher gains false contact signals implying target detection in an
impossible detection situation, often occur in actual search operations. However, there have
been few studies taking the false contact into account. Hohzaki (2004, 2007) [111,113] and
Kekka and Hohzaki (2013) [147] analyzed the effects of false contacts on SAGs, assuming
that the resource distribution of the searcher increases the frequency of false contacts.

Hohzaki and Joo (2015) [134] proposed a new SAG model with incomplete information
about an initial target position and its equilibrium methodology that uses convex program-
ming formulation.

While almost all SAGs have been modeled into one-shot games, Hohzaki (2007) [115] first
discussed a multi-stage SAG in which both players can change their predetermined strategies
after obtaining new information in the middle of the game. Specifically, the target learns the
residual amount of search resources of the searcher and the searcher observes the residual
energy and current position of the target. Additionally, Washburn and Hohzaki (2001) [240]
and Hohzaki and Washburn (2003) [138] modeled a SAG named a datum search game, which
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starts from observation of a target position (datum point) by the searcher, on a continuous
plane and a continuous time space. They derived an approximation of equilibrium of the
target speed/course control and searcher resource distribution. Later, Hohzaki and Ida
(2009) [126] performed an experimental simulation of the datum search game involving
human operators and verified a good correspondence between the theoretical equilibrium
and the experimental results.

There are a number of other SAG models as well. For example Hohzaki (2013) [121]
considered a three-person non-zero-sum SAG with a target and two searchers, in which
the target desires to minimize its detection probability, and each searcher acts in a selfish
manner to maximize his or her expected payoff based on the assumption that the searchers
gain different rewards depending on whether detection is accomplished by a single searcher
or by simultaneous detection involving two searchers. For this model, the author calculated
an equilibrium using a proposed computational algorithm. Another model, described by
Hohzaki (2009) [118], is a cooperative SAG model in which multiple searchers are motivated
to cooperate with each other. More specifically, when several searchers offer to combine their
resources, a joint search operation for the target becomes possible. The target mission is to
evade detection by the searchers, and the game is non-cooperative between the searchers and
the target, but cooperative for the searchers. To facilitate this, based on the concept of core
of cooperative game, the author proposed a persuadable imputation among all searchers if
the searchers gain the target value upon detection.

The last SAG model we will introduce is the path-constrained search game (PCSG),
which inherits the name from one-sided search problems for an optimal distribution of
search resources (Eagle and Yee (1990) [76], and Hohzaki and Iida (1997) [127]). The name
refers to the fact that the searcher strategy, such as his or her search path, is constrained.
Some constraints on searcher strategy have a discretization effect that makes the problem
non-deterministic polynomial-time hard (NP-hard), and thus difficult to solve. A relaxation
of those constraints makes the problem an optimal distribution problem of search resource.
That is why we categorize the PCSG into the SAG. Many such games are as difficult to
solve as the one-sided problems used to be and there are not very many studies on this type
of game. One such study is Hohzaki and Iida (2000) [130], in which the searcher is given a
path and he decides to look or not look in his position each time.

9. Search-Search, Blotto, and Attack-Defense (Games

For multi-player search games, in which all players have distribution strategies of their
resources, Nakai (1986) [182] applied the name of search-search game (SSG). However, a
similar such game used to be called a Blotto game (BG) even though that name is not used
solely by search games. Many OR researchers have recently focused on anti-terror operations
because of the increasing risk of terrorism around the world. This interest can be seen in
BGs where an attacker and a defender are assumed to be competitors for effective resources.
To clarify, we will refer to this here as an attack-defense game (ADG) and provide an outline
of it as well as the SSG. Washburn (2011) [238] provides an introductory explanation about
BG and Garnaev (2000) [102] is helpful in the study of SSGs. As explained in Section
1.1, since the one-sided problem of optimal search resource distribution is connected with
general resource allocation problems, convex programming [204] and nonlinear programming
[40] are very useful when working to solve SSGs and BGs.

The original BG is a simple noncooperative TPZS game with two resource distributors.
The fictional story behind the game that Borel (1921) [49] (translated into English by Savage
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(1953) [218]) first proposed and McDonald (1949) [172] introduced, involves Colonel Blotto
who commands four platoons and his enemy, who commands three platoons. Both sides
will dispatch their platoons to capture four forts. If Blotto allocates more platoons to a fort
than the enemy, he wins the fort. Otherwise, the enemy occupies the fort. For example, if
Blotto allocates a vector of dispatch (2,1,1,0) to four forts and the enemy does a vector
(1,0,1,1), Blotto wins the first and the second fort. Both players want to win more forts
than the other. Because the allocation of discrete resources has a finite number of allocation
vectors, the game is easily solved as a matrix game in theory.

Now, let’s review the BG model proposed by Blackett (1958) [47] in a general way. Two
players have the total amount of a and b of resources, respectively, and assign them to n
targets. If the first player has an allocation plan & = (z1,72, -+ ,2,) (3, 2% < a) and
the second a plan of y = (y1,y2, - ,yn) O_r Yk < 1), player j gets reward R} (zg,yx) from
target &k and the total reward R/ (x,y) = > ,_, Rf;(zk, yr). Each player wants to maximize
his or her reward R’(z,y) during the game. As explained above, the reward R (zy, yx) from
each target k is usually assumed to depend solely on the resources allocated to the target.
In the case of R*(x,y) = —R'(x,y), the game is a TPZS game. The resource allocation by
the players could be discrete and continuous. Macdonell and Mastronardi (2012) [170] gave
a perfect form of equilibrium for an original BG with two forts.

We have examined the following studies on SSGs from the context of search game.
Nakai (1986) [182] dealt with a noncooperative TPZS game that involved two searchers,
each of which has an independent estimation on the hider’s distribution probability. The
hider conceals himself in n cells, and the each searcher works to maximize his or her hider
detection probability before it is detected by the competing searcher. Garnaev (2007) [103]
also considered a similar game, in which two searchers have common information about
the distribution probability of the hider, but with the difference that the both searchers
gain some reward in the case of either simultaneous detection by both searchers or a single
searcher detection.

Croucher (1975) [61] investigated a search game with a searcher and a protector in which
a target lies in cell ¢ = 1,--- ,n with probability p;, which is known to the players. If the
searcher allocates z; resources to cell ¢ and the target is there, the searcher detects the
target with probability 1 — exp(—\;x;). However, the probability is reduced by a factor of
exp(—pu;y;) if the protector provides a y; resource allocation. Croucher’s game is a TPZS
SSG where the searcher has a resource, the protector has b resource and the target detection
probability is the payoff. Based on the above assumption, the expected payoff can be given
by the following expression:

R(z,y) = Zpi {1 — exp(—Niz;) } exp(—p13y;)- (9.1)

=1

The function is separable for variable vector & or y on targets, while it is concave in @
and convex in y. Therefore we can easily apply the theory of convex programming to the
game and produce analytical expressions for optimal distribution of & and y using two
optimal Lagrange multipliers. To find optimal multipliers and the game equilibrium, we
can propose a simple numerical algorithm. The model of Baston and Garnaev (2000) [36]
is an extension of Croucher’s model, but is a non-zero-sum search game caused by different
distribution costs of search resource.

Shubik and Weber (1981) [221] modified a BG to be applicable to military applications
such as strategic missile deployment and anti-ballistic missile (ABM) defense. To generate
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a payoff function, they created a strategic value determination from surviving targets after
two competitors distribute resources to destroy or defend valuable targets. Roberson (2006)
[202] also considered a complex payoff similar to the Shubik and Weber model. As in that
study, Robertson more often used the BG model to analyze attack-defense problems than
search-search problems. When we roughly survey ADGs, we note that many of them could
be interpreted as SSGs.

As an early research on the ADG, we can include Cohen (1966) [58] who assumed a
convex payoff function and considered a model similar to that of Shubik and Weber. An
attempt to apply a BG model to anti-terror operations can be found in Powell (2007)
[197]. Here, the author analyzed the optimal allocation of anti-terror resources needed to
defend official sites based on the following assumptions: (1) a direct allocation of anti-
terror resources to one site has no effect on any other site, (2) an allocation of investment
resources to intelligence, border defense, and counter-terrorism operations will have effects
on the defensive posture of all sites, (3) there are two type of threats, strategic terror
threats and non-strategic disaster/infection threats, and (4) the defender does not have
access to information about target sites terrorist aims at. Powell (2009) [198] extended his
previous results using a novel non-zero-sum sequential game model and derived its subgame
perfect equilibrium. Hohzaki and Nagashima (2009) [137] discussed a Stackelberg ADG
model in which an attacker budgets for the construction of various types of missiles that
will be used to attack containers or silos that the defender must protect. The defender
observes the missile construction plan, divides his or her strategic materials appropriately
and transports the divided portions to containers or silos. The game payoff is the amount
of destroyed material. Hausken (2010, 2011) [107,109] investigated a non-zero-sum ADG
with a valuable system consisting of various elements aligned in series along with parallel
and combined composition.

Zhuang et al. (2010) [245] modeled an attack-defense problem using a multi-stage
incomplete-information game that includes secrecy and deception. At each stage of play, the
defender must decide whether to make a direct resource allocation that provides temporary
effects or an indirect resource investment with potential long-term effects. Shan and Zhuang
(2013) [220] discussed a Stackelberg game in which a leader/defender distributes his or her
resources to defend targets that two types of attacker/followers will attempt to destroy.

In this section, we have reviewed SSG variations. We also examine BG and ADG studies
that have come before the footlights recently again due to historical requests, primarily
because those game models resemble the SSG.

10. Miscellaneous Search Games

In this section, we will discuss the network interdiction game (NIG) listed in Table 1 in
Section 1.1 as well as other miscellaneous games. As was done in the previous section, we
provide an outline of the NIG while paying attention to related search games.

In modern society, we utilize a variety of networks for various purposes such as infor-
mation transmission/reception, various forms of travel, power transmission/usage, and so
on. Mathematical models used to analyze the interdiction of entities on such networks are
referred to as network interdiction models (NIMs). A game version of NIM is a NIG. The SG
we explained previously is the historical root of problem-oriented NIGs designed to inter-
cept contraband flows on smuggling networks. Using graph and network theory, this game

provides advanced insights that could be used in the foundations of methodology-oriented
NIGs.
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In today’s fight against terrorism, problem-oriented NIGs are increasingly utilized to
help create effective defenses for infrastructure such as information and communication
networks, electricity /gas/water networks, road /railway traffic networks and others. Among
those others, the NIG provides good tools for efficient guard patrol plans in various facilities,
effective ways to control infectious diseases along infection routes in order to prevent world-
wide pandemics, and (as always) application to military problems. Methodology-oriented
NIMs have been studied for many years by researchers such as Ford and Fulkerson (1962)
[85]. They discussed a good way to separate a start node from a goal node on a network as
an application of a minimum cut problem. Herein, we will outline several NIG models, but
for more in depth information, please refer to Hohzaki (2015) [124], which is an introductory
paper on NIMs from the safe life standpoint.

As published papers on the interdiction of smuggling, we have examined Washburn and
Wood (1995) [241], Salmeron (2012) [216] and Bakir (2011) [28]. In the Washburn and
Wood (1995) model, a smuggler wants to pass through a smuggling network undetected
by customs, while customs works to find the smuggler by setting up inspection sites on
the network. The authors formulated the game into a mixed integer-programming problem
and solved it by means of graph theory and maximum flow theory. Salmeron (2012) used
mathematical programming formulation to create a sensor placement plan that would offer
the optimum chance of detecting an intruder traveling through a network based on the
criterion of the intruder detection probability. Bakir (2011) used a Stackelberg model to
analyze the allocation of security resources aimed at intercepting the flow of illegal weapons
via imported or exported containers, primarily through harbors. The former two models
are regarded as SAGs because customs detects smuggling or intruders via the distribution
of discrete resources.

As for infrastructure network defense, we have the following references. In the first,
Kodialam and Lakshman (2003) [155] developed a sampling strategy for packet flows trav-
elling through a communication network within a given budget in order to effectively detect
malicious intrusions. In the second, Salmeron et al. (2004) [217] proposed a good way to
mitigate damage inflicted by terrorist attacks on electric power grids using a Stackelberg
NIG. Later, Bell et al. (2008) [42] evaluated the vulnerability of road networks in London
against terrorist attacks in order to secure a minimum traffic flow, while Perea and Puerto
(2013) [194] considered the design of railway networks that are resilient against intentional
attacks. These research efforts can be regarded as being related to the SAG because terror-
ist efforts are aimed at inflicting the maximum possible damage by distributing attacking
resources on infra-nets.

Scaparra and Churce (2008) [219] adopted a Stackelberg game model to analyze an
effective defense policy in a situation where a defender first fortifies facilities and terrorists
attack those facilities after observing the fortification effort, while Basilico et al. (2012)
[29] investigated an effective patrol policy for finding damage inflicted by terrorist’s attacks.
Baykal-Gursoy et al. (2014) [39] considered a mitigation policy involving stationary node
investigations and active network patrols after an attacker has already damaged nodes. By
replacing an attacker with a hider and the defender with a searcher, these NIGs could be
used for hide-allocation games.

In another study into facility patrol problems, Pita et al. (2009) [195] and Tambe (2012)
[228] designed the Assistant for Randomized Monitoring over Routes (ARMOR) security
system of the Los Angeles International Airport, which exploits an equilibrium of a Bayesian
Stackelberg game as a rational randomized patrol plan, while Morita et al. (2011) [176]
and Hohzaki et al. (2013) [136] evaluated the vulnerability of guard patrol routes against
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intruder routes in facilities and used a TPZS game to design effective patrol routes from the
viewpoint of facility security automation involving robots and intelligent sensors. As can be
seen from the above review, numerous patrol problems are modeled using Stackelberg games
because general information on security systems is often available to potential intruders. If
we substitute an evader for an intruder and searchers for guards in patrol games, we can
regard these patrol games as evasion-search games.

As an NIG application to military problems or an ADG, we reviewed a study on the
ABM problem by Brown et al. (2005) [53], in which the authors used a Stackelberg game to
discuss effective deployments of defensive ABMs when defending various targets under threat
from adversary theater ballistic missiles. Using a model in which defenders are waiting on
arcs to intercept attackers advancing on a network, and by employing Lanchester’s attrition
model to cover force attrition caused by conflict between defenders and attackers, Hohzaki
and Chiba (2015) [125] clarified the relationship between effective defender deployment and
available information on attackers. This model is regarded as an SAG where defenders are
responsible for allocating defensive resources against moving attackers on a network.

Finally, let us check some advanced NIG studies on graph/network theory. Wood (1993)
[243] considered a Stackelberg game with arc deletions followed by maximum flows on a
surviving network, while Akgun et al. (2011) [1] also used a Stackelberg game model to
analyze the interception problem of multi-commodity maximum flows, which they called
the multi-terminal maximum-flow network-interdiction problem.

11. Conclusions

Herein, we surveyed literature on search games. As can be seen in Table 1 in Section 1.1, our
targets of search game models are the smuggling game (SG), inspection game (IG), binary
search game (BSG), linear search game (LSG), hide-search game (HSG), hide-allocation
game (HAG), evasion-search game (ESG), princess-monster game (PMG), ambush game
(AG), search allocation game (SAG), path-constrained search game (PCSG), search-search
game (SSG), Blotto game (BG), attack-defense game (ADG), and network interdiction game
(NIG). Due to their lack of historical relation to search theory, we did not carry out a full
survey for the SG, IG, BG, ADG and NIG models. However, we did provide outlines for
them while paying attention to their search problems.

Search games are applications of game theory to search problems. While authors nat-
urally borrow solution concepts and models from game theory, they must devise concrete
methodologies to derive equilibrium points in almost all cases because game theory cannot
be stretched sufficiently to supply solution methods. However, since we did not have suffi-
cient space to show the methodologies of their solutions to readers, it was necessary to focus
on the characteristics and differences of search game models, and several basic formulations.

Numerous search game researchers have aimed at solving realistic search problems on a
case-by-case basis. In such cases, game theory cannot always be directly applied to the search
models, even though its evolution affects search games. However, the application of various
advanced concepts of game theory has provided welcome enrichments to the applicability
and analytical power of search games. A keyword is ‘information’, which is now necessary in
advanced search games. Information plays an important role in games, as Harsanyi (1967)
[108] pointed out. Additionally, as mentioned before, the presence of falsehoods in the ‘yes’
and ‘no’ answers is integral to some BSG models. Information about the history of past
searched location characterizes some HSG and ESG models. Similarly, information about
princess and monster’s position, target position and target mobility are important in PMG
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and SAG models while secrecy and deception might be involved in information for some
ADG models. Since we want to make search game models more realistic, efforts should be
made to encourage adoption of the following models: a multi-stage model with information
acquisition as a stage breakpoint, an incomplete-information game model where players face
uncertainty about rules and game payoff, and a Stackelberg game model with asymmetric
acquisition of player information. Information-related issues can be expected to become
significantly more important in future studies on search games.

New paradigms of search game evolution should be tried in search spaces, especially in
PMG and AG scenarios, where researchers have developed theories based on comparatively
simple search spaces. For more realistic applications, a wider variety of general spaces
should be included, which will require the development of computational methods other
than theoretical expressions for equilibria.

We will conclude this paper with some remarks on cooperative search game modeling.
Since its formation, search theory has been used in actual search and rescue (SAR) oper-
ations from a theoretical point of view. It would seem natural that SAR activities would
require cooperative game modeling where searchers and targets behave in a cooperative
manner. However, we found just one or two studies on the cooperative search games to
review in Section 8. It is also interesting that the expectable elements of cooperative-game
modeling and information utility could be incorporated into the rendezvous search problems
we mentioned, but did not survey, in Section 2. In an ordinary rendezvous search, several
searchers may want to meet each other, but rendezvous is difficult because of the lack of
consistency or connection between the various searcher viewpoints in search space, present
positions, orientation, or other factors. However, we can expect that various versions of
cooperative search games will branch from rendezvous search in the near future.
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