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Abstract We consider a bivariate Markov process {(U(t), S(t)); t ≥ 0}, where U(t) (t ≥ 0) takes values in
[0,∞) and S(t) (t ≥ 0) takes values in a finite set. We assume that U(t) (t ≥ 0) is skip-free to the left, and
therefore we call it the M/G/1-type Markov process. The M/G/1-type Markov process was first introduced
as a generalization of the workload process in the MAP/G/1 queue and its stationary distribution was
analyzed under a strong assumption that the conditional infinitesimal generator of the underlying Markov
chain S(t) given U(t) > 0 is irreducible. In this paper, we extend known results for the stationary distribution
to the case that the conditional infinitesimal generator of the underlying Markov chain given U(t) > 0 is
reducible. With this extension, those results become applicable to the analysis of a certain class of queueing
models.

Keywords: Queue, bivariate Markov process, skip-free to the left, matrix-analytic
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1. Introduction

We consider a bivariate Markov process {(U(t), S(t)); t ≥ 0}, where U(t) and S(t) are
referred to as the level and the phase, respectively, at time t. U(t) (t ≥ 0) takes values in
[0,∞) and S(t) (t ≥ 0) takes values in a finite set M = {1, 2, . . . ,M}. {U(t); t ≥ 0} either
decreases at rate one or has upward jump discontinuities, so that {U(t); t ≥ 0} is skip-free
to the left. We assume that when (U(t−), S(t−)) = (x, i) (x > 0, i ∈ M), an upward
jump (possibly with size zero) occurs at a rate σ[i] (σ[i] > 0) and the phase S(t) becomes j
(j ∈ M) with probability p[i,j]. On the other hand, when (U(t−), S(t−)) = (0, i) (i ∈ M),
an upward jump occurs with probability one and the phase S(t) becomes j (j ∈ M) with
probability p[i,j]. Note here that for i ∈ M,∑

j∈M

p[i,j] = 1,
∑
j∈M

p[i,j] = 1.

When U(t) > 0 (resp. U(t) = 0), the sizes of upward jumps with phase transitions from
S(t−) = i to S(t) = j are independent and identically distributed (i.i.d.) according to a

general distribution function B[i,j](x) (x ≥ 0) (resp. B
[i,j]

(x) (x ≥ 0)). To avoid trivialities,

we assume B[i,i](0) = 0 (i ∈ M) and B
[i,j]

(0) = 0 (i, j ∈ M).
We introduce M × M matrices C, D(x) (x ≥ 0), and B(x) (x ≥ 0) to deal with this

Markov process.

[C]i,j =

{
−σ[i], i = j,

σ[i]p[i,j]B[i,j](0), i ̸= j,
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EXTENSION OF M/G/1-TYPE MARKOV PROCESSES 377

[D(0)]i,j = 0, [D(x)]i,j = σ[i]p[i,j]B[i,j](x), x > 0,

[B(x)]i,j = p[i,j]B
[i,j]

(x).

We define D∗(s) (Re(s) > 0) and B
∗
(s) (Re(s) > 0) as the Laplace-Stieltjes transforms

(LSTs) of D(x) and B(x), respectively.

D∗(s) =

∫ ∞

0

exp(−sx)dD(x), B
∗
(s) =

∫ ∞

0

exp(−sx)dB(x).

Further we define M ×M matrices D and B as

D = lim
x→∞

D(x) = lim
s→0+

D∗(s), B = lim
x→∞

B(x) = lim
s→0+

B
∗
(s).

By definition, C +D represents the infinitesimal generator of a continuous-time Markov
chain defined on finite state space M. Also, B represents the transition probability matrix
of a discrete-time Markov chain defined on finite state space M. Therefore, C +D and B
satisfy

(C +D)e = 0, Be = e,

respectively, where e denotes an M × 1 vector whose elements are all equal to one.
The Markov process described above was first introduced in [7] as a continuous analog of

Markov chains of the M/G/1 type [5]. We thus refer to this Markov process as the M/G/1-
type Markov process. In [7], the M/G/1-type Markov process is regarded as a generalization
of the workload process in the queueing model with customer arrivals of Markovian arrival
process (MAP), and the LST of the stationary distribution is derived under the assumption
that C +D is irreducible. This assumption is appropriate when we consider the stationary
behavior of the ordinary MAP/G/1 queues, because it is equivalent to assume that the
underlying Markov chain governing the arrival process is irreducible. However, the irre-
ducibility of C + D is not necessary for the irreducibility of {(U(t), S(t)); t ≥ 0}. This
assumption is thus too strong and restricts its applicability to queueing models.

In this paper, we assume that an M ×M infinitesimal generator

C +D +B − I

is irreducible, where I denotes anM×M unit matrix. It is easy to see that {(U(t), S(t)); t ≥
0} is irreducible if and only if C +D +B − I is irreducible. Therefore, even when C +D
is reducible, {(U(t), S(t)); t ≥ 0} is irreducible if all states in M can be reached from each
other with transitions governed by C +D and B. Note that for discrete-time M/G/1 type
Markov chains, analytical results for the case corresponding to reducible C +D is found in
[5, section 3.5]. To the best of our knowledge, however, a continuous analog of such results
have not been reported in the literature.

The rest of this paper is organized as follows. In Section 2, we explain the application of
the M/G/1-type Markov process to the analysis of queueing models. We show through some
examples that its applicability is extended allowing C+D to be reducible. In Section 3, we
briefly review known results for the M/G/1-type Markov process with irreducible C +D
[7]. In Section 4, we first show that results in [7] are not applicable directly to reducible
C +D, and then derive a formula applicable to the reducible case. In addition, we provide
a recursion to compute the moments of the stationary distribution, and consider an efficient
computational procedure of a fundamental matrix for reducible C+D. Finally, we conclude
this paper in Section 5.
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378 Y. Inoue & T. Takine

2. Applications of the M/G/1-Type Markov Process to Queueing Models

In this section, we shortly explain applications of the M/G/1-type Markov process to the
analysis of queueing models. We first make an explanation about queueing models formu-
lated to be the M/G/1-type Markov process with irreducible C+D. Next, we present some
examples of queueing models that can be analyzed using the M/G/1-type Markov process
with reducible C +D, which emphasize the motivation of this paper.

As mentioned in Section 1, the M/G/1-type Markov process was first introduced as a
continuous analog of the M/G/1 type Markov chain. The M/G/1-type Markov chain is
utilized typically for the analysis of MAP/G/1 queues. For the MAP/G/1 queue, the em-
bedded queue length process at the departure instants can be described by the M/G/1-type
Markov chain. On the other hand, the censored workload process in the MAP/G/1 queue
obtained by observing only busy periods can be described by the M/G/1-type Markov pro-
cess. Note here that the censored workload process is a stochastic process whose sample
paths are identical to those of the original workload process, except that time periods of
the system being empty are removed from the time axis and a busy period starts immedi-
ately after the system becomes empty. Specifically, the censored workload process in the
MAP/G/1 queue characterized by a MAP (CMAP,DMAP) and a service time distribution
B(x) (x ≥ 0) corresponds to the M/G/1-type Markov process with

C = CMAP, D(x) = B(x)DMAP, B(x) = B(x)(−CMAP)
−1DMAP.

Analysis of the workload process is important when we consider the multi-class FIFO
MAP/G/1 queue, i.e., the FIFO queue with marked MAP (MMAP) arrivals [2] with different
service time distributions among classes. The queue length process in such a model is
difficult to analyze directly because the embedded queue length process at the departure
instants is no longer of the M/G/1 type, and we need to keep track of the class of every
waiting customer [2]. On the other hand, analysis of the workload process does not have
such difficulty. Consider the MMAP/G/1 queue characterized by a MMAP (CMAP,DMAP,k)
(k = 1, 2, . . . , K) and service time distributions Bk(x) (k = 1, 2, . . . , K, x ≥ 0). For this
model, the censored workload process obtained by observing only busy periods is described
by the M/G/1-type Markov process with

C = CMAP, D(x) =
K∑
k=1

Bk(x)DMAP,k, B(x) = (−CMAP)
−1

K∑
k=1

Bk(x)DMAP,k. (1)

As shown in [8], the joint distribution of the numbers of customers in the stationary system
is given in terms of the stationary workload distribution.

In the analysis of the ordinary MAP/G/1 and MMAP/G/1 queues, it is usually assumed
that the underlying Markov chain is irreducible because the existence of transient states have
no effect on performance measures of the queues in steady state. In accordance with this
convention, the analytical results for the M/G/1-type Markov process reported in [7] are
derived under an assumption that C +D is irreducible.

As shown in examples below, however, there exist queueing models whose (censored)
workload processes are formulated as M/G/1-type Markov processes with reducible C+D.

Example 1-A. Consider a MAP/G/1 queue with two types of busy periods {1, 2}, where
the customer arrival process is governed by (C

(i)
MAP,D

(i)
MAP(x)) during busy periods of type

i (i = 1, 2). Transitions of busy-period type occur only when the system is empty. The
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censored workload process obtained by observing only busy periods is formulated as an
M/G/1-type Markov process with

C =

(
C

(1)
MAP O

O C
(2)
MAP

)
, D(x) =

(
D

(1)
MAP(x) O

O D
(2)
MAP(x)

)
,

B(x) =

(
B

(11)
(x) B

(12)
(x)

B
(21)

(x) B
(22)

(x)

)
.

An example of a queueing system with two (or more) types of busy periods is a host machine
in a distributed server system with dedicated task assignment policy [1]. Each host is
dedicated to either “short” or “long” jobs during a busy period so that variability of job
sizes to be processed at each host becomes low. Furthermore, when a host becomes idle, its
role may be changed to the other one, which improves the utilization of the system.

Example 1-B.
Consider a MAP/G/1 queue with multiple vacations and exhaustive service discipline

[4]. For queueing models with vacations, lengths of vacations are usually assumed to be
i.i.d. random variables. Using the M/G/1-type Markov process with reducible C +D, we
can describe a MAP/G/1 queue with semi-Markovian vacation times, where a sequence of
vacation lengths forms a semi-Markov process. For example, consider a 2-state semi-Markov
process {SV(t); t ≥ 0}, where SV(t) takes value in {1, 2}. Let V [i,j](x) (x ≥ 0, i, j = 1, 2)
denote the joint probability that a state-transition from state i to state j occurs when the
sojourn time in state i is elapsed, and the sojourn time in state i is not greater than x. The
workload process in a MAP/G/1 queue with vacations whose lengths are governed by this
semi-Markov process is then represented by the M/G/1-type Markov process with

C =

(
CMAP O
O CMAP

)
, D(x) =

(
DMAP(x) O

O DMAP(x)

)
,

B(x) =

(
V [1,1](x)IMAP V [1,2](x)IMAP

V [2,1](x)IMAP V [2,2](x)IMAP

)
,

where IMAP denotes a unit matrix with the same size as CMAP. Note that in this case,
vacations can be regarded as service times of virtual customers who arrive immediately after
the system becomes empty, so that this M/G/1-type Markov process represents the original
workload process in the exhaustive-service MAP/G/1 vacation queue with semi-Markovian
vacation times.

Example 2-A. Consider a MAP/G/1 queue, where the underlying Markov chain governing
the arrival process is transient, and its state gets reset when the system becomes empty.
The censored workload process obtained by observing only busy periods is formulated as an
M/G/1-type Markov process with

C =

(
CT CT,N

O CN

)
, D(x) =

(
DT(x) DT,N(x)
O DN(x)

)
,

B(x) =

(
BT,T(x) O
BN,T(x) O

)
,

where “T” and “N” represent “transient” and “normal”, respectively. Data streams gen-
erated by the slow-start mechanism of the transmission control protocol (TCP), whose
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behavior is different during start-up periods, is an example of such a transient arrival pro-
cess. The analysis of this queueing model enables us to examine the trade-off between the
data throughput and the queueing delay caused by congestion in a communication channel.

Example 2-B. As a modified version of Example 2-A, consider a queueing model in which
the processing rate is given by γ > 0 during the transient periods. By means of the change
of time scale, the censored workload process can be converted to an M/G/1-type Markov
process with [10]

C =

(
CT/γ CT,N/γ
O CN

)
, D(x) =

(
DT(x)/γ DT,N(x)/γ
O DN(x)

)
, (2)

B(x) =

(
BT,T(x) O
BN,T(x) O

)
. (3)

This queueing model is referred to as a queue with working vacations, which was introduced
in [6] as a model of an access router in a reconfigurable wavelength division multiplexing
(WDM) optical access network. In queueing models with working vacations, when the
system becomes empty, the server starts a period called a working vacation, during which
the server serves arriving customers with a service rate different from normal periods. By
considering the queueing models with working vacations, we can discuss the effectiveness of
the adaptive resource allocation mechanisms in reconfigurable WDM optical access networks.

Remark 1. For simplicity of notations, we considered a single-class model in each example
above. These models can be easily extended to the case of MMAP arrivals in the same way
as in (1).

In Section 4, we develop analytical methods for the M/G/1-type Markov processes with
reducible C +D. The results in Section 4 enable us to obtain performance measures in
varieties of queueing models including those described in the examples above.

3. Known Results for Irreducible C +D [7]

In this section, we review known results in [7], assuming that C+D is irreducible. Owing to
this assumption, C+D has its invariant probability vector π, which is uniquely determined
by

π(C +D) = 0, πe = 1.

Let β and β denote M × 1 vectors given by

β =

∫ ∞

0

xdD(x)e, β =

∫ ∞

0

xdB(x)e. (4)

Throughout this section, we assume that

β < ∞, πβ < 1,

which ensures the irreducible Markov process {(U(t), S(t)); t ≥ 0} being positive recurrent
[7, Theorem 1]. Let u(x) (x > 0) denote a 1 × M vector whose jth (j ∈ M) element
represents the joint probability that the level is not greater than x and the phase is equal
to j in steady state and we define u∗(s) (Re(s) > 0) as the LST of u(x).

[u(x)]j = lim
t→∞

Pr(U(t) ≤ x, S(t) = j), j ∈ M,

u∗(s) =

∫ ∞

0

exp(−sx)du(x).

We can derive the following lemma from the balance equation for steady state.
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Lemma 1. (Theorem 2 in [7]) u∗(s) (Re(s) > 0) satisfies

u∗(s)[sI +C +D∗(s)] = ú(0)[I −B∗
(s)], Re(s) > 0, (5)

where ú(0) denotes the right derivative of u(x) at x = 0.

ú(0) = lim
x→0+

u(x)− u(0)
x

.

Let c denote the reciprocal of the mean recurrence time of the set of states {(0, i); i ∈
M}. Further let ηE denote the stationary probability vector of the phase just before the
level becomes 0. ú(0) is then given by

ú(0) = cηE. (6)

In order to determine c and ηE, we consider the first passage time to level 0. Let TE denote
the first passage time to level 0 after time 0.

TE =

{
0, U(0) = 0,

inf{t; U(t) = 0, t > 0}, otherwise.

We define P (t | x) (t ≥ 0, x ≥ 0) as an M ×M matrix whose (i, j)th element (i, j ∈ M)
represents the joint probability that the first passage time is not greater than t and the
phase is equal to j at the end of the first passage time, given that the level is equal to x
and the phase is equal to i at time 0.

[P (t | x)]i,j = Pr(TE ≤ t, S(TE−) = j | U(0) = x, S(0) = i).

Let P ∗(s | x) (Re(s) > 0, x ≥ 0) denote the LST of P (t | x) with respect to t.

P ∗(s | x) =
∫ ∞

t=0

exp(−st)dP (t | x).

Using
P ∗(s | x+ y) = P ∗(s | x)P ∗(s | y), x ≥ 0, y ≥ 0,

[11] shows that P ∗(s | x) (x ≥ 0) is given by

P ∗(s | x) = exp(Q∗(s)x), (7)

where Q∗(s) (Re(s) > 0) denotes an M ×M matrix that satisfies

Q∗(s) = −sI +C +

∫ ∞

0

dD(y) exp(Q∗(s)y). (8)

Let P (x) (x ≥ 0) denote an M × M transition probability matrix whose (i, j)th element
(i, j ∈ M) is given by

[P (x)]i,j = Pr(S(TE−) = j | U(0) = x, S(0) = i).

By definition, we have

P (x) = lim
s→0+

P ∗(s | x) = exp(Qx), x ≥ 0, (9)
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382 Y. Inoue & T. Takine

where
Q = lim

s→0+
Q∗(s).

Because of (8), Q satisfies

Q = C +

∫ ∞

0

dD(y) exp(Qy). (10)

Remark 2. As shown in [11], Q is given by the limit limn→∞Q
(n) of an elementwise

increasing sequence of matrices {Q(n)}n=0,1,... given by the following recursion.

Q(0) = C, Q(n) = C +

∫ ∞

0

dD(y) exp
(
Q(n−1)y

)
, n = 1, 2, . . . . (11)

Because the integral on the right-side of this equation can be computed with uniformization
[12], we can numerically obtain Q = limn→∞Q

(n) with an adequate stopping criterion. More
specifically, for a given allowable error ϵ > 0, we may stop the iteration at n∗ satisfying
maxi∈M

∣∣[Q(n∗)e]i
∣∣ < ϵ.

Q is known to be an infinitesimal generator of a Markov chain onM, and it is irreducible
ifC+D is irreducible [9, 11]. Therefore, because of the assumption of the irreducibleC+D,
Q has its invariant probability vector κ, which is uniquely determined by

κQ = 0, κe = 1. (12)

We define f(x) (x ≥ 0) as an M × 1 vector whose ith (i ∈ M) element represents the mean
first passage time to level 0, given that the level is equal to x and the phase is equal to i at
time 0.

[f(x)]i = E[TE | U(0) = x, S(0) = i].

Noting (7) and (8), we obtain f(x) through a straightforward calculation.

f(x) = (−1) · lim
s→0+

∂

∂s
P ∗(s | x)e

=

(
∞∑
n=1

xnQn−1

n!

)(
(−1) · lim

s→0+

∂

∂s
Q∗(s)e

)
(13)

= [xeκ− exp(Qx) + I][(e− β)κ−C −D]−1e, (14)

because (
∞∑
n=1

xnQn−1

n!

)
= [xeκ− exp(Qx) + I](eκ−Q)−1, (15)

(−1) · lim
s→0+

∂

∂s
Q∗(s)e = (eκ−Q)[(e− β)κ−C −D]−1e. (16)

It is known that both of eκ−Q and (e− β)κ−C −D are non-singular when C +D is
irreducible.

c and ηE on the right-hand side of (6) is then given by the following lemma.
Lemma 2. (Theorem 3 in [7]) ηE is uniquely determined by

ηE

∫ ∞

0

dB(x) exp(Qx) = ηE, ηEe = 1, (17)
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and c is given by

c =
1

ηE

∫ ∞

0

dB(x)f(x)

=
1

ηE(βκ+B − I)[(e− β)κ−C −D]−1e
. (18)

Before closing this section, we derive an alternative formula for u∗(s), which is similar
to that given in [9]. We define M ×M matrices R∗(s) (Re(s) > 0) and R

∗
(s) (Re(s) > 0)

as

R∗(s) =

∫ ∞

0

exp(−sx)dx

∫ ∞

x

dD(y) exp(Q(y − x)),

R
∗
(s) =

∫ ∞

0

exp(−sx)dx

∫ ∞

x

dB(y) exp
(
Q(y − x)

)
.

By definition, R∗(s) and R
∗
(s) satisfy

[I −R∗(s)](sI +Q) = sI +C +D∗(s), Re(s) > 0, (19)

R
∗
(s)(sI +Q) =

∫ ∞

0

dB(y) exp(Qy)−B∗
(s), Re(s) > 0. (20)

It follows from (6), (17), and (20) that

ú(0)R
∗
(s)(sI +Q) = ú(0)[I −B∗

(s)], Re(s) > 0.

With (19), (5) is then rewritten to be

u∗(s)[I −R∗(s)](sI +Q) = ú(0)R
∗
(s)(sI +Q), Re(s) > 0. (21)

In the same way as in [3, P. 66], it can be shown that (21) implies

u∗(s)[I −R∗(s)] = ú(0)R
∗
(s), Re(s) > 0.

We thus obtain the following theorem.
Theorem 1. u∗(s) is given by

u∗(s) = ú(0)R
∗
(s)[I −R∗(s)]−1, Re(s) > 0. (22)

Remark 3. [9] shows that I−R∗(s) (Re(s) > 0) is non-singular when C+D is irreducible.

4. Results for Reducible C +D

In this section, we generalize the results in Section 3 to the case of reducible C +D. More
specifically, we assume that the infinitesimal generator C +D is reducible and it has H
closed irreducible classes of states. We defineH = {1, 2, . . . , H} as the set of such irreducible
classes. C and D are then written in the following form.

C =


CT CT,1 CT,2 · · · CT,H

O C1 O · · · O
O O C2 · · · O
...

...
...

. . .
...

O O O · · · CH

 , D =


DT DT,1 DT,2 · · · DT,H

O D1 O · · · O
O O D2 · · · O
...

...
...

. . .
...

O O O · · · DH

 , (23)
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where CT denotes an MT ×MT defective infinitesimal generator, Ch (h ∈ H) denotes an
Mh×Mh defective infinitesimal generator, and CT,h (h ∈ H) denotes an MT×Mh transition
rate matrix. Also, DT denotes an MT × MT transition rate matrix, Dh (h ∈ H) denotes
an Mh ×Mh transition rate matrix, and DT,h (h ∈ H) denotes an MT ×Mh transition rate
matrix. Because Ch +Dh (h ∈ H) represents an irreducible infinitesimal generator, it has
its invariant probability vector πh, which is uniquely determined by

πh(Ch +Dh) = 0, πheh = 1,

where eh (h ∈ H) denotes an Mh × 1 vector whose elements are all equal to one.
Throughout this paper, for any M ×M block upper-triangular matrix similar to C and

D in (23), we denote the (0, 0)th block by the subscript “T”, the (0, h)th block (h ∈ H)
by the subscript “T, h”, and the (h, h)th block (h ∈ H) by the subscript “h”. We define
MT × 1 vector βT and Mh × 1 vector βh (h ∈ H) as

βh =

∫ ∞

0

xdDh(x)eh, βT =

∫ ∞

0

xdDT(x)eT +
∑
h∈H

∫ ∞

0

xdDT,h(x)eh,

respectively, where eT denotes an MT × 1 vector whose elements are all equal to one (cf.
(4)). We assume that an M × M infinitesimal generator C +D + B − I is irreducible,
which is a necessary and sufficient condition for {(U(t), S(t)); t ≥ 0} to be irreducible as
noted in Section 1. We also assume that

β < ∞, βT < ∞, πhβh < 1, h ∈ H. (24)

With Theorem 1 in [7], it is easy to see that {(U(t), S(t)); t ≥ 0} is positive recurrent if and
only if (24) holds.

As mentioned in Section 3, the assumption of the irreducible C + D is a sufficient
condition for the followings to hold:
(i) The matrix Q is irreducible, so that its invariant probability vector κ is uniquely deter-

mined by (12).

(ii) Both eκ − Q and (e − β)κ − C −D are non-singular, and therefore f(x) (x ≥ 0) is
given by (14).

(iii) I −R∗(s) on the right-hand side of (22) is non-singular for Re(s) > 0.
Note that these are the only things in the discussion of Section 3, which are related to the
irreducibility of C +D.

We can prove that (iii) still holds for reducible C +D. We provide an outline of its
proof in Appendix A. As shown below, on the other hand, neither of (i) and (ii) above is
valid when C+D is reducible with more than one irreducible classes of states (i.e., H ≥ 2).

Noting that Q is given by the limit of the sequence of matrices {Q(n)}n=0,1,... defined as
(11), it is easy to see that Q takes the form

Q =


QT QT,1 QT,2 · · · QT,H

O Q1 O · · · O
O O Q2 · · · O
...

...
...

. . .
...

O O O · · · QH

 , (25)

where QT denotes a defective infinitesimal generator, QT,h (h ∈ H) denotes a transition
rate matrix, and Qh (h ∈ H) denotes an irreducible infinitesimal generator. Q is thus no
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longer irreducible. Furthermore, whenH ≥ 2, there are infinitely many invariant probability
vectors of Q, which are given by linear combinations of the invariant probability vectors of
Q1, Q2, . . . , and QH . The following lemma shows that eκ−Q and (e−β)κ−C −D are
no longer non-singular for any invariant probability vector κ of Q if H ≥ 2.
Lemma 3. Consider an M×M reducible infinitesimal generator Y with H closed irreducible
classes of states.

Y =


Y T Y T,1 Y T,2 · · · Y T,H

O Y 1 O · · · O
O O Y 2 · · · O
...

...
...

. . .
...

O O O · · · Y H

 .

Let γh (h ∈ H) denote the invariant probability vector of Y h.

γhY h = 0, γheh = 1, h ∈ H.

If H ≥ 2, vα − Y is singular for any 1 × M real vector α and any M × 1 real vector v
satisfying

v =


vT
v1
v2
...
vH

 , γhvh ̸= 0 for some h ∈ H, (26)

where vT and vh (h ∈ H) denote MT × 1 and Mh × 1 vectors, respectively.
We prove Lemma 3 in Appendix B.
When H ≥ 2, we can verify that eκ − Q (resp. (e − β)κ − C − D) is singular for

any invariant probability vector κ of Q, by letting α = κ, v = e (resp. v = e − β), and
Y = Q (resp. Y = C +D) in Lemma 3. The formulae (14) and (18) in Section 3 is thus
not applicable to reducible C +D with more than one irreducible classes of states.
Remark 4. If C + D has transient states and only one irreducible class of states, i.e.,
H = 1, Q has the unique invariant probability vector κ even though it is reducible. In this
case, we can prove that both of eκ−Q and (e− β)κ−C −D are non-singular.
Remark 5. Although analytical results for the M/G/1-type Markov chain corresponding to
the case of reducible C + D is obtained in [5, section 3.5], it considers only the case of
H = 1 with transient states. As shown for the continuous version, however, the case of
H ≥ 2 is essentially different from that of H = 1.

The rest of this section consists of three subsections. In Section 4.1, we consider the LST
of the stationary distribution u∗(s) (Re(s) > 0), and derive a formula applicable to reducible
C+D. In Section 4.2, we provide an efficient computational procedure of reducible Q with
the block structure (25). Finally, in Section 4.3, we consider the moments of the stationary
distribution. We show that some modification from the irreducible case is necessary to
obtain the moments.

4.1. LST of Stationary Distribution

In this subsection, we derive a formula for the LST of the stationary distribution u∗(s)
(Re(s) > 0) applicable to reducible C + D. Note that (5) and (22) are still valid for
reducible C +D. The difference from the irreducible case is that ú(0) cannot be obtained
from Lemma 2 because (14) and (18) does not hold for reducible C +D with H ≥ 2 as
shown above.
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Therefore, we first derive a formula for the mean first passage time f(x) (x ≥ 0) ap-
plicable to reducible C +D with the general structure (23). Let κh (h ∈ H) denote the
invariant probability vector of Qh (see (25)), which is uniquely determined by

κhQh = 0, κheh = 1. (27)

We then define M ×M matrix Q̌ as

Q̌ =


O Q̌T,1 Q̌T,2 · · · Q̌T,H

O e1κ1 O · · · O
O O e2κ2 · · · O
...

...
...

. . .
...

O O O · · · eHκH

 , (28)

where
Q̌T,h = (−QT)

−1QT,hehκh, h ∈ H.

Lemma 4. f(x) (x ≥ 0) is given by

f(x) = [I − exp(Qx) + xQ̌](∆−C −D)−1e, (29)

where ∆ is defined as

∆ = Q̌−
∫ ∞

0

xdD(x)Q̌ =


O ∆T,1 ∆T,2 · · · ∆T,H

O (e1 − β1)κ1 O · · · O
O O (e2 − β2)κ2 · · · O
...

...
...

. . . O
O O O · · · (eH − βH)κH

 ,

∆T,h = Q̌T,h −
∫ ∞

0

xdDT(x)Q̌T,h −
∫ ∞

0

xdDT,h(x)ehκh, h ∈ H.

Remark 6. (∆−C −D)−1 is given by

(∆−C −D)−1 =



[−(CT +DT)]
−1 JT,1 JT,2 · · · JT,H

O ∆̂
−1

1 O · · · O

O O ∆̂
−1

2 · · · O
...

...
...

. . .
...

O O O · · · ∆̂
−1

H

 , (30)

where

∆̂h = (eh − βh)κh −Ch −Dh, h ∈ H,

JT,h = (−1) · [−(CT +DT)]
−1(∆T,h −CT,h −DT,h)∆̂

−1

h , h ∈ H.

Proof. Because we can prove Lemma 4 in almost the same way as the irreducible case in
[11], we provide only an outline of the proof. By definition of Q̌, it follows that

QQ̌ = O,
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from which we obtain a similar result to (15).

∞∑
n=1

xn

n!
Qn−1 =

[
I − exp(Qx) + xQ̌

]
(Q̌−Q)−1.

Note here that the block upper-triangular matrix Q̌−Q is non-singular because its diagonal
block matrices −QT and ehκh −Qh (h ∈ H) are non-singular. Noting that ∆−C −D is
non-singular by the same reasoning as the non-singularity of Q̌−Q, we also obtain

(−1) · lim
s→0+

d

ds
Q∗(s)e = (Q̌−Q)(∆−C −D)−1e,

which corresponds to (16). We then obtain (29) from (13).

We then obtain u∗(s) (Re(s) > 0) for reducible C +D using (5), (17), and (22).

Theorem 2. u∗(s) (Re(s) > 0) satisfies

u∗(s)[sI +C +D∗(s)] = cηE[I −B∗
(s)], Re(s) > 0, (31)

and it is given by

u∗(s) = cηER
∗
(s)[I −R∗(s)]−1, Re(s) > 0,

where ηE denotes a 1×M probability vector which is uniquely determined by

ηE = ηE

∫ ∞

0

dB(x) exp(Qx), ηEe = 1, (32)

and c is given by

c =
1

ηE(∆+B − I)(∆−C −D)−1e
, (33)

∆ =

∫ ∞

0

xdB(x)Q̌.

Remark 7. Let Φ denote an M ×M matrix given by

Φ =

∫ ∞

0

dB(x) exp(Qx).

Since {(U(t), S(t)); t ≥ 0} is irreducible and positive recurrent, Φ represents an irreducible
transition probability matrix. Therefore, Φ has its invariant probability vector, so that ηE

is uniquely determined by (32)

Remark 8. When we apply Theorem 2 to the case that C +D has no transient states, it
is necessary to rewrite (28) and (30) as

Q̌ =


e1κ1 O · · · O
O e2κ2 · · · O
...

...
. . .

...
O O · · · eHκH

 , (∆−C −D)−1 =


∆̂

−1

1 O · · · O

O ∆̂
−1

2 · · · O
...

...
. . .

...

O O · · · ∆̂
−1

H

 .
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4.2. Computation of Reducible Q

In this subsection, we consider the computation of Q for reducible C +D. As mentioned
in Remark 2, Q can be computed based on the recursion (11). However, a straightforward
implementation of the computational procedure given in Remark 2 is not efficient for re-
ducible C +D because Q(n) is a sparse block matrix and the number of iterations required
is determined by the most slowly convergent sequence among non-zero blocks. Therefore,
we can avoid unnecessary calculations by computing Q blockwise as follows.

It is readily to see from (11) that Qh (h ∈ H) is given by the limit limn→∞Q
(n)
h of the

elementwise increasing sequence of matrices Q
(n)
h (n = 0, 1, . . .) defined as

Q
(0)
h = Ch, Q

(n)
h = Ch +

∫ ∞

0

dDh(y) exp
(
Q

(n−1)
h y

)
, n = 1, 2, . . . . (34)

Because Qh (h ∈ H) represents an infinitesimal generator and Qheh = 0 holds, it can be
computed individually with an adequate stopping criterion in the same way as the compu-
tation of Q with (11).

Similarly, QT is given by the limit limn→∞Q
(n)
T of the elementwise increasing sequence

of matrices Q
(n)
T (n = 0, 1, . . .) defined as

Q
(0)
T = CT, Q

(n)
T = CT +

∫ ∞

0

dDT(y) exp
(
Q

(n−1)
T y

)
, n = 1, 2, . . . .

However, because QT represents a defective infinitesimal generator, the stopping criterion

of Q
(n)
T is not clear. We thus need to compute QT along with QT,h (h ∈ H). Let Q̂

(n)

T,h

(n = 0, 1, . . .) denote a sequence of matrices defined as

Q̂
(0)

T,h = CT,h,

Q̂
(n)

T,h = CT,h +

∫ ∞

0

dDT,h(y) exp
(
Qhy

)
+

∫ ∞

0

dDT(y)

∫ y

0

exp
(
Q

(n−1)
T t

)
Q̂

(n−1)

T,h exp
(
Qh(y − t)

)
dt, n = 1, 2, . . . . (35)

According to the probabilistic interpretation ofQ
(n)
T [3], it can be verified that limn→∞ Q̂

(n)

T,h =
QT,h for h ∈ H. Therefore, we first compute Qh (h ∈ H) with (34), and then we compute
QT and QT,h with an adequate stopping criterion. More specifically, for a given allowable
error ϵ > 0, we may stop the iteration at n∗ satisfying

max
i∈MT

∣∣∣[Q(n∗)
T eT +

∑
h∈H

Q̂
(n∗)

T,h eh
]
i

∣∣∣ < ϵ.

Remark 9. The second integral on the right-hand side of (35) can be computed with uni-
formization as follows. Let θ denote the maximum absolute value of the diagonal elements
of the matrix C. We then have∫ ∞

0

dDT(y)

∫ y

0

exp(Q
(n)
T t)Q̂

(n)

T,h exp
(
Qh(y − t)

)
dt

=
∞∑

m=0

D
(m+1)
T (θ)

m∑
j=0

[IT + θ−1Q
(n)
T ]m−jθ−1Q̂

(n)

T,h[Ih + θ−1Qh]
j, (36)
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where

D
(m)
T (θ) =

∫ ∞

0

exp(−θx)
(θx)m

m!
dDT(x).

The derivation of (36) is given in Appendix C.
Remark 10. If C +D has no transient states, Q is given by

Q1 O · · · O
O Q2 · · · O
...

...
. . .

...
O O · · · QH

 ,

so that we only need to compute Qh (h ∈ H) based on (34).

4.3. Moments of the Stationary Distribution

In this subsection, we derive a recursive formula for the moments of the stationary distri-
bution. For this purpose, we introduce some notations. We first rewrite (31) to be

u∗(s)[sI +C +D∗(s)] = −η∗(s) Re(s) > 0, (37)

where η∗(s) is given by
η∗(s) = cηE[B

∗
(s)− I].

Let u(m) (m = 0, 1, . . .) and η(m) (m = 0, 1, . . .) denote 1×M vectors given by

u(0) = lim
s→0+

u∗(s), u(m) = lim
s→0+

(−1)m

m!
· dm

dsm
[
u∗(s)

]
, m = 1, 2, . . . ,

η(0) = lim
s→0+

η∗(s), η(m) = lim
s→0+

(−1)m

m!
· dm

dsm
[
η∗(s)

]
, m = 1, 2, . . . .

Note that the jth (j ∈ M) element of u(0) represents the stationary probability that the
phase is equal to j.

We develop a recursion to compute u(m) (m = 0, 1, . . .) utilizing the fact that C and
D∗(s) are sparse block matrices. We thus partition u∗(s), η∗(s), u(m) (m = 0, 1, . . .), and
η(m) (m = 0, 1, . . .) as follows.

u∗(s) = (u∗
T(s),u

∗
1(s),u

∗
2(s), . . . ,u

∗
H(s)), η∗(s) = (η∗

T(s),η
∗
1(s),η

∗
2(s), . . . ,η

∗
H(s)),

u(m) = (u
(m)
T ,u

(m)
1 ,u

(m)
2 , . . . ,u

(m)
H ), η(m) = (η

(m)
T ,η

(m)
1 ,η

(m)
2 , . . . ,η

(m)
H ),

where u∗
T(s), η

∗
T(s), u

(m)
T , and η

(m)
T denote 1×MT vectors and u∗

h(s), η
∗
h(s), u

(m)
h , and η

(m)
h

(h ∈ H) denote 1×Mh vectors.
Note that (37) is equivalent to

u∗
T(s)[sIT +CT +D∗

T(s)] = −η∗
T(s), (38)

u∗
h(s)[sIh +Ch +D

∗
h(s)] = −ϕ∗

h(s), h ∈ H, (39)

where
ϕ∗

h(s) = η
∗
h(s) + u

∗
T(s)[CT,h +D

∗
T,h(s)], h ∈ H.

We define ϕ
(m)
h (h ∈ H, m = 0, 1, . . .) as

ϕ
(0)
h = lim

s→0+
ϕ∗

h(s) = η
(0)
h + u

(0)
T (CT,h +DT,h),
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ϕ
(m)
h = lim

s→0+

(−1)m

m!
· dm

dsm
[
ϕ∗

h(s)
]
= η

(m)
h + u

(m)
T CT,h +

m∑
l=0

u
(l)
T D

(m−l)
T,h , m = 1, 2, . . . ,

where for h ∈ H,

D
(0)
T,h =DT,h, D

(m)
T,h = lim

s→0+

(−1)m

m!
· dm

dsm
[
D∗

T,h(s)
]
, m = 1, 2, . . . .

We also define D
(m)
T (m = 0, 1, . . .) and D

(m)
h (h ∈ H, m = 0, 1, . . .) as

D
(0)
T =DT, D

(m)
T = lim

s→0+

(−1)m

m!
· dm

dsm
[
D∗

T(s)
]
, m = 1, 2, . . . ,

D
(0)
h =Dh, D

(m)
h = lim

s→0+

(−1)m

m!
· dm

dsm
[
D∗

h(s)
]
, m = 1, 2, . . . .

Theorem 3. u(m) = (u
(m)
T ,u

(m)
1 ,u

(m)
2 , . . . ,u

(m)
H ) (m = 0, 1, . . .) is given recursively by

u
(0)
T = η

(0)
T [−(CT +DT)]

−1,

u
(m)
T =

[
η
(m)
T − u(m−1)

T +
m−1∑
l=0

u
(l)
T D

(m−l)
T

]
[−(CT +DT)]

−1, m = 1, 2, . . . ,

and for h ∈ H,

u
(0)
h eh =

1

1− πhβh

[
ϕ

(1)
h eh + ϕ

(0)
h (ehπh −Ch −Dh)

−1βh

]
, (40)

u
(0)
h = u

(0)
h ehπh + ϕ

(0)
h (ehπh −Ch −Dh)

−1, (41)

ψ
(m)
h =

(
m−1∑
l=0

u
(l)
h D

(m−l)
h − u(m−1)

h + ϕ
(m)
h

)
(ehπh −Ch −Dh)

−1 m = 1, 2, . . . , (42)

u
(m)
h eh =

1

1− πhβh

[
m−1∑
l=0

u
(l)
h D

(m+1−l)
h eh + ϕ

(m+1)
h eh +ψ

(m)
h βh

]
, m = 1, 2, . . . , (43)

u
(m)
h = u

(m)
h ehπh +ψ

(m)
h , m = 1, 2, . . . . (44)

Proof. We first consider u
(m)
T (m = 0, 1, . . .). It follows from (38) that

u
(0)
T (CT +DT) = −η(0)

T ,

u
(m)
T (CT +DT)− u(m−1)

T +
m−1∑
l=0

u
(l)
T D

(m−l)
T = −η(m)

T , m = 1, 2, . . . .

Since CT +DT is a defective infinitesimal generator, it is non-singular. We thus obtain the
recursion for u

(m)
T (m = 0, 1, . . .) from the above equations.

Next we consider u
(m)
h (h ∈ H, m = 0, 1, . . .) based on (39). Since Ch +Dh (h ∈ H) is

an irreducible infinitesimal generator, the recursion for u
(m)
h (h ∈ H, m = 0, 1, . . .) can be

obtained by standard manipulations in matrix-analytic methods (e.g., [11]), and therefore
we omit the proof.

Remark 11. By definition of ϕh (h ∈ H), we need to compute u
(m+1)
T before computing

u
(m)
h by (40)–(44). When C +D has no transient states, on the other hand, u

(m)
h (h ∈ H)

can be immediately obtained from (40)–(44) noting

ϕ
(m)
h = η

(m)
h , m = 0, 1, . . . .
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5. Conclusion

We extended the matrix analytic methods for bivariate Markov process {(U(t), S(t)); t ≥ 0}
introduced in [7] to the case of reducible C +D. We first proved Lemma 3, which implies
that some known results for the boundary vector ú(0) of the stationary distribution is not
valid for reducible C +D, when there exist more than one irreducible classes of states. We
then derived a formula for the LST of the stationary distribution applicable to the reducible
C +D in Section 4.1. Furthermore, we provided an efficient computational procedure of
the fundamental matrix Q and the moments of the stationary distribution.

Recall that the Markov process considered in this paper corresponds to the (censored)
workload processes in MAP/G/1 queues with various features (see Examples 1-A, 1-B, 2-
A, and 2-B in Section 2). Based on the results in this paper, we can obtain performance
measures of the corresponding queueing model such as the waiting time distribution and
the queue length distribution in a straightforward manner by following the discussion in [7]
and [8] for an ordinary MAP/G/1 queue.
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A. Non-Singularity of I −R∗(s) for Reducible C +D

In this appendix we provide a brief proof that I − R∗(s) (Re(s) > 0) is non-singular for
reducible C +D, as is the case of irreducible C +D. Note first that R∗(s) takes the form

R∗(s) =


R∗

T(s) R∗
T,1(s) R∗

T,2(s) · · · R∗
T,H(s)

O R∗
1(s) O · · · O

O O R∗
2(s) · · · O

...
...

...
. . .

...
O O O · · · R∗

H(s)

 ,

and its diagonal block matrices are given by

R∗
T(s) =

∫ ∞

0

exp(−sx)

∫ ∞

x

dDT(y) exp(QT(y − x)),

R∗
h(s) =

∫ ∞

0

exp(−sx)

∫ ∞

x

dDh(y) exp(Qh(y − x)), h ∈ H.

Since Ch +Dh (h ∈ H) is irreducible, we can verify that Ih −R∗
h(s) (Re(s) > 0) is non-

singular in the same way as in [9]. Furthermore, noting that CT +DT denotes a defective
infinitesimal generator, we can prove that IT − R∗

T(s) (Re(s) > 0) is non-singular in the
same way as in [3, Appendix I]. Therefore, I −R∗(s) (Re(s) > 0) is non-singular because
its diagonal block matrices are all non-singular.

B. Proof of Lemma 3

We first consider the case that Y has two irreducible classes of states and no transient
states, i.e.,

Y =

(
Y 1 O
O Y 2

)
,

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



392 Y. Inoue & T. Takine

where Y 1 and Y 2 denote irreducible infinitesimal generators. (26) is then rewritten to be

v =

(
v1
v2

)
, γhvh ̸= 0 for some h ∈ {1, 2}.

Without loss of generality, we assume that γ2v2 ̸= 0. We then define a 1×M vector y as

y =

(
γ1,

−γ1v1
γ2v2

· γ2

)
It then follows that

yv = γ1v1 −
γ1v1
γ2v2

· γ2v2 = 0.

Therefore we have

y(vα− Y ) = 0.

Since y ̸= 0, vα− Y is singular.
In the exactly same way, we can easily verify that vα−Y is still singular for the general

case that Y has transient states and more than two irreducible classes.

C. Derivation of (36)

With uniformization at rate θ, we have∫ ∞

0

dDT(y)

∫ y

0

exp(Q
(n)
T t)Q

(n)
T,h exp

(
Qh(y − t)

)
dt

=

∫ ∞

0

dDT(y)

∫ y

0

exp(−θt) exp
(
θ(IT + θ−1Q

(n)
T )t

)
Q

(n)
T,h

· exp(−θ(y − t)) exp
(
θ(Ih + θ−1Qh)(y − t)

)
dt

=

∫ ∞

0

exp(−θy)dDT(y)

∫ y

0

∞∑
i=0

θiti

i!
[IT + θ−1Q

(n)
T ]iQ

(n)
T,h ·

∞∑
j=0

θj(y − t)j

j!
[Ih + θ−1Qh]

jdt

=
∞∑

m=0

m∑
j=0

∫ ∞

0

exp(−θy)dDT(y)

∫ y

0

θm−jtm−j

(m− j)!
· θ

j(y − t)j

j!
dt

· [IT + θ−1Q
(n)
T ]m−jQ

(n)
T,h[Ih + θ−1Qh]

j,

where m = i+ j. Furthermore, calculating the integral with respect to t using∫ y

0

tm−j(y − t)jdt =
j!(m− j)!

(m+ 1)!
· ym+1,

we obtain∫ ∞

0

dDT(y)

∫ y

0

exp(Q
(n)
T t)Q

(n)
T,h exp

(
Qh(y − t)

)
dt

=
∞∑

m=0

m∑
j=0

∫ ∞

0

exp(−θy)
(θy)m+1

(m+ 1)!
dDT(y) · [IT + θ−1Q

(n)
T ]m−jθ−1Q

(n)
T,h[Ih + θ−1Qh]

j.

(36) now follows immediately.
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