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Abstract The marksmanship contest game with random termination is a fundamental two-person game of
timing under an uncertain environment. In this paper, we formulate a unified marksmanship contest game
with random termination and show that it can be further classified into five different games. We derive
the optimal solutions of these games of timing, which are categorized into the Nash equilibrium strategy
and the Stackelberg strategy. Our results involve the well-known results by Teraoka (1983) and Baston and
Garnaev (1995) as special cases and at the same time give new insights for different types of game.
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1. Introduction

The game of timing is a fundamental tool to determine the best timing for players with
conflict of interests. The duel game, which is the representative example of two-person
game of timing, is formulated as the problem in which two rival players determine the best
timings of fire to win. In general, duel games can be categorized into two types: zero-sum
duel game and nonzero-sum duel game. The zero-sum duel game is formulated to describe
the situation where the sum of payoffs for two players is always constant. On the other
hand, the nonzero-sum duel game is modeled as the game where the sum of rewards for
both players is not constant. During the last four decades, a number of duel games have
been analyzed in the literature.

Dresher [4] and Karlin [9] introduced some results of simplest duel games in which each
player has only one bullet. Restorepo [11] considered a silent-type game in which Player
1 possesses m bullets and Player 2 possesses n bullets. Fox and Kimeldorf [6] analyzed
a noisy-type duel game, where each player has a different number of bullets in a fashion
similar to the work by Restorepo [11]. Epstein [5] summarized features of strategies of the
above duel games. Teraoka [17, 20] modeled the duel games where both players do not know
whether there exist bullets in their gun or not. Teraoka [19] also dealt with a duel game
where each duelist has an incomplete knowledge on the kind of opponent’s bullet fitted
to their guns. Kurisu [10] considered a duel game with equal accuracy functions. In his
game, Player 1 has one noisy bullet and one silent bullet, and has to fire the noisy one first.
On the other hand, Player 2 has only one silent bullet. Hendricks et al. [8] presented a
general analysis of the war of attrition which is a type of game of timing in continuous time
with complete information. More recently, the different models of the war of attrition were
considered by Hamers [7] and Baston and Garnaev [2].

As an application of the game of timing, Sakaguchi [12] considered a cardinal game
which is called marksmanship contest game. Since the seminal work by Sakaguchi [12], this
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type of game has been analyzed by some authors. Teraoka [21] modeled both silent-type
and noisy-type marksmanship contest games with random termination for two players. The
strategy which was derived as a solution of the game is the equilibrium strategy for both
players, who have no motivation to change only their own strategies. However, it should be
noted that both players have to choose their strategies, since the strategy derived by Teraoka
[21] is an innumerable Nash equilibrium strategy. On the other hand, Baston and Garnaev
[1] considered the similar but somewhat different silent-type game from [21] by taking a
different expected total profit function in the case where both players fire at simultaneous
time into consideration. Baston and Garnaev [1] showed that their game has a unique Nash
equilibrium strategy. Furthermore, Teraoka [22] considered silent/noisy-type marksmanship
contest games and derive their associated solutions.

In this paper, we formulate a unified marksmanship contest game which includes the
previous games considered by Teraoka [21, 22] and Baston and Garnaev [1], referred to as
silent-type Teraoka game, noisy-type Teraoka game, silent-type Baston and Garnaev game,
as special cases. We show that our formulation splits into five different marksmanship con-
test games. The first four games are called silent-type Teraoka-Baston/Garnaev game,
noisy-type Teraoka-Baston/Garnaev game, bonus game, and silent/noisy-type Teraoka-
Baston/Garnaev game, and can be characterized as two-person nonzero-sum games of tim-
ing. The last game is the Stackelberg game [15] with two players; leader and follower. In
this game, the follower has to wait for the leader’s action, and reacts by choosing the best
strategy consistent with the available information. It is well known that the Stackelberg
game can be applied in several applications [3, 13, 14, 23]. In this paper we also characterize
the Stackelberg strategy for the marksmanship contest game.

The remaining part of this paper is organized as follows. In Section 2, we give the mathe-
matical preliminary for a fundamental marksmanship contest game with random termination
and define the Nash equilibrium strategy. In Section 3, we summarize the existing results for
three different marksmanship contest games (silent-type Teraoka game, noisy-type Teraoka
game, silent-type Baston and Garnaev game) in [1, 21]. Section 4 is devoted to formulate a
unified marksmanship contest game with random termination which splits into five differ-
ent games (silent-type Teraoka-Baston/Garnaev game, noisy-type Teraoka-Baston/Garnaev
game, bonus game, silent/noisy-type Teraoka-Baston/Garnaev game, Stackelberg game).
We derive the solutions of respective marksmanship contest games analytically. In Section
5, we give simple numerical examples on the game solutions. Finally the paper is concluded
with some remarks in Section 6.

2. Model Description

In the marksmanship contest game, suppose that there are two rival players in the marks-
manship contest, and that each player has a gun with one bullet. We call them Player
1 and Player 2. The distance between each player and his or her own target is one unit
length. Two players move to the target with unit speed, and fire at an arbitrary time (or an
arbitrary point) t ∈ [0, 1]. The player who first hits the target is recognized as the winner,
so the winner can receive unit reward from an umpire of the contest. Once the winner is
decided, the contest ends. Here, we define the profit of each game when both players hit
their own targets at simultaneous time individually. The accuracy function Ai(t) (i = 1, 2)
represents the probability that Player i hits when he or she fires at time t. Let Ai(t) be the
function satisfying Ai(0) = 0 and Ai(1) = 1. Furthermore, suppose that this contest is to
be terminated at a random time T ∈ [0, 1] following the continuous probability distribution
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Stochastic Marksmanship Contest Games 225

function H(t) which satisfies H(0) = 0 and H(1) = 1. The functions Ai(t) and H(t) are
continuous, strictly increasing and differentiable with respect to t. Of course, each player
wishes to delay to fire in order to get the higher probability to win. However, they have to
decide the shooting time taking the existence of rival player and random termination into
consideration.

We define the following equation:

Ki(t) = {1−H(t)}Ai(t), i = 1, 2, (2.1)

where Ki(t) represents the probability that the game has not finished yet and Player i
hits the target first. We assume that Ki(t) is a unimodal function of t and has a unique
maximum point mi such as

mi = arg max
0≤t≤1

{t|Ki(t)}, i = 1, 2. (2.2)

There are two types of marksmanship contest game. If a player knows the time of
opponent’s action as soon as it takes place, then it is said that the opponent’s player has a
noisy bullet. In this paper, we call this game noisy-type game. On the other hand, if each
player cannot know whether his or her opponent has acted or not, we say that both players
have silent bullets. This game is called silent-type game.

For silent-type game, let (x, y) denote the pure strategies expressing the timings of
actions for Player 1 and Player 2, respectively. Also, let Mi(x, y) be the expected total
profit for Player i (= 1, 2) when Player 1 and Player 2 act at time x and y, respectively.
Here, let (X, Y ) ∈ [0, 1]× [0, 1] be the set of pure strategy for each Player i (= 1, 2). Define
the mixed strategy for each player:

F1 = F1(x) = Pr{X ≤ x} ∈ [0, 1], (2.3)

F2 = F2(y) = Pr{Y ≤ y} ∈ [0, 1]. (2.4)

This implies that Player i triggers the action at a random timing with the probability
distribution function Fi. If Player i takes the mixed strategy Fi, then the expected total
profit for Player i is given by

Mi(F1, F2) =

∫
X

∫
Y

Mi(x, y)dF1dF2, (2.5)

where

M1(x, F2) =

∫
Y

M1(x, y)dF2, (2.6)

M2(F1, y) =

∫
X

M2(x, y)dF1. (2.7)

the set of mixed strategies (F ∗
1 , F

∗
2 ) is called the mixed equilibrium strategies or Nash

equilibrium strategies if they satisfy

M1(F
∗
1 , F

∗
2 ) ≥ M1(F1, F

∗
2 ), (2.8)

M2(F
∗
1 , F

∗
2 ) ≥ M2(F

∗
1 , F2) (2.9)

for any mixed strategies F1, F2 on [0, 1]. The expected total profit Mi(F
∗
1 , F

∗
2 ) is called the

value function.
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On the other hand, for noisy-type game, let (x, r1(y)) denotes the pure strategy for
Player 1, such that Player 1 selects time x and then acts at time r1(y) if Player 2 has acted
at time y before time x, or acts at time x if Player 2 has not yet acted before time x. Let
(y, r2(x)) be the pure strategy for Player 2, such that Player 2 selects time y and then acts
at time r2(x) if Player 1 has acted at time x before time y, or acts at time y if Player 1
has not yet acted before time y. Let (Fi, ri) be a mixed strategy such that Player i shoots
at a random time with Fi if Player 3 − i (i = 1, 2) has not acted yet and shoots at a fixed
time ri if Player 3− i has already acted and failed under the condition that Player i has not
acted yet. Nash equilibrium strategies and value functions can be defined in a similar way
to silent-type game. Therefore, the challenge here is to find the Nash equilibrium strategies
and their associated value functions.

3. Related Work

3.1. Teraoka’s strategy for silent-type game

Teraoka [21] models a two-person game of timing with random termination which is called
two-person nonzero-sum marksmanship contest game. For better understanding of our
results, we summarize the results in [21]. Note that Teraoka [21] focuses on the both
types of marksmanship contest game. In the silent-type game, Teraoka [21] formulates the
expected total profit as follows.

M1(x, y) =

{
K1(x), x ≤ y,
{1− A2(y)}K1(x), x > y,

(3.1)

M2(x, y) =

{
K2(y), y ≤ x,
{1− A1(x)}K2(y), y > x.

(3.2)

In this paper, the game which has the expected total profit functions represented by Equa-
tions (3.1) and (3.2) is called Silent-type Teraoka game.

For any a satisfying Fi(a) = 0, let

fi(t) =
K3−i(a)K

′
3−i(t)

{K3−i(t)}2Ai(t)
, a ≤ t ≤ m3−i, (3.3)

where K ′
i(t) = dKi(t)/dt. Define

m = min(m1,m2), (3.4)

and ai (i = 1, 2) is the unique root a of the equation:∫ m

a

fi(t)dt = 1. (3.5)

Teraoka [21] derives the following mixed strategy in the silent-type Teraoka game:

F ∗
1 (x) =


0, 0 ≤ x < a,∫ x

a
f1(t)dt+ α

[a,m]
1 Im(x), a ≤ x ≤ m,

1, m < x ≤ 1,

(3.6)

F ∗
2 (y) =


0, 0 ≤ y < a,∫ y

a
f2(t)dt+ α

[a,m]
2 Im(y), a ≤ y ≤ m,

1, m < y ≤ 1,

(3.7)
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where

a = max(a1, a2), (3.8)

Iu(z) =

{
1, z = u,
0, otherwise,

(3.9)

α
[a,m]
i = 1−

∫ m

a

fi(t)dt, (3.10)

and the parameters α
[a,m]
i (i = 1, 2) represent the mass part of Player i’s mixed strategy. In

[21], the value functions satisfying Equations (2.8) and (2.9) are given by

Mi(F
∗
1 , F

∗
2 ) = Ki(a), i = 1, 2. (3.11)

So Teraoka [21] proves that the Nash equilibrium strategy which is shown by Equations
(3.6) and (3.7), with the value functions in Equation (3.11) are the solution of the silent-
type Teraoka game.

3.2. Teraoka’s strategy for noisy-type game

In the noisy-type game, Teraoka [21] formulates the expected total profit as follows.

M1((x, r1(y)), (y, r2(x))) =

{
K1(x), x ≤ y,
{1− A2(y)}K1(r1(y)), x > y,

(3.12)

M2((x, r1(y)), (y, r2(x))) =

{
K2(y), y ≤ x,
{1− A1(x)}K2(r2(x)), y > x,

(3.13)

where Mi((x, r1(y)), (y, r2(x))) is the expected total profit for Player i and ri(t) is the best
reaction timing for Player i when Player 3 − i shoots at time t first. The game which
has the expected total profit functions represented by Equations (3.12) and (3.13) is called
Noisy-type Teraoka game. Note that each player can shoot at the best timing ri(t) in the
situation where the opponent’s player has already shot and failed.

Define

b = max(b1, b2), (3.14)

where bi (i = 1, 2) is the unique root b ∈ [0,mi] of the equation:

Ki(b) = {1− A3−i(b)}Ki(mi), i = 1, 2. (3.15)

For any t ∈ (b3−i,m3−i], we also define a function θi(t) as follows:

θi(t) =
K ′

3−i(t)

K3−i(t)− {1− Ai(t)}K3−i(m3−i)
, i = 1, 2. (3.16)

Teraoka [21] derives the following function in b < m for the noisy-type Teraoka game:

F ∗
1 (x) =


0, 0 ≤ x < b0,

1− exp{−
∫ x

b0
θ1(t)dt}+ β

[b0,c]
1 Ic(x), b0 ≤ x ≤ c,

1, c < x ≤ 1.

(3.17)

F ∗
2 (y) =


0, 0 ≤ y < b0,

1− exp{−
∫ y

b0
θ2(t)dt}+ β

[b0,c]
2 Ic(y), b0 ≤ y ≤ c,

1, c < y ≤ 1,

(3.18)
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228 Y. Saito & T. Dohi

where

β
[b0,c]
i = exp

{
−
∫ c

b0

θi(t)dt

}
, i = 1, 2, (3.19)

and [b0, c] is any subset of (b,m]. With these functions, the Nash equilibrium strategy is
given by a pair of ((F ∗

1 ,m1), (F
∗
2 ,m2)), and the value functions are given by

Mi((F
∗
1 ,m1), (F

∗
2 ,m2)) = Ki(b0), i = 1, 2. (3.20)

On the other hand, Teraoka [21] gives the Nash equilibrium strategy ((F ∗
1 ,m1), (F

∗
2 ,m2))

in b ≥ m for the noisy-type Teraoka game, where

F ∗
1 (x) =

{
0, 0 ≤ x < m1,
1, m1 ≤ x ≤ 1,

(3.21)

F ∗
2 (y) =

{
0, 0 ≤ y < m2,
1, m2 ≤ y ≤ 1.

(3.22)

If m = m2, then the value functions are given by

M1((F
∗
1 ,m1), (F

∗
2 ,m2)) = {1− A2(m2)}K1(m1), (3.23)

M2((F
∗
1 ,m1), (F

∗
2 ,m2)) = K2(m2). (3.24)

3.3. Baston and Garnaev’s strategy for silent-type game

Baston and Garnaev [1] consider a somewhat different game of the silent-type Teraoka game.
In the silent-type game, they introduce a slightly different expected total profit as follows.

M1(x, y) =


K1(x), x < y,
P1(x), x = y,
{1− A2(y)}K1(x), x > y,

(3.25)

M2(x, y) =


K2(y), y < x,
P2(y), y = x,
{1− A1(x)}K2(y), y > x,

(3.26)

where Pi(t) (i = 1, 2) is the function satisfying the condition: 0 ≤ Pi(t) < Ki(t). In this
paper, the game which has the expected total profit functions represented by Equations
(3.25) and (3.26) is called Silent-type Baston/Garnaev game. Compared with the silent-
type Teraoka game, each player in the silent-type Baston/Garnaev game gains the cheaper
profit in the situation where both players hit their own target at the same time.

Define a∗i ∈ [0,mi] which is the unique root of the equation in the case of m = mi:

K3−i(m3−i)

[
K3−i(a

∗
i )

K3−i(mi)
− Ai(mi)

(
1−

∫ mi

a∗i

fi(t)dt

)]
= K3−i(a

∗
i ). (3.27)

Baston and Garnaev [1] derive the following mixed strategy:

F ∗
1 (x) =


0, 0 ≤ x < a,∫ x

a
f1(t)dt, a ≤ x < m,∫ m

a
f1(t)dt+ α

[a,m]
1 Im1(x), m ≤ x ≤ m1,

1, m1 < x ≤ 1,

(3.28)

F ∗
2 (y) =


0, 0 ≤ y < a,∫ y

a
f2(t)dt, a ≤ y < m,∫ m

a
f2(t)dt+ α

[a,m]
2 Im2(y), m ≤ y ≤ m2,

1, m2 < y ≤ 1,

(3.29)
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where

a =

{
max(a1, a

∗
2), m = m2,

max(a2, a
∗
1), m = m1.

(3.30)

In the above solution, the value functions satisfying Equations (2.8) and (2.9) are given by

Mi(F
∗
1 , F

∗
2 ) = Ki(a), i = 1, 2. (3.31)

Baston and Garnaev [1] show that the silent-type Baston/Garnaev game has the unique
Nash equilibrium strategy.

Remark 3.1. The Nash equilibrium strategy for the silent-type Teraoka game is a mixed
strategy in which only one player has the mass part. On the other hand, the Nash equilib-
rium strategy for the silent-type Baston/Garnaev game is a mixed strategy in which both
players might have the mass parts at different time mi.

4. Unified Marksmanship Contest Game

4.1. Silent-type Teraoka-Baston/Garnaev game

Corresponding to the previous study [1, 21], we define Pi(t) satisfying 0 ≤ Pi(t) ≤ Ki(t) for
the game with Equations (3.25) and (3.26), and derive the Nash equilibrium strategy for
a unified game which contains both Teraoka game and Baston/Garnaev game. This game
is equivalent to the silent-type Baston/Garnaev game in the case of 0 ≤ Pi(t) < Ki(t) and
the silent-type Teraoka game in the case of Pi(t) = Ki(t). The game which contains both
games is called Silent-type Teraoka-Baston/Garnaev game in this paper. In Subsection 4.3
later, we will also consider the game in the case of Pi(t) > Ki(t).

In Equations (2.6) and (2.7), the first-order conditions of optimality are given by

∂

∂x
M1(x, F2) = 0, 0 < x < m1, (4.1)

∂

∂y
M2(F1, y) = 0, 0 < y < m2. (4.2)

We suppose that there exists the first derivative of the mixed strategies Fi satisfying
Equations (4.1) and (4.2), i.e.,

fi(t) =
dFi(t)

dt
, 0 < t < mi, i = 1, 2. (4.3)

Lemma 4.1. Let

λi(a) = K3−i(m3−i)

[
K3−i(a)

K3−i(mi)
− Ai(mi)

(
1−

∫ mi

a

fi(t)dt

)]
−K3−i(a). (4.4)

λi(a) is a strictly decreasing function in the range of 0 ≤ a ≤ mi. Furthermore, there
exists a unique root a∗i ∈ [0,mi] of the equation: λi(a) = 0 under the condition of {1 −
Ai(mi)}K3−i(m3−i) ≤ K3−i(mi).

Proof. For i = 1 and 0 < a < m1, we have

λ′
1(a) = K ′

2(a)

[
K2(m2)

K2(m1)
− 1−K2(m2)A1(m1)
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×
(∫ m1

a

(
1

K2(y)

)′
1

A1(y)
dy +

1

K2(a)

1

A1(a)

)]
= −K ′

2(a)

[
1 +K2(m2)A1(m1)

∫ m1

a

A′
1(y)

K2(y){A1(y)}2
dy

]
< 0, (4.5)

due to the integration by parts. Since

λ1(a1) = K2(a1)

[
K2(m2)

K2(m1)
− 1

]
> 0, (4.6)

λ1(m1) = {1− A1(m1)}K2(m2)−K2(m1) ≤ 0, (4.7)

the result follows and the proof is completed.

Lemma 4.2. For the silent-type Teraoka-Baston/Garnaev game, the function which satisfies
the first-order conditions of optimality is given by

f ∗
i (t) =


0, 0 ≤ t < a,
K3−i(a)K

′
3−i(t)

{K3−i(t)}2Ai(t)
, a ≤ t < m,

0, m ≤ t ≤ 1.

(4.8)

Proof. When Player 1 shoots at time x ∈ [a,m], we obtain

M1(x, F
∗
2 ) =

∫ m

a

M1(x, y)dF
∗
2

= K1(x)

[
1−

∫ x

a

A2(y)dF
∗
2

]
. (4.9)

By differentiating Equation (4.9) with respect to x and setting it equal to zero, we have(
1−

∫ x

a
A2(y)f

∗
2 (y)dy

)′
1−

∫ x

a
A2(y)f ∗

2 (y)dy
= −K ′

1(x)

K1(x)
. (4.10)

Integrating both sides of Equation (4.10) yields

f ∗
2 (t) =

d ·K ′
1(t)

{K1(t)}2A2(t)
, (4.11)

where d is the constant of integration. By substituting x = a into Equations (4.10) and
(4.11), we have d = K1(a). The proof for Player 2 is made in the similar way. The proof is
completed.

Theorem 4.1. Let m = m3−i. For the silent-type Teraoka-Baston/Garnaev game, under
the condition that {1−A3−i(m3−i)}Ki(mi) ≥ Ki(m3−i) holds, the Nash equilibrium strategy
for each player is given by

F ∗
i (t) =

{
0, 0 ≤ t < mi,
1, mi ≤ t ≤ 1,

(4.12)

F ∗
3−i(t) =

{
0, 0 ≤ t < m3−i,
1, m3−i ≤ t ≤ 1.

(4.13)
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The value functions for respective players are given by

Mi(F
∗
1 , F

∗
2 ) = {1− A3−i(m3−i)}Ki(mi), (4.14)

M3−i(F
∗
1 , F

∗
2 ) = K3−i(m3−i). (4.15)

Proof. The function Ki(m3−i) represents the expected total profit for Player i in the situ-
ation where he or she hits the target at time m3−i before the opponent’s action. Also, the
function {1− A3−i(m3−i)}Ki(mi) denotes the expected total profit for Player i when he or
she shoots at time mi after the opponent’s fire at time m3−i. Therefore, if the condition
that {1 − A3−i(m3−i)}Ki(mi) ≥ Ki(m3−i) holds, then Player 3 − i wishes to fire at time
m3−i, and Player i selects to shoot at time mi after the opponent’s action. It is easy to
check that this strategy satisfies the Nash inequalities in Equations (2.8) and (2.9).

Theorem 4.2. Let m = m3−i. For the silent-type Teraoka-Baston/Garnaev game, under
the condition that {1−A3−i(m3−i)}Ki(mi) < Ki(m3−i) holds, the Nash equilibrium strategy
for each player is given by

F ∗
i (t) =


0, 0 ≤ t < a,∫ t

a
f ∗
i (t)dt, a ≤ t < m,∫ m

a
f ∗
i (t)dt+ γ

[a,m]
i Imi

(z), m ≤ t ≤ mi,
1, mi < t ≤ 1,

(4.16)

where a = max(a∗3−i, ai), and γ
[a,m]
i (i = 1, 2) which represents the mass part, is given by

γ
[a,m]
i = 1−

∫ m

a

f ∗
i (t)dt. (4.17)

The value functions of both players are given by

Mi(F
∗
1 , F

∗
2 ) = Ki(a), i = 1, 2. (4.18)

Proof. For i = 1 and Player 1, we consider four cases; (i) 0 ≤ x < a, (ii) a ≤ x < m, (iii)
x = m, (iv) m < x ≤ 1. In Case (i), from Equations (2.6) and (3.25), we have

M1(x, F
∗
2 ) = K1(x) < K1(a). (4.19)

In Case (ii),

M1(x, F
∗
2 ) =

∫ x

a

{1− A2(y)}K1(x)dF
∗
2 +

∫ m−0

x

K1(x)dF
∗
2 +K1(x)γ

[a,m]
2 . (4.20)

The function M1(x, F
∗
2 ) is constant for the range of a ≤ x < m, since F ∗

2 satisfies the
first-order conditions of optimality. Substituting x = a into Equation (4.20) leads to

M1(a, F
∗
2 ) = K1(a)

(∫ m−0

a

dF ∗
2 + γ

[a,m]
2

)
= K1(a). (4.21)

In Case (iii), from Equation (4.16), we obtain M1(x, F
∗
2 ) as follows.

M1(m,F ∗
2 ) =

∫ m−0

a

{1− A2(y)}K1(m)dF ∗
2 + P1(m)γ

[a,m]
2
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= K1(a)− {K1(m)− P1(m)} γ[a,m]
2

≤ K1(a). (4.22)

In Case (iv), we have

M1(x, F
∗
2 ) =

∫ m−0

a

{1− A2(y)}K1(x)dF
∗
2 + {1− A2(m)}K1(x)γ

[a,m]
2

= K1(x)

{
K1(a)

K1(m)
− A2(m)γ

[a,m]
2

}
. (4.23)

From the property of K1(x), Equation (4.23) has the maximum value at x = m1, and
M1(m1, F

∗
2 ) is given by

M1(m1, F
∗
2 ) = K1(m1)

{
K1(a)

K1(m)
− A2(m)γ

[a,m]
2

}
. (4.24)

We show that Equation (4.24) is not greater than K1(a). In the case of a = a∗2, from Lemma
4.1, we obtain

M1(m1, F
∗
2 ) = K1(m1)

{
K1(a

∗
2)

K1(m)
− A2(m)γ

[a,m]
2

}
= K1(a

∗
2). (4.25)

On the other hand, in the case of a = a1, since λ(a1) < 0 from Lemma 4.1, we have

M1(m1, F
∗
2 ) = K1(m1)

{
K1(a1)

K1(m)
− A2(m)γ

[a,m]
2

}
< K1(a1). (4.26)

From the above cases (i)-(iv), it is shown for all x that

M1(x, F
∗
2 ) ≤ K1(a). (4.27)

In the case of a = a∗2, the game value is given by

M1(F
∗
1 , F

∗
2 ) =

∫ m−0

a∗2

K1(a
∗
2)dF

∗
1 +K1(a

∗
2)γ

[a,m]
1 = K1(a

∗
2). (4.28)

Finally, in the case of a = a1, γ
[a,m]
1 equals to zero from Equations (3.5) and (4.17), so we

find

M1(F
∗
1 , F

∗
2 ) =

∫ m−0

a1

K1(a1)dF
∗
1 = K1(a1). (4.29)

Since the case for Player 2 is similar, the proof is completed.

It can be easily checked that the strategies which are shown in Theorem 4.1 and The-
orem 4.2 are the Nash equilibrium strategy for silent-type Baston/Garnaev game. Since
the silent-type Baston/Garnaev game has a unique Nash equilibrium strategy, it can be
easily checked that these solutions are also unique Nash equilibrium strategy for silent-type
Teraoka-Baston/Garnaev game.
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4.2. Noisy-type Teraoka-Baston/Garnaev game

In this subsection, we consider the noisy-type game. Define the expected total profit of this
game as follows.

M1((x, r1(y)), (y, r2(x))) =


K1(x), x < y,
P1(x), x = y,
{1− A2(y)}K1(r1(y)), x > y,

(4.30)

M2((x, r1(y)), (y, r2(x))) =


K2(y), y < x,
P2(y), y = x,
{1− A1(x)}K2(r2(x)), y > x.

(4.31)

Similar to Subsection 4.1, we define Pi(t) satisfying 0 ≤ Pi(t) ≤ Ki(t) in Equations (4.30)
and (4.31). Note that Baston and Garnaev [1] did not consider the noisy-type game. Here-
after, we call the game which has above conditions Noisy-type Teraoka-Baston/Garnaev
game in this paper. In a similar fashion to the silent-type game, we will consider the game
in the case of Pi(t) > Ki(t) in Subsequent 4.3.

For the noisy-type game, the first-order conditions of optimality are given by

∂

∂x
M1((x, r1(y)), (F2, r2(x))) = 0, 0 < x < m1, (4.32)

∂

∂y
M2((F1, r1(y)), (y, r2(x))) = 0, 0 < y < m2. (4.33)

Lemma 4.3. For the noisy-type Teraoka-Baston/Garnaev game, the strategy F ∗
i (t) (i =

1, 2) which satisfies the first-order conditions of optimality is given by

F ∗
i (t) = 1− exp

{
−
∫ t

b

θi(t)dt

}
, b < t < c, (4.34)

where b = max(b1, b2) and c is an arbitrary real number satisfying b < c ≤ m.

Proof. When Player 1 shoots at x ∈ [b, c], we obtain

M1((x, r1(y)), (F
∗
2 , r2(x))) =

∫ x

b

{1− A2(y)}K1(m1)dF
∗
2 +

∫ c

x

K1(x)dF
∗
2 . (4.35)

From Equation (4.32), we have

F ∗
2
′(x)

1− F ∗
2 (x)

=
K ′

1(x)

K1(x)− {1− A2(x)}K1(m1)
= θ2(x). (4.36)

Integrating both sides of Equation (4.36) with respect to x yields

F ∗
2 (t) = 1− η exp

{
−
∫ t

b

θ2(t)dt

}
, (4.37)

where η is the constant of integration. By substituting t = b into Equation (4.37), we get
η = 1. The proof for Player 2 is made in the similar way. The proof is completed.
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Lemma 4.4. For an arbitrary c ∈ (b,m], the following equation holds:∫ c

a

θ3−i(t)dt ↑ ∞, as a ↓ bi. (4.38)

Proof. See Sweat [16] and Teraoka [18].

Theorem 4.3. Let m = m3−i. For the noisy-type Teraoka-Baston/Garnaev game, under
the condition that b ≥ m holds, the Nash equilibrium strategies for respective players are
given by a pair of ((F ∗

1 ,m1), (F
∗
2 ,m2)), where

F ∗
i (t) =

{
0, 0 ≤ t < mi,
1, mi ≤ t ≤ 1,

(4.39)

F ∗
3−i(t) =

{
0, 0 ≤ t < m3−i,
1, m3−i ≤ t ≤ 1.

(4.40)

The value functions for respective players are given by

Mi((F
∗
1 ,m1), (F

∗
2 ,m2)) = {1− A3−i(m3−i)}Ki(mi), (4.41)

M3−i((F
∗
1 ,m1), (F

∗
2 ,m2)) = K3−i(m3−i). (4.42)

The proof is omitted for brevity from the similar argument in Theorem 4.1.

Theorem 4.4. Let b = b3−i(̸= bi). For the noisy-type Teraoka-Baston/Garnaev game,
under the condition that b < m holds, the Nash equilibrium strategies for respective players
are given by ((F ∗

1 ,m1), (F
∗
2 ,m2)), where

F ∗
i (t) =

{
0, 0 ≤ t < b,
1, b ≤ t ≤ 1,

(4.43)

F ∗
3−i(t) =


0, 0 ≤ t < b,

1− exp{−
∫ t

b
θ3−i(t)dt}+ β

[b,c]
3−i Ic(t), b ≤ t ≤ c,

1, c < t ≤ 1,

(4.44)

and c ≤ m. The value functions of both players are given by

Mi((F
∗
1 ,m1), (F

∗
2 ,m2)) = Ki(b), i = 1, 2. (4.45)

Proof. In the case where Player 2 takes the Nash equilibrium strategy, we calculate the
expected total profit for Player 1 as follows.

M1((x, r1(y)), (F
∗
2 ,m2))

=


K1(x), 0 ≤ x < b,
K1(b), b ≤ x < c,

K1(b)− {K1(c)− P1(c)} β[b,c]
2 , x = c,

K1(b)− [K1(c)− {1− A2(c)}K1(m1)] β
[b,c]
2 , c < x ≤ 1.

(4.46)

Also, in the case where Player 1 takes the Nash equilibrium strategy, the expected total
profit for Player 2 is given by

M2((F
∗
1 ,m1), (y, r2(x))) =


K2(y), 0 ≤ y < b,
P2(b), y = b,
{1− A1(b)}K2(m2) = K2(b), b < y ≤ c,
K2(b), c < y ≤ 1.

(4.47)
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Hence, it is shown for all x and y that

M1((x, r1(y)), (F
∗
2 ,m2)) ≤ K1(b), (4.48)

M2((F
∗
1 ,m1), (y, r2(x))) ≤ K2(b). (4.49)

The value functions of both players are given by

Mi((F
∗
1 ,m1), (F

∗
2 ,m2)) = Ki(b), i = 1, 2. (4.50)

The proof is completed.

Theorem 4.5. Let b = b3−i( ̸= bi) andm = mi. For the noisy-type Teraoka-Baston/Garnaev
game, under the condition that b < m holds, the Nash equilibrium strategies for respective
players are given by ((F ∗

1 ,m1), (F
∗
2 ,m2)), where

F ∗
i (t) =

{
0, 0 ≤ t < b,
1, b ≤ t ≤ 1,

(4.51)

F ∗
3−i(t) =


0, 0 ≤ t < b,

1− exp{−
∫ t

b
θ3−i(t)dt}, b ≤ t < m,

1− exp{−
∫ m

b
θ3−i(t)dt}+ β

[b,m]
3−i Id(t), m ≤ t ≤ d,

1, d < t ≤ 1,

(4.52)

and d is an arbitrary real number satisfying m < d ≤ 1. The value functions of both players
are given by

Mi((F
∗
1 ,m1), (F

∗
2 ,m2)) = Ki(b), i = 1, 2. (4.53)

Proof. For i = 1, the expected total profit for Player 1 is given by

M1((x, r1(y)), (F
∗
2 ,m2))

=



K1(x), 0 ≤ x < b,
K1(b), b ≤ x ≤ m,

K1(b)− {K1(m1)−K1(x)} β[b,m]
2 , m < x < d,

K1(b)− {K1(m1)− P1(d)} β[b,m]
2 , x = d,

K1(b)− [K1(m1)− {1− A2(d)}K1(d)] β
[b,m]
2 , d < x ≤ 1.

(4.54)

On the other hand, the expected total profit for Player 2 is also given by

M2((F
∗
1 ,m1), (y, r2(x))) =


K2(y), 0 ≤ y < b,
P2(b), y = b,
{1− A1(b)}K2(m2) = K2(b), b < y < m,
K2(b), m ≤ y < d,
K2(b), d ≤ y ≤ 1.

(4.55)

Hence, it can be shown for all x and y that

M1((x, r1(y)), (F
∗
2 ,m2)) ≤ K1(b), (4.56)

M2((F
∗
1 ,m1), (y, r2(x))) ≤ K2(b). (4.57)

The value functions of both players are given by

Mi((F
∗
1 ,m1), (F

∗
2 ,m2)) = Ki(b), i = 1, 2. (4.58)

The proof is completed.
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The condition b ≥ m in Theorem 4.3 is equivalent to the condition {1−A3−i(m3−i)}Ki(mi) ≥
Ki(m3−i) in Theorem 4.1. shown in Theorem 4.3. Therefore, under the same condition, the
strategies that Player 1 and Player 2 always shoot at time m1 and m2 respectively are the
Nash equilibrium strategies in both silent-type game and noisy-type game. In the silent-
type Teraoka-Baston/Garnaev game, we derive the Nash equilibrium strategy as a mixed
strategy. On the other hand, in the noisy-type Teraoka-Baston/Garnaev game, there exists
the Nash equilibrium strategy in which one player takes a pure strategy and the other player
takes a mixed strategy as shown in Theorem 4.4 and Theorem 4.5. Furthermore, we can
see that the Nash equilibrium strategy in the noisy-type Teraoka-Baston/Garnaev game is
not a unique solution unlike in the case of the silent-type Teraoka-Baston/Garnaev game.
In the above discussion, we did not give the solutions in the case b1 = b2 of noisy-type
Teraoka-Baston/Garnaev game. However, this situation occurs only in a very limited case
where two players have the absolutely same accuracy function.

4.3. Bonus game

The results of Subsection 4.1 and Subsection 4.2 concern the solutions of the game with the
condition of 0 ≤ Pi(t) ≤ Ki(t). Here, we derive the solutions of games with the expected
total profits represented by Equations (3.25), (3.26), (4.30) and (4.31) under the condition
of Pi(t) > Ki(t). The former game is called Silent-type bonus game and the latter game is
called Noisy-type bonus game. The strategy given in Theorem 4.6 and Theorem 4.7 holds
regardless of the type of games. Therefore, we focus on only the silent-type strategy in this
subsection. Suppose that Pi(t) is a unimodal function which is maximum at time mi, similar
to the function Ki(t) (Pi(0) = Pi(1) = 0). Define the parameters ρi and σi as follows.

ρi = inf{t : Ki(mi) = Pi(t)}, (4.59)

σi = sup{t : Ki(mi) = Pi(t)}. (4.60)

Also define ρ = max(ρ1, ρ2) and σ = min(σ1, σ2).

Theorem 4.6. Let m = m3−i. For the bonus game in the case of b ≥ m, the Nash
equilibrium strategies are given as follows.

(i) If {1 − A3−i(m3−i)}Ki(mi) ≥ Pi(m3−i) and K3−i(m3−i) ≥ P3−i(mi) hold, then the
Nash equilibrium strategies for respective players are given by

F ∗
i (t) =

{
0, 0 ≤ t < mi,
1, mi ≤ t ≤ 1,

(4.61)

F ∗
3−i(t) =

{
0, 0 ≤ t < m3−i,
1, m3−i ≤ t ≤ 1,

(4.62)

and the value functions are given by

Mi(F
∗
1 , F

∗
2 ) = {1− A3−i(m3−i)}Ki(mi), (4.63)

M3−i(F
∗
1 , F

∗
2 ) = K3−i(m3−i). (4.64)

(ii) If {1−A3−i(m3−i)}Ki(mi) ≥ Pi(m3−i) and K3−i(m3−i) < P3−i(mi) hold, then the Nash
equilibrium strategies and their associated value functions are given by

F ∗
i (t) =

{
0, 0 ≤ t < mi,
1, mi ≤ t ≤ 1,

(4.65)

F ∗
3−i(t) =

{
0, 0 ≤ t < mi,
1, mi ≤ t ≤ 1,

(4.66)
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Mi(F
∗
1 , F

∗
2 ) = Pi(mi), (4.67)

M3−i(F
∗
1 , F

∗
2 ) = P3−i(mi). (4.68)

(iii) If {1−A3−i(m3−i)}Ki(mi) < Pi(m3−i) and K3−i(m3−i) ≥ P3−i(mi) hold, then the Nash
equilibrium strategies and their associated value functions are given by

F ∗
i (t) =

{
0, 0 ≤ t < m3−i,
1, m3−i ≤ t ≤ 1,

(4.69)

F ∗
3−i(t) =

{
0, 0 ≤ t < m3−i,
1, m3−i ≤ t ≤ 1,

(4.70)

Mi(F
∗
1 , F

∗
2 ) = Pi(m3−i), (4.71)

M3−i(F
∗
1 , F

∗
2 ) = P3−i(m3−i). (4.72)

(iv) If {1−A3−i(m3−i)}Ki(mi) < Pi(m3−i) and K3−i(m3−i) < P3−i(mi) hold, then the Nash
equilibrium strategies and their associated value functions are given by

F ∗
i (t) =

{
0, 0 ≤ t < mi,
1, mi ≤ t ≤ 1,

(4.73)

F ∗
3−i(t) =

{
0, 0 ≤ t < mi,
1, mi ≤ t ≤ 1,

(4.74)

Mi(F
∗
1 , F

∗
2 ) = Pi(mi), (4.75)

M3−i(F
∗
1 , F

∗
2 ) = P3−i(mi), (4.76)

or

F ∗
i (t) =

{
0, 0 ≤ t < m3−i,
1, m3−i ≤ t ≤ 1,

(4.77)

F ∗
3−i(t) =

{
0, 0 ≤ t < m3−i,
1, m3−i ≤ t ≤ 1,

(4.78)

Mi(F
∗
1 , F

∗
2 ) = Pi(m3−i), (4.79)

M3−i(F
∗
1 , F

∗
2 ) = P3−i(m3−i). (4.80)

Theorem 4.7. Let m = m3−i. For the bonus game in the case of b < m, the Nash
equilibrium strategies are given as follows.

(i) If K3−i(m3−i) ≥ P3−i(mi) holds, then the Nash equilibrium strategies and their
associated value functions are given by

F ∗
i (t) =

{
0, 0 ≤ t < m3−i,
1, m3−i ≤ t ≤ 1,

(4.81)

F ∗
3−i(t) =

{
0, 0 ≤ t < m3−i,
1, m3−i ≤ t ≤ 1,

(4.82)
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Mi(F
∗
1 , F

∗
2 ) = Pi(m3−i), (4.83)

M3−i(F
∗
1 , F

∗
2 ) = P3−i(m3−i). (4.84)

(ii) If K3−i(m3−i) < P3−i(mi) holds, then the Nash equilibrium strategies and their associ-
ated value functions are given by

F ∗
i (t) =

{
0, 0 ≤ t < t∗,
1, t∗ ≤ t ≤ 1,

(4.85)

F ∗
3−i(t) =

{
0, 0 ≤ t < t∗,
1, t∗ ≤ t ≤ 1,

(4.86)

Mi(F
∗
1 , F

∗
2 ) = Pi(t

∗), (4.87)

M3−i(F
∗
1 , F

∗
2 ) = P3−i(t

∗), (4.88)

where t∗ is an arbitrary time satisfying ρ ≤ t∗ ≤ σ.

Theorem 4.8. Let m = m1 = m2 and a = a1 = a2. For the silent-type bonus game, under
the condition that b < m holds, the Nash equilibrium strategies and their associated value
functions are given by

F ∗
i (t) =


0, 0 ≤ t < a,∫ t

a
f ∗
i (t)dt, a ≤ t < m,

1, m ≤ t ≤ 1,

(4.89)

Mi(F
∗
1 , F

∗
2 ) = Ki(a), i = 1, 2, (4.90)

where

f ∗
i (t) =

K3−i(a)K
′
3−i(t)

{K3−i(t)}2Ai(t)
, i = 1, 2. (4.91)

It turns out that the solutions given in Theorem 4.6, Theorem 4.7 and Theorem 4.8 are
actually the Nash equilibrium strategies. Therefore, the proofs of Theorem 4.6, Theorem
4.7 and Theorem 4.8 are omitted. In the bonus game, each player gets the more profit
when both players shoot at the same time, so each player tends to take a pure strategy
which is a deterministic action at the same time. In the case (iv) of Theorem 4.6, both
strategies which are shown by Equations (4.73), (4.74) and Equations (4.77), (4.78) are the
Nash equilibrium strategies. Also, all strategies that both players fire at the same time
t∗ satisfying ρ ≤ t∗ ≤ σ are the Nash equilibrium strategies as shown in the case (ii) of
Theorem 4.7. It is clearly shown that there exists innumerable Nash equilibrium strategies.
Furthermore, we can show the Nash equilibrium strategy which is a mixed strategy for the
silent-type bonus game in Theorem 4.8. However, The solution of Theorem 4.8 holds in a
very limited case where the parameters ai (i = 1, 2) and mi (i = 1, 2) are the same values.
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4.4. Silent/Noisy-type Teraoka-Baston/Garnaev game

In this subsection, we consider the silent/noisy-type game. Suppose that Player 1 has a
silent bullet and Player 2 has a noisy bullet. Therefore, Player 1 notices the opponent’s
action as soon as it takes place. On the other hand, Player 2 cannot know whether Player
1 has acted or not. Let ((x, r1(y)), y) denote the pure strategies for Player 1 and Player 2.
Define the expected total profit of this game as follows.

M1((x, r1(y)), y) =


K1(x), x < y,
P1(x), x = y,
{1− A2(y)}K1(r1(y)), x > y,

(4.92)

M2((x, r1(y)), y) =


K2(y), y < x,
P2(y), y = x,
{1− A1(x)}K2(y), y > x,

(4.93)

where Mi((x, r1(y)), y) means the expected total profit for Player i, and Pi(t) satisfies 0 ≤
Pi(t) ≤ Ki(t). Teraoka [22] considers the silent/noisy-type marksmanship contest game
with random termination when Pi(t) = Ki(t). We call this game with the above condition
Silent/Noisy-type Teraoka-Baston/Garnaev game in this paper.

Theorem 4.9. For the silent/noisy-type Teraoka-Baston/Garnaev game, under the condi-
tion that b < m holds, the Nash equilibrium strategies and the value functions for respective
players are given by ((F ∗

1 ,m1), F
∗
2 ) and Mi((F

∗
1 ,m1), F

∗
2 ), where

F ∗
1 (x) =


0, 0 ≤ x < a,∫ x

a
f ∗
1 (t)dt, a ≤ x < m,∫ m

a
f ∗
1 (t)dt+ γ

[a,m]
1 Im1(z), m ≤ x ≤ m1,

1, m1 < x ≤ 1,

(4.94)

F ∗
2 (y) =


0, 0 ≤ y < a,
1− exp{−

∫ y

a
θ2(t)dt}, a ≤ y < m,

1− exp{−
∫ m

a
θ2(t)dt}+ β

[a,m]
2 Im2(y), m ≤ y ≤ m2,

1, m2 < y ≤ 1,

(4.95)

Mi((F
∗
1 ,m1), F

∗
2 ) = Ki(a), i = 1, 2, (4.96)

and

a =

{
max(a∗1, b1), m = m1,
max(a1, b1), m = m2.

(4.97)

It is evident to see that the solutions in Theorem 4.9 are actually the Nash equilibrium
strategies. Therefore, the proof is omitted.

Theorem 4.10. Let m = m2. For the silent/noisy-type Teraoka-Baston/Garnaev game,
under the condition that b1 ≥ m2 holds, the Nash equilibrium strategies for respective
players are given by ((F ∗

1 ,m1), F
∗
2 ), where

F ∗
1 (x) =

{
0, 0 ≤ x < m1,
1, m1 ≤ x ≤ 1,

(4.98)

F ∗
2 (y) =

{
0, 0 ≤ y < m2,
1, m2 ≤ y ≤ 1.

(4.99)
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The value functions for respective players are given by

M1((F
∗
1 ,m1), F

∗
2 ) = {1− A2(m2)}K1(m1), (4.100)

M2((F
∗
1 ,m1), F

∗
2 ) = K2(m2). (4.101)

We omit the proof, since we have already shown the similar results in Theorem 4.1.

4.5. Stackelberg strategy solution for marksmanship contest game with random
termination

In this subsection, we consider a Stackelberg marksmanship contest game with random
termination. In this game, we assume that there are leader and follower players. That
is, there are superiority and inferiority between two players. Suppose that the leader can
shoot earlier than the follower, and that the follower can act only at the same timing as
the leader’s shot or after. In this game, the expected total profit functions are given by
Equations (3.25) and (3.26). We focus on the case of Pi(t) = Ki(t).

Let Player 1 and Player 2 be the follower and the leader, respectively. For an arbitrary
y ∈ [0, 1], we define the function f : [0, 1] → [0, 1] satisfying the condition:

M1(f(y), y) = sup
x≥y

M1(x, y). (4.102)

If there exists an arbitrary y∗ ∈ [0, 1] which satisfies the condition:

M2(f(y
∗), y∗) = sup

y∈[0,1]
M2(f(y), y), (4.103)

then the Stackelberg strategies are given by (x∗, y∗), where x∗ = f(y∗). In the case where
Player 1 is the leader, the Stackelberg strategies are given by a pair of (x̄∗, ȳ∗). It is
immediate to see that

M2(f(y
∗), y∗) ≥ M2(F

∗
1 , F

∗
2 ), (4.104)

so, the leader can obtain the expected profit not less than the value function under the
Nash equilibrium strategy. This means that the Stackelberg game is more profitable for the
leader player.

Let J i
j be the expected profit of Player j (= 1, 2) in the case where Player i (= 1, 2) is

the leader, so we define J1
j = Mj(x̄

∗, ȳ∗) and J2
j = Mj(x

∗, y∗).

Theorem 4.11. The Stackelberg strategies for Player 2 as the leader are given by

x∗ =

{
m1, b1 ≥ m2,
m2, b1 < m2,

(4.105)

y∗ = m2, (4.106)

where b1 andm2 are already defined in Equations (3.15) and (2.2), respectively. The optimal
payoffs for respective players are given by

M1(x
∗, y∗) =

{
{1− A2(m2)}K1(m1), b1 ≥ m2,
K1(m2), b1 < m2,

(4.107)

M2(x
∗, y∗) = K2(m2). (4.108)
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Theorem 4.12. In the Stackelberg marksmanship contest game with random termination,
the following conditions always hold.

J1
1 > J2

1 , (4.109)

J2
2 > J1

2 . (4.110)

Therefore, the Stackelberg marksmanship contest game with random termination is com-
petitive in the sense that both players wish to become the leader.

Remark 4.1. The Nash equilibrium strategies in Theorem 4.10 are equivalent to the solu-
tions (x∗, y∗) in Theorem 4.11. That is, under the condition of b1 ≥ m2, the actions of the
leader and the follower in the Stackelberg game correspond to those of the noisy and silent
players in the silent/noisy-type game. In the Nash equilibrium strategy, Player 1 does not
have motivation to shot before time b1. On the other hand, Player 2 always wishes to shot
at time m2. Consequently, the order of actions for two players is uniquely determined.

5. Numerical Examples

In this section, we give simple numerical examples. First, we derive the Nash equilibrium
strategies and value functions for both silent-type and noisy-type Teraoka-Baston/Garnaev
games. The model parameters for two players are given in Table 1. For example, we label
the game with the condition: A1(t) = t, A2(t) = t,H(t) = t as Case 1 as shown in Table
1. Here, the accuracy function Ai(t) represents the probability that Player i hits his or her
own target when Player i fires at time t. Therefore, we assume that the player who has the
good accuracy function; Ai(t) = −(t− 1)2 + 1 can be regarded as an advanced contestant.
If the player has the normal accuracy function; Ai(t) = t, then he or she is an intermediate
contestant. Furthermore, the player with the poor accuracy function; Ai(t) = t2 is regarded
as a beginner. Also, it is seen that the game with the condition: H(t) = −(t − 1)2 + 1 is
easy to terminate. On the other hand, the condition: H(t) = t2 means that this game tends
to continue further more.

Table 2 presents the support range and value function in the silent-type Teraoka-Baston/
Garnaev game, where the underline denotes the supports of a and m. From Table 1 and
Table 2, we can see that Player 2 has always better skills of shooting than Player 1. There-
fore, the value function of Player 2 is greater than that of Player 1. Furthermore, we find
that both players tend to get more profit if the game has the good condition relevant to
the function H(t) from Case 1, Case 3 and Case 7 of Table 2. Figure 1 shows the behav-
ior of the Nash equilibrium strategy in the silent-type Teraoka-Baston/Garnaev game with
parameters in Case 2. From this figure, we observe that only one player takes the Nash
equilibrium strategy with probability mass part in the silent-type Teraoka-Baston/Garnaev
game.

Table 3 presents the support range and value function in the noisy-type Teraoka-Baston/
Garnaev game, where the underline denotes the supports of b and m. From Table 2 and
Table 3, it is seen that the value functions of the noisy-type game are always greater than
those of the silent-type game in the same case. These results arise from superiority condition
of the noisy-type game for two players. As mentioned in Subsection 4.2, we did not give the
solutions in the case b1 = b2 of the noisy-type game. Therefore, we show only the results
when b1 ̸= b2 in Table 3. Figure 2 shows the behavior of the Nash equilibrium strategy in the
noisy-type Teraoka-Baston/Garnaev game with parameters in Case 2, where c = m− 0.05.
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Table 1: Parameter setting

A1(t) A2(t) H(t)

Case 1 t t t
Case 2 t2 t t
Case 3 t t t2

Case 4 t2 t t2

Case 5 t2 t2 t2

Case 6 t −(t− 1)2 + 1 t
Case 7 t t −(t− 1)2 + 1
Case 8 t −(t− 1)2 + 1 −(t− 1)2 + 1
Case 9 −(t− 1)2 + 1 −(t− 1)2 + 1 −(t− 1)2 + 1
Case 10 t −(t− 1)2 + 1 t2

Case 11 t2 −(t− 1)2 + 1 t
Case 12 t2 t −(t− 1)2 + 1

Table 2: Support range and value function in the silent-type Teraoka-Baston/Garnaev game

a1 a2 m1 m2 K1(a) K2(a)

Case 1 0.2282 0.2282 0.5000 0.5000 0.1761 0.1761
Case 2 0.3163 0.3373 0.6667 0.5000 0.0754 0.2235
Case 3 0.2705 0.2705 0.5774 0.5774 0.2507 0.2507
Case 4 0.3639 0.3785 0.7071 0.5774 0.1227 0.3243
Case 5 0.4777 0.4777 0.7071 0.7071 0.1761 0.1761
Case 6 0.1989 0.1716 0.5000 0.4227 0.1593 0.2870
Case 7 0.1693 0.1693 0.3333 0.3333 0.1168 0.1168
Case 8 0.1530 0.1322 0.3333 0.2929 0.1098 0.2027
Case 9 0.1215 0.1215 0.2929 0.2929 0.1761 0.1761
Case 10 0.2356 0.2030 0.5774 0.5000 0.2225 0.3926
Case 11 0.2783 0.2560 0.6667 0.4227 0.0559 0.3458
Case 12 0.2362 0.2510 0.5000 0.3333 0.0417 0.0494

Table 3: Support range and value function in the noisy-type Teraoka-Baston/Garnaev game

b1 b2 m1 m2 K1(b) K2(b)

Case 2 0.3849 0.3333 0.6667 0.5000 0.0911 0.2368
Case 4 0.4196 0.3849 0.7071 0.5774 0.1451 0.3457
Case 6 0.2000 0.2157 0.5000 0.4227 0.1692 0.3019
Case 8 0.1481 0.1624 0.3333 0.2929 0.1140 0.2094
Case 10 0.2373 0.2568 0.5774 0.5000 0.2398 0.4181
Case 11 0.3179 0.2906 0.6667 0.4227 0.0689 0.3647
Case 12 0.2985 0.2435 0.5000 0.3333 0.0438 0.1469
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Figure 1: Behavior of Nash equilibrium strategy in the silent-type Teraoka-Baston/Garnaev
game in Case 2

From this figure, we observe that only one player takes the Nash equilibrium strategy which
is a mixed strategy in the noisy-type Teraoka-Baston/Garnaev game. Furthermore, it is
seen that the player who takes a mixed strategy is able to select the support of their own
strategy freely.

Next we compare the Nash equilibrium strategy in the silent/noisy-type Teraoka-Baston/
Garnaev game with the Stackelberg strategy. In Case A and Case B, the model parameters
are given by A1(t) = t, A2(t) = t2, H(t) = t and A1(t) = t3, A2(t) = t,H(t) = −(t− 1)2 + 1,
respectively. Suppose that Player 1 as a silent player and Player 2 as a noisy player exist in
the silent/noisy game, and that Player 1 as a follower and Player 2 as a leader exist in the
Stackelberg game. Table 4 presents the value function and the optimal payoff in two games.
From this table, we can see that Player 2 of the Stackelberg game can get more expected
profit than the value function in the silent/noisy game in both cases. Since the condition
b1 ≥ m2 holds in Case B, it is seen that the strategies of two games are equivalent, as shown
in Remark 4.1, and that each player obtains the same value of the expected profit in the both
games. Figures 3 and 4 show the behavior of Nash equilibrium strategy and Stackelberg

Table 4: Parameters and value functions in two games
silent/noisy game Stackelberg game

b1 m2 M1((F
∗
1 ,m1), F

∗
2 ) M2((F

∗
1 ,m1), F

∗
2 ) M1(x

∗, y∗) M2(x
∗, y∗)

Case A 0.333 0.667 0.224 0.075 0.222 0.148
Case B 0.383 0.333 0.023 0.148 0.023 0.148

strategy in both cases, respectively. From Figure 3, we observe that both players of the
silent/noisy-type game have to act earlier than the Stackelberg game under the condition
of b1 < m2. From Figure 4, it can be seen that the strategy of the silent player is equivalent
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Figure 2: Behavior of Nash equilibrium strategy in the noisy-type Teraoka-Baston/Garnaev
game in Case 2

Figure 3: Comparison of Nash equilibrium strategy and Stackelberg strategy in Case A
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Figure 4: Comparison of Nash equilibrium strategy and Stackelberg strategy in Case B

to that of the follower, and that the strategy of the noisy player is equivalent to that of the
leader under the condition of b1 ≥ m2.

6. Conclusion

In this paper, we have formulated a unified marksmanship contest game with random termi-
nation and shown that our formulation split into five different marksmanship contest games.
The first four games can be characterized as two-person nonzero-sum games of timing. The
last game is the Stackelberg game with two players. The solutions of respective marksman-
ship contest games have been derived analytically under some conditions. Through simple
numerical examples, we have confirmed the detailed behaviors of solutions which were the
Nash equilibrium strategies or the Stackelberg strategies.
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