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Abstract We formulate a short-selling strategy of a stock and seek the optimal timing of short covering
in the presence of a random recall and a loan fee rate in an illiquid stock loan market. The aim is to
study how the optimal trading strategy of the short-seller is influenced by the relevant features of the stock
loan market. We characterize the optimal timing of short covering depending on the conditions that lead
to different costs and benefits of keeping the position. Depending on the parameters, not only a put-type
problem but also a call-type problem emerges. The solution to the optimal stopping problem is obtained
in a closed form. We present explicitly what actions the investor should take. A comparative analysis is
conducted with numerical examples.
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1. Introduction

Short-selling is the selling of a financial security that the investor does not own. The trading
provides an efficient means for investors to exploit the opportunity or hedge against downside
risk when they anticipate the overpricing of a security and speculate its future decline in
value. A typical situation involving short-selling transactions can be described as follows.
Some institutional investors are long biased and hence only rebalance their portfolios on a
quarterly or yearly basis. These institutional investors are usually mutual funds, pension
funds or tracker funds. They place their stocks with the broker who acts as a custodian.
The broker who holds the inventory of stocks has the discretion to lend out the stock in
order to earn a loan fee income. On the other side is the short-seller (e.g., a hedge fund
manager) who implements a short-selling position by borrowing the stock (“stock loan”)
from such a broker and selling it in the market. After that, the short-seller’s objective is
to “buy low, sell high” such that the stock is first sold high and purchased later at a lower
price. The buying back and returning of the stock to the broker is called short covering. At
the end, the short-seller makes a profit from a price decline or a loss from a price rise of the
stock.

There are a number of real-world complications involved in the implementation of a short-
selling strategy. A unique feature in a stock loan contract is that there is no guaranteed
maturity and it is effectively rolled over on a daily basis as documented in D’Avolio [2].
Hence, the broker holds an option to recall the stock borrowing at any time. At a recall,
the short-seller is then forced to cover the short position immediately, regardless of a profit
or loss, if replacing stocks are not found and placed with the broker. The risk of such
an involuntary termination of a short-selling strategy is called the recall risk. Besides the
capital profit/loss associated with the recall risk, the short-seller also has to take into account
the running cost of the strategy. The broker charges the short-seller a loan fee, which is
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calculated as the loan fee rate times the stock price times the length of the period. As noted
in D’Avolio [2], the loan fee rate varies dramatically across different categories of stocks from
50 to 800 basis points. At the same time, the short-seller deposits the sale proceeds into
a margin account, which generates interest income called the short interest rebate. When
the interest rate is high, the income may become one of the return drivers of a short-selling
strategy. Hence, the investor’s decision depends on the balance between the benefit (interest
income) and the cost (loan fee) of holding the short position.

The optimal trading rule of a long position has been formulated as an optimal stopping
problem in [5] and extended in [4], in which the investor initially holds a security and seeks
the optimal timing to sell it in order to maximize the expected discounted payoff. In this
paper, we formulate a short-selling strategy as an optimal stopping problem and seek the
optimal timing of the short covering in the presence of a recall risk, loan fee and interest
income. The feature of the random recall gives rise to an optimal stopping problem with a
random time horizon. We apply the resolvent operator to simplify the problem and derive
the solution based on the approach in [3]. As such, we directly construct the solution rather
than guessing the form of the value function and stopping rule. One of the interesting results
is that, depending on the levels of loan fee and interest rates, the optimal stopping problem
is either of a put-type problem with a down-and-out stopping rule or a call-type problem
with an up-and-out stopping rule. We find that the recall risk has a significant impact on the
value function and the corresponding optimal threshold. The value function may become
negative because of the possibility of a forced termination, and the short-seller is likely to
stop earlier at the closer optimal threshold to the entry price as a result of the random
recall (the put-type problem) or the relatively expensive net running cost of keeping the
position (the call-type problem). Given the closed-form solution, we characterize explicitly
the investor’s active region in terms of the loan fee rate and interest rate in several ways. We
show that the active region depends sensibly on the stock price volatility, expected return
and recall intensity.

The paper is organized as follows. Section 2 presents the formulation of the model,
the solution and some analysis on the active condition. Section 3 provides a comparative
analysis with numerical examples. Section 4 concludes the paper.

2. Model

2.1. Setup

We fix the filtered probability space (Ω,F , (Ft)t≥0, P) and assume a stock price to be a
one-dimensional diffusion process X = (Xt)t≥0 satisfying

dXt = µXtdt + σXtdWt, X0 = x > 0. (2.1)

Here, (Wt)t≥0 is a standard Brownian motion, µ is the expected return of the stock and σ is
the volatility of the stock. The infinitesimal generator of the stock price process X is given
by

LX =
1

2
σ2x2 d2

dx2
+ µx

d

dx
.

At time t = 0, an investor makes or keeps a short position of the stock whose sale proceeds
is K. For such a short position, we assume that there is a stock loan (or securities lend-
ing) market to borrow/lend the stock against the loan fee, although the liquidity may be
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limited∗ in the sense that the loan contract is available only with a specific broker because
of the illiquidity of the stock loan market. The contract may be automatically renewed
instantaneously, although there is a chance that the broker will not be able to find stock to
replace. Hence, the lender does not renew the contract at the broker’s recall time τR which
is an exponential random variable Exp (λ) with parameter λ ≥ 0 independent of the stock
price process.† Once the loan contract is terminated, the short-seller has to cover the short
position by buying stock at the market price.

We write FW
t = σ(Ws; s ∈ [0, t]), FW =

(
FW

t

)
t≥0

and F = (Ft)t≥0, and assume that

FW
t ∨ σ(1{τR>t}) ⊂ Ft. We denote the expectation Ex [·] = E [ ·|X0 = x, τR > 0] under P.

The loan fee is charged instantaneously based on the current stock price, i.e., the borrower
makes the loan fee payment δXtdt over a small time interval dt, where δ is the constant
loan fee rate. The short-seller deposits the initial proceeds K from selling the stock into a
margin account that pays interest continuously at a constant rate q. As a result, the net
cash outflow is given by (δXt − qK) dt over a time interval dt, which can be positive or
negative depending on the levels of the stock price, the loan fee rate and the interest rate.
The net cash flow δXt − qK is sometimes referred to as the effective loan fee and can be
interpreted as the net running cost of the short-selling strategy.

The short position of the investor is kept until she buys back at the market price either
at her own discretion or following a recall by the broker. K may or may not be equal to
X0 = x. She seeks the optimal timing of short covering at her own discretion. The short-
seller’s problem is to optimize the expected net profit discounted at her own discount rate
β > max(µ, 0)

v(x) = sup
τ∈A

Ex

[
e−β(τ∧τR) (K − Xτ∧τR

) −
∫ τ∧τR

0

e−βs (δXs − qK) ds

]
, (2.2)

where A is the set of all FW -stopping times taking values in [0,∞]. Note that a higher
(lower) discount rate β indicates that an investor is less (more) patient.

For a strong Markov process Y , we denote the resolvent operator by(
RY

β f
)
(x) = E

[∫ ∞

0

e−βsf (Ys) ds

∣∣∣∣ Y0 = x

]
,

which is useful for the evaluation of the total cost of keeping the short-position.
Lemma 2.1. (1) For any stopping time τ , it holds that

E
[∫ ∞

τ

e−βsf (Ys) ds

∣∣∣∣ Y0 = x

]
= E

[
e−βτ

(
RY

β f
)
(Yτ )

∣∣Y0 = x
]
.

(2) Suppose that an exponentially distributed random variable U with parameter λ is inde-
pendent of Y . For any stopping time τ , it holds that

E
[
e−β(τ∧U)f (Yτ∧U)

∣∣ Y0 = x
]

= E
[
e−(β+λ)τ (f − ϕ) (Yτ )

∣∣Y0 = x
]
+ ϕ (x) ,

where
ϕ (x) = Ex

[
e−βUf (YU)

∣∣ Y0 = x
]
.

∗A repo contract is similar to a stock loan contract. They differ in terms of cash flow. In a stock loan
contract only the interest equivalent cash flow (loan fee) is paid to the lender instantaneously without any
payment of the notional amount.
†The exponential variable is a popular choice for the modeling of random arrival times in finance and
economics (see [1, 6]).
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(3) Suppose that dYt = µYtdt + σYtdWt and f (x) = kx + l. When β > µ ,it holds that(
RY

β f
)
(x) =

k

β − µ
x +

l

β
.

Proof. See Appendix A.

By Lemma 2.1, we can re-write the short-seller’s problem as

v(x) = sup
τ∈A

Ex

[
e−(β+λ)τ (g − ϕ) (Xτ )

]
−

(
RX

β f
)
(x) + ϕ (x) , (2.3)

where

f(x) = δx − qK, g(x) = K − x +
(
RX

β f
)
(x) , ϕ(x) = λ

(
RX

β+λg
)
(x) .

See Appendix B for the derivation, where we used β > µ and β + λ > µ to calculate the
resolvent operators acting on f and g respectively. Here,

u(x) = sup
τ∈A

Ex

[
e−(β+λ)τ (g − ϕ) (x)

]
, (2.4)

is an infinite horizon problem with the linear payoff function

(g − ϕ) (x) =
β

β + λ

(
1 − q

β

)
K − β − µ

β + λ − µ

(
1 − δ

β − µ

)
x.

The coefficients ρ = 1 − δ

β − µ
and η = 1 − q

β
play important roles in our analysis. A

sufficiently low loan fee rate implies that the gain function g − ϕ is a decreasing function
of x, while in an expensive loan fee environment it is an increasing function. Hence, it is
not so straight-forward to reduce the problem to a perpetual American call or put problem.
Apparently, the investor’s optimal strategy depends on the magnitudes of the loan fee rate
and the interest rate via the signs of ρ and η, which lead to different signs of the slope and
intersection of the payoff function. A patient investor’s η tends to be negative, while an
impatient one’s η tends to be positive. η ≷ 0 is equivalent to q ≶ β and ρ ≷ 0 is equivalent
to δ ≶ β − µ.

2.2. Solution

We apply the results of [3] to obtain the solution of the auxiliary problem (2.4). For the
readers’ convenience, we briefly review the procedure in [3] to solve an optimal stopping
problem

V (x) = sup
τ∈A

Ex

[
e−ατh (Xτ )

]
, (2.5)

for a geometric Brownian motion X given by (2.1), the linear payoff h(x) = kx + l and
α > µ. Let ψ and φ be the solutions of (LX − α) u = 0 on (0, +∞) such that (i) ψ is a
positive increasing function and (ii) φ is a positive decreasing function. Namely, they are

ψ(x) = xn, φ(x) = xm,

where n > 1 and m < 0 are the distinct roots of

p(x) =
1

2
σ2x(x − 1) + µx − α
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since p(−∞) > 0, p(+∞) > 0, p(0) < 0 and p(1) < 0. Then, we take

F (x) =
ψ

φ
(x) = xθ, F−1(y) = y1/θ, θ = n − m > 1,

such that F is positive and increasing. It can be checked that

l0 = lim sup
x↓0

max(h(x), 0)

φ(x)
= 0, l∞ = lim sup

x↑+∞

max(h(x), 0)

ψ(x)
= 0.

Define the function H : [0, +∞) → R as

H(y) =


h (F−1(y))

φ (F−1(y))
, when y > 0

l0, when y = 0

 = y−m/θ
(
ky1/θ + l

)
.

We denote by W : [0, +∞) → R the smallest non-negative concave majorant of H. The
candidate stopping time is the first-passage-time defined as

τ ∗ = inf {t ≥ 0; Xt ∈ Γ} , (2.6)

where Γ = {x ∈ R+ : V (x) = h(x)} is the stopping region. The solution to the optimal
stopping problem (2.5) can be constructed as follows.
Lemma 2.2 ([3] Prop. 5.10, 5.12, 5.13). (1) If l0, l∞ are finite, the value function V is fi-

nite and continuous on R+ and it is given by

V (x) = φ(x)W (F (x)) .

(2) If h is continuous and l0 = l∞ = 0, the stopping time τ ∗ of (2.6) is the optimal stopping
time.
The key of the result is the construction of the smallest non-negative convave majorant

W of H. To this end, we need to investigate the property of H on [0, +∞). When l/k < 0,
we see that

H(0) = H(y0) = 0, H ′(y1) = 0, H ′′(y2) = 0,

where

y0 =

(
− l

k

)θ

, y1 =

(
− l

k

m

m − 1

)θ

, y2 =

(
− l

k

n

n − 1

m

m − 1

)θ

.

Note that y1 < y0 and y1 < y2. For different values of l and k, the analysis can be split into
four cases:
1. When k < 0 and l > 0, we have

- H(0) = 0, H(+∞) = −∞ and H ′(y) → +∞ as y ↓ 0.

- H(y) > 0 for 0 < y < y0 and H(y) < 0 for y > y0.

- H is increasing concave on (0, y1), decreasing concave on (y1, y2) and decreasing
convex on (y2, +∞).

Hence, W can be constructed as

W (y) =

{
H(y), 0 ≤ y ≤ y1,
H(y1), y1 < y.

This corresponds to a put-type problem as shown in Figure 1(a).
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(b) When k > 0 and l < 0.

Figure 1: Graph of H for different values of k and l.

2. When k > 0 and l < 0, we see
- H(0) = 0, H(+∞) = +∞ and H ′(y) → −∞ as y ↓ 0.

- H(y) < 0 for 0 < y < y0 and H(y) > 0 for y > y0.

- H is decreasing convex on (0, y1), increasing convex on (y1, y2) and increasing
concave on (y2, +∞).

Hence, W is given by

W (y) =


H(y∗)

y∗ y, 0 ≤ y < y∗,

H(y), y∗ ≤ y,

where y∗ > y2 is determined by a tangent line of H from the origin such that H(y∗) =
y∗H ′(y∗), that is

y∗ =

(
− l

k

n

n − 1

)θ

.

This corresponds to a call-type problem as shown in Figure 1(b).
3. When k ≥ 0 and l ≥ 0 but (k, l) ̸= (0, 0), we see that H is increasing concave on

(0, +∞). Hence, we take W (y) = H(y).
4. When k < 0 and l < 0, we have h(x) < 0 for all x and it is trivial to take τ = ∞ (see

Section 3 of [3]).
By applying Lemma 2.2, we obtain the following results.

Proposition 2.1. The auxiliary optimal stopping problem (2.4) has the solution:

Case (a) When ρ ≥ 0, η ≤ 0, u = 0, τ ∗ = ∞,

Case (b) When ρ > 0, η > 0, u = up, τ ∗ = inf {t ≥ 0; Xt ≤ bp} , bp =
m

m − 1
aK,

Case (c) When ρ ≤ 0, η ≥ 0, u = g − ϕ, τ ∗ = 0,

Case (d) When ρ < 0, η < 0, u = uc, τ ∗ = inf {t ≥ 0; Xt ≥ bc} , bc =
n

n − 1
aK,

where

a =
β

β + λ

β + λ − µ

β − µ

η

ρ
, (2.7)

satisfying (g − ϕ) (aK) = 0, and

up(x) ,

 (g − ϕ)(bp)

(
x

bp

)m

, x ∈ (bp,∞) ,

(g − ϕ)(x), x ∈ (0, bp] ,
(2.8)
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uc(x) ,


(g − ϕ)(x), x ∈ [bc,∞) ,

(g − ϕ)(bc)

(
x

bc

)n

, x ∈ (0, bc) .
(2.9)

Proof. See Appendix C.

By rearranging (2.3) and (2.4), we obtain the following main result.
Theorem 2.1. The value function v of the optimal stopping problem (2.2) is given by

v(x) = u(x) + ϕ(x) − g(x) + K − x, x ∈ R+.

2.3. Discussion

From Proposition 2.1 and Theorem 2.1, v(x) has the two lower bounds: h0(x) = K − x
corresponding to τ ∗ = 0 (immediate exercise) and h∞(x) = ϕ(x)−g(x)+K−x corresponding
to τ ∗ = ∞ (wait and see). Figure 2 illustrates what is happening in each case.
- Case (a): h∞(x) is always greater than h0(x) thanks to the cheap loan fee and the high

interest income. It is optimal to wait and see until the recall time (τ ∗ = ∞).

- Case (b): The net running cost of the short position is relatively cheap. It is bet-
ter to stop than wait when x is sufficiently small enough to satisfy at least h∞(x) <
h0(x). The optimal strategy is to cover the short position at the threshold bp, i.e.,
τ ∗ = inf {t ≥ 0; Xt ≤ bp}.

- Case (c): h0(x) is always greater than h∞(x) because of the expensive loan fee and
the low interest income. It is optimal to stop immediately and hence no entry occurs
(τ ∗ = 0).

- Case (d): The net running cost of the short position is relatively expensive. It is bet-
ter to stop than wait when x is sufficiently large enough to satisfy at least h∞(x) <
h0(x). The optimal strategy is to cover the short position at the threshold bc, i.e.,
τ ∗ = inf {t ≥ 0; Xt ≥ bc}.

In the put-type problem, the short covering at the threshold bp involves taking profit while
the short covering at bc in the call-type problem involves a loss cut in the capital‡. In
either case, net interest income until the short covering depends on the historical path. The
mandatory short covering upon recall yields another opportunity of profit taking or loss
cut. Compared with a case without a random recall risk, the short-seller is likely to stop
earlier at an optimal threshold closer to the entry price because of the random recall (an
early profit taking on the put-type problem) or the relatively expensive net running cost of
keeping the position (an early loss cut on the call-type problem). Note that in Cases (b)
and (d), as illustrated in Figure 2, it holds that

Case (b) bp < aK, g(bp) − ϕ(bp) =
1

1 − m

β

β + λ
ηK > 0,

Case (d) aK < bc, g(bc) − ϕ(bc) =
1

1 − n

β

β + λ
ηK > 0,

because m < 0 and n > 1. It can be seen that

Case (b) up(x) = (g(bp) − ϕ(bp))

(
x

bp

)m

> 0, x ∈ (bp,∞),

Case (d) uc(x) = (g(bc) − ϕ(bc))

(
x

bc

)n

> 0, x ∈ (0, bc),

‡This is a voluntary loss cut in order to avoid the high running cost as the stock price increases.
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(a) When ρ ≥ 0 and η ≤ 0, the optimal
strategy is τ∗ = ∞.

(b) When ρ > 0 and η > 0, the optimal
strategy is τ∗ = inf {t ≥ 0;Xt ≤ bp}.

(c) When ρ ≤ 0 and η ≥ 0, the optimal
strategy is τ∗ = 0.

(d) When ρ < 0 and η < 0, the optimal
strategy is τ∗ = inf {t ≥ 0;Xt ≥ bc}.

Figure 2: The lower bounds h0 and h∞ of the value function v.

represent the value of the short-seller’s optionality to stop at a finite time. The quantities
(x/bp)

m and (x/bc)
n are the expected present values of one dollar when the stock price hits

the thresholds bp and bc, respectively, before the random recall. The corresponding dollar
amounts at the exercises are g(bp) − ϕ(bp) and g(bc) − ϕ(bc), respectively.

2.4. The active region

We need to consider the condition that the short-seller actually enters into a short position.
As Case (a) and Case (c) are trivial, let us restrict our attention to the put-type problem
(Case (b)) and the call-type problem (Case (d)). In order that the investor is active in the
sense of waiting for the stock price’s passage over the thresholds obtained in the previous
subsection until the random recall, it is clear that K > bp on the put-type problem and
K < bc on the call-type problem must hold. They are rewritten in terms of a,m and n in
the next proposition.

Proposition 2.2. For the put-type problem (ρ > 0, η > 0), the active condition K > bp is
equivalent to the condition a < (m − 1)/m. For the call-type problem (ρ < 0, η < 0), the
active condition K < bc is equivalent to the condition a > (n − 1)/n.

Figure 3 illustrates the active condition for the put-type problem. When a < 1, we see
bp < aK < K and the active condition K > bp is always satisfied. When a > 1, however,
the active condition K > bp is satisfied only when a < (m − 1)/m. Clearly, the active
condition depends on the coefficients η, ρ and other model parameters. The active region
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(a) When ρ > 0, η > 0 and a ≤ 1, then
bp < aK ≤ K always holds.

(b) When ρ > 0, η > 0 and a > 1.
If a < (m− 1)/m then bp < K while K ≤
bp in the case of a ≥ (m − 1)/m.

Figure 3: The active condition and optimal threshold for the put-type problem.

on the (η, ρ)-plane can be characterized explicitly as

ρ >


m

m − 1
γη, η ≥ 0,

n

n − 1
γη, η < 0,

where γ =
β

β + λ

β + λ − µ

β − µ
,

as shown in Figure 4(a). They can be converted on the (q, δ)-plane as

δ − (β − µ) <


n

n − 1

β + λ − µ

β + λ
(q − β), q > β,

m

m − 1

β + λ − µ

β + λ
(q − β), q ≤ β,

as in Figure 4(b). On the (q, δ)-plane, the boundaries of the two conditions in Proposition
2.2 are graphically represented by the two straight lines L1 and L2 in Figure 4(b). The
slopes M and N of L1 and L2, respectively, are represented solely by the roots n and
m, respectively, as in the next proposition, which also shows that a change of the model
parameters leads to an expansion or a contraction of the active region as the two lines rotate
around (β, β − µ).
Proposition 2.3. (1) The slopes on the (q, δ)-plane

M =
m

m − 1

β + λ − µ

β + λ
, N =

n

n − 1

β + λ − µ

β + λ

have the following properties

N =
m − 1

m
, M =

n − 1

n
,

and

∂N

∂σ2
> 0,

∂N

∂µ
< 0,

∂N

∂λ
< 0,

∂M

∂σ2
< 0,

∂M

∂µ
< 0,

∂M

∂λ
> 0.

(2) The thresholds bp, bc have the following properties

∂bp

∂λ
> 0,

∂bc

∂λ
< 0.
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(a) Active region on the (η, ρ)-plane. (b) Active region on the (q, δ)-plane.

Figure 4: Investor’s active region. The origin on the (η, ρ)-plane corresponds to the point
(β, β − µ) on the (q, δ)-plane.

Proof. n, m are solutions of the quadratic equation (1/2)σ2x(x − 1) + µx − (β + λ) = 0.
Then it holds that

β + λ − µ

β + λ
=

(n − 1)(m − 1)

nm
,

and

∂m

∂σ2
> 0,

∂m

∂µ
< 0,

∂m

∂λ
< 0,

∂n

∂σ2
< 0,

∂n

∂µ
< 0,

∂n

∂λ
> 0.

Proposition 2.3 (1) implies that the active region expands as the stock volatility σ in-
creases (more opportunistic trade) and contracts as the recall intensity λ increases (higher
recall risk) when the loan fee rate δ and the interest rate q are fixed. The separating lines
rotate clockwise when µ increases. With an increase of λ, the thresholds become closer to
the original sales price so that the short-seller will close the position more quickly and more
conservatively.

Finally, to represent the active condition graphically in relation to L1 and L2, we rewrite
the definition of a in (2.7) as

δ − (β − µ) =
1

a

(n − 1)(m − 1)

nm
(q − β) ,

which is drawn as the dashed line L3 in Figure 4(b). In Case (b) on the domain q ≤ β in
the graph, the active condition a < (m − 1)/m is equivalent to the condition

1

a

(n − 1)(m − 1)

nm
>

n − 1

n
, (2.10)

which implies that the slope M (the RHS of (2.10)) of line L1 must be smaller than the
slope of L3 (the LHS of (2.10)). Similarly, for Case (d), a > (n − 1)/n is equivalent to the
condition that the slope N of line L2 is larger than the slope of L3. In other words, the
active condition is equivalent to the condition that the line L3 lies below the lines L1 and
L2.
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3. Comparative Analysis with Numerical Examples

In this section, we conduct a comparative analysis so as to understand the properties of
the decision making using numerical examples for various levels of recall intensity, loan fee
rate and interest rate. Unless otherwise stated, we assume the following parameter values:
the short-seller’s discount rate β = 0.05, the stock price volatility σ = 0.2, and the recall
intensity λ = 0.02. The expected return will be either µ = −0.03 (down-market) or µ = 0.03
(up-market). The initial stock price and initial entry price are taken to be x = K = 100.
To illustrate, we focus on the put-type problem (Case (b)) and the call-type problem (Case
(d)). Recall that the thresholds are given by

bp =
m

m − 1
aK =

(
1 +

1

m − 1

)(
1 − µ

β + λ

)
K̃, (3.1)

bc =
n

n − 1
aK =

(
1 +

1

n − 1

)(
1 − µ

β + λ

)
K̃, (3.2)

K̃ =
β

β − µ

η

ρ
K =

β − q

β − µ − δ
K. (3.3)

3.1. The impact of loan fee rate and interest rate

First, we study the impact of the loan fee rate and interest rate in the short-seller’s problem.
The basic role of the two parameters in the decision making by the short-seller is to determine
h∞(x), one of the two lower bounds of the value function

h∞(x) = ϕ(x) − g(x) + K − x =

(
1 − β

β + λ
η

)
K −

(
1 − β − µ

β + λ − µ
ρ

)
x.

A different q gives a different intersection of the lower bound line via η and a different δ gives
a different slope via ρ. When q = δ = 0, we see η = ρ = 1, g(x) = K −x and h∞(x) = ϕ(x).

Put-type problem (ρ > 0, η > 0)

As the loan fee rate δ increases, the coefficient ρ decreases so that the slope of h∞(x)
becomes steeper while maintaining the same intersection. This generates a smaller lower
bound and hence reduces the value function, as we show in Figure 5(a). On the other hand,
as q increases and hence η decreases, the intersection of h∞(x) increases while maintaining
the same slope. Hence, the lower bound is increased and this produces a higher value
function (Figure 5(b)). When x is close to the optimal threshold, it is less obvious by
simply looking at the formula to examine the impact of the loan fee and interest income.

The impact of the loan fee rate and interest rate on the optimal threshold are shown in
Figure 5(c) and 5(d) in a very different manner, where µ is taken as µ = −0.03. The optimal
threshold (3.1) is an increasing hyperbolic function of the loan fee rate δ and a decreasing
linear function of the interest rate q. Figure 5(c) shows that the threshold is highly sensitive
to the loan fee rate that is less than but close to β − µ = 0.08. From (3.1), we see that as
δ ↑ β − µ (ρ ↓ 0), the threshold goes to infinity and we approach the immediate exercise
solution (no entry). Figure 5(d) shows that the threshold depends linearly on the interest
rate q. Similarly, as q ↑ β (η ↓ 0), the threshold goes to zero and we recover the wait-and-see
solution.

Call-type problem (ρ < 0, η < 0)

Similar analysis with varying δ and q can be applied to the call-type problem as shown
in Figure 6(a) and 6(b). As the loan fee rate δ increases, the cost of holding the short
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(a) Value function with loan fee rate δ = 0,
0.02 and 0.04 and interest rate fixed at
q = 0.02. The optimal thresholds are de-
termined as 26.8, 35.7 and 53.6, respec-
tively.

(b) Value function with interest rate q =
0, 0.02 and 0.04 and loan fee rate fixed
at δ = 0.02. The optimal thresholds are
determined as 59.5, 35.7 and 11.9, respec-
tively.

(c) Optimal threshold versus loan fee rate
δ with interest rate fixed at q = 0.02.

(d) Optimal threshold versus interest rate
q with loan fee rate fixed at δ = 0.02.

Figure 5: Value function and optimal threshold for the put-type problem.

position is more expensive and the investor should stop earlier, as can be seen from (3.2).
Similar to the put-type problem, the optimal threshold is also highly sensitive to the loan
fee (Figure 6(c)). From (3.2), as δ ↓ β − µ (ρ ↑ 0), the threshold goes to infinity and we
have the wait-and-see solution (Figure 6(d)).

For completeness, we report in Figure 7 the value function in an up-market (µ = 0.03)
corresponding to Figures 5(a), 5(b), 6(a) and 6(b). A similar argument holds for the case
of an up-market.

3.2. The impact of recall risk

The next objective is examining the impact of recall risk λ on the value function and
the optimal threshold. For the time being, let us assume the simple case of δ = q = 0
(equivalently, η = ρ = 1), which implies put-type problems and excludes the effects of the
loan fee and interest income. We saw in the previous subsection that δ and q determine the
location and the shape of the lower bound h∞(x). Thus, from the results with δ = q = 0, one
can easily understand the corresponding results with nonzero δ and q by shifting vertically
and rotating the line.

Figure 8(a) and 8(b) report the value functions v(x) and the optimal thresholds bp

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Optimal Timing for Short Covering 177

(a) Value function with loan fee rate δ =
0.10, 0.12 and 0.14 and interest rate fixed
at q = 0.08. The optimal thresholds are
determined as 300, 150 and 100, respec-
tively.

(b) Value function with interest rate q =
0.06, 0.08 and 0.10 and loan fee rate fixed
at δ = 0.12. The optimal thresholds are
determined as 50, 150 and 250, respec-
tively.

(c) Optimal threshold versus loan fee rate
δ with interest rate fixed at q = 0.08.

(d) Optimal threshold versus interest rate
q with loan fee rate fixed at δ = 0.12.

Figure 6: Value function and optimal threshold for the call-type problem.

for different values of recall intensity λ with µ = −0.03 (down-market, Figure 8(a)) and
µ = 0.03 (up-market, Figure 8(b)), respectively, based on Proposition 2.1 and Theorem 2.1.
The corresponding optimal thresholds are calculated and marked for illustrative purposes.

The value function v(x) has two lower bounds in this case, K − x and ϕ(x). When
λ = 0, we have ϕ(x) = 0 so that the value function is positive for all x in R+ (solid line).§

As λ departs from zero, ϕ(x) slopes downward. Therefore, the value function can also take
negative values when x is large. This is demonstrated in the cases where λ = 0.02 (dashed
line) and λ = 0.05 (dotted line).

Comparing the two figures, the thresholds appear to be more sensitive to the recall risk
when µ > 0 (up-market) than when µ < 0 (down-market). As the result the value functions
do so. This phenomenon can be explained by taking a closer look at the sensitivity of bp

with respect to λ, which is positive by Proposition 2.3 (2). By differentiating (3.1) with

§This corresponds to a standard real option problem in an infinite horizon.
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(a) Value function with loan fee rate δ = 0,
0.005 and 0.01 and interest rate fixed at
q = 0.02. The optimal thresholds are de-
termined as 58.4, 77.9 and 116.8, respec-
tively.

(b) Value function with interest rate q =
0, 0.02 and 0.04 and loan fee rate fixed at
δ = 0.005. The optimal thresholds are de-
termined as 129.8, 77.9 and 26.0, respec-
tively.

(c) Value function with loan fee rate δ =
0.06, 0.08 and 0.10 and interest rate fixed
at q = 0.08. The optimal thresholds are
determined as 110, 73.4 and 55.0, respec-
tively.

(d) Value function with interest rate q =
0.06, 0.08 and 0.10 and loan fee rate fixed
at δ = 0.08. The optimal thresholds are
determined as 24.5, 73.4 and 122.3, re-
spectively.

Figure 7: Value function in an up-market with µ = 0.03.

respect to λ, we see

∂bp

∂λ
=

[
∂m

∂λ

−1

(m − 1)2

(
1 − µ

β + λ

)
+

(
1 +

1

m − 1

)
µ

(β + λ)2

)
K̃.

As in the proof of Proposition 2.3, we have ∂m/∂λ < 0. Hence, the first term in the
brackets is always positive while the sign of the second term is the same as the sign of µ. It
follows that they are cancelled out to some extent when µ is negative. This is the reason for
the higher sensitivity of the thresholds for positive µ (up-market) than negative µ. Figure
8(e) confirms the claim: the optimal threshold increases strongly with the intensity when
µ = 0.03 (dotted line), while the corresponding impact is much weaker when µ = 0 and
µ = −0.03 (dashed line and solid line, respectively). It implies that the short-seller has to
be very nervous about the timing of taking capital profit (short covering) from a stock price
movement with a positive trend as the recall risk increases, so that she will be satisfied with
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(a) Value function in a down-market (µ =
−0.03) with recall intensity λ = 0, 0.02
and 0.05, δ = q = 0. The optimal thresh-
olds are determined as 43.4, 44.6 and 46.1,
respectively.

(b) Value function in an up-market (µ =
0.03) with recall intensity λ = 0, 0.02 and
0.05, δ = q = 0. The optimal thresholds
are determined as 65.0, 97.3 and 125.0, re-
spectively.

(c) Value function in a down-market (µ =
−0.03) with recall intensity λ = 0, 0.02
and 0.05, δ = 0.12 and q = 0.08. The op-
timal thresholds are determined as 173.0,
150 and 132.2, respectively.

(d) Value function in an up-market (µ =
0.03) with recall intensity λ = 0, 0.02 and
0.05, δ = 0.12 and q = 0.08. The op-
timal thresholds are determined as 46.2,
44.0 and 42.0, respectively.

(e) Optimal threshold versus recall inten-
sity λ with δ = q = 0.

(f) Optimal threshold versus recall inten-
sity λ with δ = 0.12 and q = 0.08.

Figure 8: The impact of recall risk.
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a smaller profit. On the other hand, in a down-trending market, the short-seller does not
need to modify the target price so much in accordance with the magnitude of the recall risk.

As mentioned, for general δ, q (or η, ρ) leading to a put-type problem, similar analysis
and interpretations hold by shifting vertically and rotating the line of the lower bound
h∞(x) = ϕ(x) − g(x) + K − x. From its expression, we see that the intensity λ somewhat
dampens the effects of η and ρ on the lower bound h∞(x). This is because the recall risk
reduces the expected holding time of the short position and hence diminishes the role of the
running cost.

For the call-type problems, these impacts are opposite to the case of the put-type prob-
lems. By differentiating (3.2) with respect to λ, we see

∂bc

∂λ
=

[
∂n

∂λ

−1

(n − 1)2

(
1 − µ

β + λ

)
+

(
1 +

1

n − 1

)
µ

(β + λ)2

]
K̃,

which is negative by Proposition 2.3. Moreover, we have ∂n/∂λ > 0 such that the first term
in brackets is always negative while the sign of the second term is the same as µ. Hence, the
sensitivity of the call-type threshold is higher for negative µ (down-market) than positive µ
(up-market). Figure 8(f) shows that the threshold decreases notably against the intensity
when µ = −0.03 (solid line), while the impact is as large when µ = 0 and µ = 0.03 (dashed
and dotted lines). As a consequence, the impact of recall risk on the value function is more
significant in a down-market than in an up-market for a call-type problem (Figure 8(c) and
8(d)).

3.3. The impact of volatility

We then turn our attention to how the optimal threshold depends on the stock price volatil-
ity. Proposition 2.3 together with (3.1) imply that the put-type optimal threshold is de-
creasing with the volatility because the volatility affects bp only through the term m/(m−1)
in (3.1) and ∂m/∂σ2 > 0. Figure 9(a) shows that the threshold decreases gradually with the
stock price volatility under the assumption δ = q = 0. The intuition is that the strategy is
more opportunistic given a higher probability of the stock price declining to below the entry
price. In contrast, the call-type optimal threshold is increasing with the volatility because
of the term n/(n − 1) in (3.2) and ∂n/∂σ2 < 0 (Figure 9(c)).

Note that when λ = 0 (no recall risk) and δ = q = 0, we have bp = (m/(m − 1))K < K
such that the investor is active regardless of the market direction. In the presence of recall
risk with δ = q = 0, the sign of µ matters because of

a =

1 +
λ

β − µ

1 +
λ

β

,

by (2.7). When µ ≤ 0, the investor is always active (dashed and solid lines in Figure 9(a))
because in this case a ≤ 1 < (m − 1)/m. In contrast, when µ > 0, the investor only trades
when the volatility is high enough (dotted line in Figure 9(a)) so that the derived value of
m < 0 becomes large and satisfies a < (m − 1)/m.

For nonzero δ, q, the condition on µ for the active region (put type or call type) can
be obtained in accordance with the value of η/ρ. From (2.7), we see that the parameter
a is proportional to the ratio η/ρ. For a put-type problem, keeping η/ρ and a fixed, the
investor only trades when the volatility is high enough and m < 0 is large enough to satisfy
a < (m − 1)/m (see Figure 9(a) versus 9(b)). Similarly, for a call-type problem, trade
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(a) Optimal threshold versus volatility σ
with δ = q = 0.

(b) Optimal threshold versus volatility σ
with δ = 0.01 and q = 0.

(c) Optimal threshold versus volatility σ
with δ = 0.10 and q = 0.08.

(d) Optimal threshold versus volatility σ
with δ = 0.14 and q = 0.08.

Figure 9: The impact of volatility.

happens when the volatility is high enough such that n > 1 becomes small enough to satisfy
the condition a > (n − 1)/n (see Figure 9(c) versus 9(d)).

4. Conclusion

In this paper, we studied the optimal stopping problem related to a short-selling strategy
in a financial market. In a short-selling transaction, the short-seller faces the possibility
of a broker recall and the short-seller might be forced to stop the strategy involuntarily
and experience a loss. Our results show that, depending on the levels of the loan fee and
interest rate, the optimal stopping problem is either a put-type problem with a down-and-
out stopping rule or a call-type problem with an up-and-out stopping rule. The value
function may become negative because of the possibility of a forced termination, and the
short-seller is likely to stop earlier at the closer optimal threshold to the entry price as a
result of the random recall (the put-type problem) or the relatively expensive net running
cost of keeping the position (the call-type problem). The analysis in this paper will be
sufficient for investors to make a short-selling decision in a simple setting. As an extension,
more realistic factors such as a stop-loss limit or a nondiffusion-type stock price process may
be included. These are left for future research.
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A. Proof of Lemma 2.1

In this action, we bravely write the conditional expectation E [ ·|Y0 = x] as Ex [·], which will
not make confusion, in order to save the space.

(1) By the tower property and the strong Markov property, it is easy to see

Ex

[∫ ∞

τ

e−βsf (Ys) ds

]
= Ex

[
e−βτEYτ

[∫ ∞

τ

e−β(s−τ)f (Ys) ds

]]
= Ex

[
e−βτ

(
RY

β f
)
(Yτ )

]
.

This assertion is also viewed as a version of the Dynkin’s formula. See p. 253 in [7].
(2) By decomposing the event 1 = 1{τ>U} + 1{τ≤U}, we see that

Ex

[
e−β(τ∧U)f (Yτ∧U)

]
= Ex

[
e−βUf(XU)

]
−Ex

[
e−βUf(XU)1{τ≤U}

]
+ Ex

[
e−βτf(Xτ )1{τ≤U}

]
.

The first term of the RHS is ϕ(x). For the second term, by the result of (1), it holds that

Ex

[
e−βUf(XU)1{τ≤U}

]
= Ex

[∫ ∞

τ

e−βuf(Xu)λe−λudu

]
= λEx

[
e−(β+λ)τ (Rβ+λf) (Xτ )

]
= Ex

[
e−(β+λ)τϕ(Xτ )

]
,

where on the last equality we used

ϕ(x) = Ex

[
e−βUf(XU)

]
= Ex

[∫ ∞

0

e−βuf(Xu)λe−λudu

]
= λ(Rβ+λf)(x).

The third term becomes

Ex

[
e−βτf(Xτ )1{τ≤U}

]
= Ex

[
e−βτf(Xτ )

∫ ∞

τ

λe−λudu

]
= Ex

[
e−βτf(Xτ )e

−λτ
]
.

By summing these three terms the assertion holds.
(3) The result is straight-forward for a geometric Brownian motion.
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B. Short-Seller’s Problem

We can simplify the short-seller’s problem as follows. By Lemma 2.1 (1), we have

Ex

[∫ τ∧τR

0

e−βs (δXs − qK) ds

]
= (RX

β f)(x) − Ex

[
e−β(τ∧τR)(RX

β f)(Xτ∧τR
)
]
.

Then, by Lemma 2.1 (2), the objective function of the maximization problem (2.2) is rewrit-
ten as

Ex

[
e−β(τ∧τR)g(Xτ )

(
X(τ∧τR)

)]
− (RX

β f)(x) = Ex

[
e−(β+λ)τ (g − ϕ) (Xτ )

]
− (RX

β f)(x) + ϕ(x).

The explicit expressions of g and ϕ can be obtained by Lemma 2.1 (3).

C. Proof of Proposition 2.1

Take α = β + λ and h(x) = (g − ϕ)(x) = kx + l where

k = − β − µ

β + λ − µ
ρ, l =

β

β + λ
ηK.

Note that l/k = −aK. The stopping region can be derived as Γ = F−1(Γ̂) where

Γ̂ , {y ∈ R+ : W (y) = H(y)} .

Then,
- Case (a) When ρ ≥ 0, η ≤ 0, we have k ≤ 0, l ≤ 0. Hence, τ ∗ = ∞ and u = 0.

- Case (b) When ρ > 0, η > 0, we have k < 0, l > 0. The optimal threshold is

bp = F−1(y1) = − l

k

m

m − 1
=

m

m − 1
aK.

Furthermore, H(F (bp)) = b−m
p (kbp + l) and

W (F (x)) =

{
x−m(kx + l), 0 ≤ x ≤ bp,
b−m
p (kbp + l), bp < x.

Hence, by Lemma 2.2, φ(x)W (F (x)) = up(x) is the value function and τ ∗ is given by
τ ∗ = inf {t ≥ 0; Xt ≤ bp}.

- Case (c) When ρ ≤ 0, η ≥ 0, we have k ≥ 0, l ≥ 0. Hence, τ ∗ = 0 and u = g − ϕ. Note
that ρ = η = 0 is included in Case (a) and Case (c).

- Case (d) When ρ < 0, η < 0, we have k > 0, l < 0. The optimal threshold is

bc = F−1(y∗) = − l

k

n

n − 1
=

n

n − 1
aK,

while the value function uc can be obtained in a similar manner as in Case (b).
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