
Journal of the Operations Research Society of Japan c⃝ The Operations Research Society of Japan
Vol. 58, No. 2, April 2015, pp. 149–164

PROBABILISTIC ANALYSIS OF

LOAD-IMBALANCED PARALLEL APPLICATIONS

WITH PARTIALLY ELIMINATED BARRIERS

Naoki Yonezawa Ken’ichi Katou Issei Kino Koichi Wada
Teikyo Heisei University Kanagawa University University of Tsukuba

(Received March 19, 2014; Revised August 22, 2014)

Abstract In order to reduce the overhead of barrier synchronization, we have proposed an algorithm which
eliminates barrier synchronizations and evaluated its validity experimentally in our previous study. As a
result, we have found that the algorithm is more effective to the load-imbalanced program than load-balanced
program. However, the degree of the load balance has not been discussed quantitatively. In this paper, we
model the behavior of parallel programs. In our model, the execution time of a phase contained in a parallel
program is represented as a random variable. To investigate how the degree of the load balance influences the
performance of our algorithm, we varied the coefficient of variation (CV) of probability distribution which
the random variable follows. Using the model, we evaluated the execution time of parallel programs which
have four typical dependency patterns. Based on results, we found that theoretical results are consistent
with experimental ones.

Keywords: Information technologies, barrier elimination, probabilistic analysis, time
reduction

1. Introduction

Since barrier synchronization is a simple means to guarantee the order of data producing
and data consuming, it is often used in parallel programs. However, barrier synchronization
causes the processors’ idle time to increase. To reduce the overhead of barrier synchro-
nization, several methods [1, 4, 7, 8] have been proposed. Tseng [4] proposed an algorithm
to eliminate barrier synchronizations which appear SPMD (Single Program Multiple Data)
program for shared memory multiprocessors and evaluate it on Stanford DASH [2]. He
also proposed another algorithm to replace a barrier synchronization with a counter-based
synchronization. The latter algorithm, in which consumers wait until a producer updates
a variable, realizes synchronization among processors with smaller overhead than barrier
synchronization. This method assumes the existence of a shared memory which DASH
provides. Dwarkadas et al. [1] proposed a method for their compiler to replace a barrier
synchronization with push function in which producer sends updated data to consumers.

In our method [7, 8] which targets on the distributed shared memory environment realized
on a PC cluster, the compiler analyzes the dependency between the data producers and the
data consumers. Then, the compiler replaces the barrier synchronization with message
passing code which sends the data to consumer’s side. Through evaluation, we have found
that the algorithm is more effective to the load-imbalanced program than load-balanced
program. However, the degree of the load balance has not been discussed quantitatively.

In this paper, in order to analyze the effect of the method theoretically, we propose a
probabilistic model to describe the degree of the load balance and evaluate the effectiveness

149

150 N. Yonezawa, K. Katou, I. Kino, & K. Wada

Figure 1: The ratio of improvement: Jacobi method

Figure 2: The ratio of improvement: Gauss method

of a barrier eliminating algorithm in terms of the load balance. In above two methods
[1, 4], however, some theoretical model is not constructed and no mathematical evaluation
is carried out. Sun and Peterson [3] represent the execution time by using random variables
as in this paper. However, they focus on a method to approximate the execution time while
we aim to optimize parallel programs by eliminating barriers partially.

The rest of this paper is organized as follows: Section 2 describes the algorithm to
eliminate barriers on which our study targets. In Section 3, we propose a probabilistic
model to investigate the barrier eliminating algorithm. With the model, one can describe
data dependencies among processors as well as the degree of the load balance. We also show
how to compute the execution time of a parallel program mathematically. Using the results
obtained from our model, Section 4 discusses the effect of the barrier eliminating algorithm
when applied to four typical dependency patterns. Finally, we conclude our study and
describe our future work in Section 5.

2. A Barrier Eliminating Algorithm

A compiler which uses the barrier eliminating algorithm replaces barrier synchronizations
with send-receive pairs as follows: 1) the compiler identifies accesses to the shared memory

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ANALYSIS OF LOAD-IMBALANCED PARALLEL APPLICATIONS 151

Figure 3: Eliminating barriers

and represents the accesses using array section descriptor called quad [6], 2) to investigate a
dependency between data producer and data consumer, the compiler generates an intersec-
tion operation between quads which represent write accesses which are performed before the
barrier and read accesses which are performed after the barrier, 3) the compiler generates
a send-receive pair to transfer the dependent data which are represented by the resulting
quad yielded by the intersection operation and eliminates the barrier.

In the former study [7, 8], the effect of the barrier eliminating algorithm is investigated
experimentally. Figure 1 shows the ratio of improvement which is computed as 100× (1−
Ta/Tb), where Tb is the execution time of Jacobi method before eliminating barriers and Ta is
the one after eliminating barriers. Figure 2 shows the results for Gauss method. The size of
matrix is varied from 2,048 to 8,192. These applications are executed on a PC cluster which
consists of Gigabit Ethernet and 16 PCs, each of which has Intel Xeon 2.8 GHz and 1 GB
memory. It is observed that the ratio increases as the number of processors grows. We also
have found that the barrier eliminating algorithm is more effective on the load-imbalanced
program, i.e., Gauss method than Jacobi method.

3. A Probabilistic Analysis of a Barrier Eliminating Algorithm

In this section, at first, we define a behavioral model of a parallel program and introduce
the mathematical symbols for discussion. Then, we construct the probabilistic model which
describes the behavior of parallel program. Finally, we compute the effect of barrier elimi-
nation mathematically using the simplest example in which both the number of processors
and the number of phases are two.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

152 N. Yonezawa, K. Katou, I. Kino, & K. Wada

3.1. The behavioral model of parallel program

3.1.1. Before eliminating barriers

Figure 3 (a) shows the behavioral model of a parallel program on which this paper targets.
In this model, a program contains a loop whose iteration has one and only barrier syn-
chronization. We call an iteration of the loop a phase. The task in a phase is divided into
n subtasks and the subtasks are assigned to n processors. At runtime, when a processor
arrives a barrier synchronization, the processor stalls. After all the other processors arrives
the barrier synchronization, all processors execute the next phases.

It is expected that the execution times of a phase are equal among processors if the phase
contains the equally-divided subtasks and a barrier synchronization. However, the execution
of a parallel program in the real world is influenced by the external factors including cache
misses and the network delay. These cause randomness, i.e., the execution time of a processor
in a phase can differ from the one of another processor in the same phase. In order to model
the execution of such programs, we denote the execution time of Processor j in Phase i
by X

(i)
j , i = 1, 2, . . . , j = 1, 2, . . . , n, where {{X(i)

j }nj=1}∞i=1 are independent and identically
distributed random variables (i.i.d. r.v.’s). At this time, the execution time of Phase i is

T
(i)
n = max(X

(i)
1 , X

(i)
2 , . . . , X

(i)
n) because the execution time of the phase is the execution

time of the slowest processor. Therefore, the execution time of m phases with n processors
before eliminating barriers is B

(m)
n = T

(1)
n + T

(2)
n + · · ·+ T

(m)
n and the mean execution time

becomes E(B
(m)
n) = mE(T

(1)
n).

3.1.2. After eliminating barriers partially

In this paper, we use the term dependent on part to represent a situation that a processor
depends on several processors rather than all other processors. Dependent on part situations
appear in many parallel programs. On the other hand, the term dependent on all represents
a situation that a processor depends on all other processors. The case of ‘before eliminating
barriers’ we showed in Section 3.1.1 is dependent on all throughout all phases.

Figure 3 (b) shows an example of the behavioral model of a parallel program after
eliminating barrier partially. For instance, at the beginning of Phase 2, Processor 1 has to
wait for the finish of Phase 1 performed by Processor 2 while Processor 3 and 4 do not need
to wait for Processor 2 and can proceed Phase 2 asynchronously. In this example, Processor
1 does not stall because the necessary data have arrived at Processor 1 from Processor 2
before the beginning of the Phase 2. At the beginning of Phase 3, Processor 2 has to wait
for the finish of Phase 2 performed by Processor 3 and 4. In this example, while the finish of
Phase 2 performed by Processor 3 precedes the finish of Phase 2 performed by Processor 2,
the finish of Phase 2 performed by Processor 4 is behind with the finish of Phase 2 performed
by Processor 2. This delay makes Processor 2 idle.

In general, before Processor j proceeds Phase i in dependent on all situation, it has to
wait for the finish of Phase (i− 1) performed by all other processors. On the other hand, in
dependent on part situation, Processor j has to wait for the finish of Phase (i−1) performed
by not all but several processors as shown in Figure 3 (b). In this paper, we call depended
processors of Processor j in Phase i a group of the processors for which Processor j has to
wait at the beginning of Phase i. We denote by S

(i)
j the set of depended processors’ IDs.

Note that about S
(i)
j :

• j ∈ S
(i)
j because Processor j always depends on itself.

• S
(1)
j is empty set for all j because there is no memory access before Phase 1.

We also denote by X
(1,i)
j the execution time of Processor j from the beginning of a

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ANALYSIS OF LOAD-IMBALANCED PARALLEL APPLICATIONS 153

program, that is Phase 1, to the end of Phase i. X
(1,i)
j is decomposed as follows:

X
(1,i)
j = max

(
X

(1,i−1)
k

)
k∈S(i)

j

+X
(i)
j , i = 2, 3, 4, . . .

In other words, X
(1,i)
j is the sum of the longest execution time of depended processors at

the end of Phase (i− 1) and the execution time of Phase i performed by Processor j.

We also denote the execution time of the program in which all processors execute by A
(m)
n .

Then, A
(m)
n = max(X

(1,m)
1 , X

(1,m)
2 , . . . , X

(1,m)
n), that is, the random variable A

(m)
n represents

the execution time of m phases with n processors after eliminating barriers partially.

3.2. The definition of dependency matrix

To represent partial dependency, it is necessary to describe depended processors, that is,
the group of processors for which a processor has to wait at the beginning of a phase. To
achieve this, we propose a dependency matrix in this paper as follows:

D =


d11 d12 . . . d1n

d21 d22 . . . d2n
...

...
. . .

...
dm1 dm2 . . . dmn

 .

The element of matrix D is a binary vector dij. The size of dij is equal to the number of
processors, that is, |dij| = n. Each element of dij represents dependency among processors.
More specifically,

k-th element of dij =

{
1, if k ∈ S

(i)
j

0, if k /∈ S
(i)
j .

If k-th element of dij is 1, Processor j has to wait for Processor k at the beginning of Phase
i.

The following is an example of dij:

d35 = (0, 1, 0, 0, 1, 1).

In this example, the number of processors is 6 due to |d35| = 6. d35 represents that Processor
5 has to wait the end of Phase 2 performed by Processor 2, 5, and 6 at the beginning of
Phase 3. Because Processor 5 has to wait for itself, the fifth element of di5, i = 1, 2, . . . ,m
is always 1.

3.3. Obtaining a function to calculate the execution time

The overall execution time is determined by the execution time of each phase, that is
X

(1)
1 , . . . , X

(m)
n . Therefore, we denote the overall execution time by a function T (X

(1)
1 , . . . , X

(m)
n).

The specific form of the function T (X
(1)
1 , . . . , X

(m)
n) is depended on the content of depen-

dency matrix D. In general, T is constructed from multistage and nested operations of
max(·) and addition. The following algorithm constructs T recursively starting from the
last phase.

Algorithm 1:

Input: dependency matrix D, the number of phases m, the number of processors n.
Output: a function A

(m)
n = T (X

(1)
1 , . . . , X

(m)
n) to calculate the execution time with mn

random variables as parameters.

1. i← m.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

154 N. Yonezawa, K. Katou, I. Kino, & K. Wada

2. Obtain A
(i)
n = max(X(i)), where X(i) = (X

(1,i)
1 , X

(1,i)
2 , ..., X

(1,i)
n).

3. Substitute X
(1,i)
j with max(dij ∧X(i−1)) +X

(i)
j , where ∧ is an operator which return a

list whose element is a product of the corresponding elements of two lists of operands.
4. i← i− 1.
5. If i is 1 then go to the end, otherwise go to Step 3.

3.4. Probability distribution of the execution time

The performance of barrier elimination may vary significantly depending on the distribution
of random variables which represent the execution time for each processor and each phase. In
this study, we assume that a random variable follows one of three distributions: exponential
distribution, Erlang distribution, and hyper-exponential distribution.

In exponential distribution whose parameter is λ, the CDF for X
(i)
j is assumed in the

form
F (x) = P (X

(i)
j ≤ x) = 1− e−λx

for i = 1, 2, . . . and j = 1, 2, . . . , n, so that the PDF is in the form f(x) = λe−λx and

expected value (mean execution time) becomes E(X
(i)
j) = 1

λ
.

The CDF and the PDF of Erlang distribution are

F (x) = 1− e−λkx

k−1∑
r=0

(λkx)r

r!
, (3.1)

f(x) =
(λk)k

(k − 1)!
xk−1e−λkx, (3.2)

where k is the number of phases∗. The expected value of random variables which follow the
above Erlang distribution is also 1

λ
.

The CDF and the PDF of hyper-exponential distribution are

F (x) = 1−
k∑

j=1

Cje
−λjx,

f(x) =
k∑

j=1

Cjλje
−λjx,

where {Cj}kj=1 is an arbitrary discrete distribution. As mentioned later, we will choose

parameters Cj and λj so that E(X
(i)
j) = 1

λ
.

The adoption of these distributions for the execution time is based on the following idea.
For non-negative random variables with the same expected value, the coefficient of variation
(CV) is the most useful and popular characteristic parameter for comparing the degree of
variation. The CV c(X) for non-negative random variable X is defined by

c(X) =

√
V (X)

E(X)

where V (X) is variance of X, i.e., V (X) = E(X2) − E(X)2. It is clear that for fixed
value of E(X), as increases the value of c(X), the variance of X also increases. In the field

∗The term of phase which is used in the context of probability theory is unrelated to a phase which is
included in parallel program.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ANALYSIS OF LOAD-IMBALANCED PARALLEL APPLICATIONS 155

of probability theory, exponential distribution, Erlang distribution, and hyper-exponential
distribution are the most typical distribution with different CV. It is well known that c(X) =
1 for exponential distribution, c(X) < 1 for Erlang distribution, and c(X) > 1 for hyper-
exponential distribution. In other words, for the same expected value, Erlang distribution
shows lower variance and hyper-exponential distribution shows higher variance comparing
with exponential distribution.

One can use, therefore, c(X) as an impact factor of difference of distribution to the
performance of barrier elimination. For example, Jacobi method which is a typical load-
balanced program should be modeled with Erlang distribution whose c(X) < 1, whereas it
is reasonable to consider that Gauss method corresponds to c(X) > 1.

3.5. An example: the case of m = 2, n = 2

A dependency matrix can represent various kinds of dependency patterns among processors
including the case in which all barriers are eliminated and the case in which all barriers are
remained.

In this section, we construct three functions in the simplest case of m = 2, n = 2
using three kinds of dependency matrices. Hereafter, we denote by B

(2)
2 , A

∗(2)
2 , and A

(2)
2 the

execution time of the case in which all barriers are remained, all barriers are eliminated,
and a single barrier is eliminated respectively.

3.5.1. Case 1: remaining all barriers

The dependency matrix in the case that all barriers are remained is

D =

(
(0, 0) (0, 0)
(1, 1) (1, 1)

)
.

The function of the execution time is

B
(2)
2 = max(X(2)) = max(X

(1,2)
1 , X

(1,2)
2),

X
(1,2)
1 = max(d21 ∧X(1)) +X

(2)
1

= max((1, 1) ∧ (X
(1,1)
1 , X

(1,1)
2) +X

(2)
1

= max(X
(1,1)
1 , X

(1,1)
2) +X

(2)
1

= max(X
(1)
1 , X

(1)
2) +X

(2)
1 ,

X
(1,2)
2 = max(d22 ∧X(1)) +X

(2)
2

= max((1, 1) ∧ (X
(1,1)
1 , X

(1,1)
2) +X

(2)
2

= max(X
(1,1)
1 , X

(1,1)
2) +X

(2)
2

= max(X
(1)
1 , X

(1)
2) +X

(2)
2 .

3.5.2. Case 2: eliminating all barriers

The dependency matrix in the case that all barriers are eliminated is

D =

(
(0, 0) (0, 0)
(1, 0) (0, 1)

)
.

The function of the execution time is

A
∗(2)
2 = max(X(2)) = max(X

(1,2)
1 , X

(1,2)
2),

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

156 N. Yonezawa, K. Katou, I. Kino, & K. Wada

X
(1,2)
1 = max(d21 ∧X(1)) +X

(2)
1

= max((1, 0) ∧ (X
(1,1)
1 , X

(1,1)
2) +X

(2)
1

= max(X
(1,1)
1 , 0) +X

(2)
1

= X
(1)
1 +X

(2)
1 ,

X
(1,2)
2 = max(d22 ∧X(1)) +X

(2)
2

= max((0, 1) ∧ (X
(1,1)
1 , X

(1,1)
2) +X

(2)
2

= max(0, X
(1,1)
2) +X

(2)
2

= X
(1)
2 +X

(2)
2 .

3.5.3. Case 3: eliminating a single barrier

We assume that Processor 1 waits for itself at the beginning of Phase 2 while Processor 2
waits for both processors. The dependency matrix in this case is

D =

(
(0, 0) (0, 0)
(1, 0) (1, 1)

)
.

The function of the execution time is

A
(2)
2 = max(X(2)) = max(X

(1,2)
1 , X

(1,2)
2),

X
(1,2)
1 = max(d21 ∧X(1)) +X

(2)
1

= max((1, 0) ∧ (X
(1,1)
1 , X

(1,1)
2) +X

(2)
1

= max(X
(1,1)
1 , 0) +X

(2)
1

= X
(1)
1 +X

(2)
1 ,

X
(1,2)
2 = max(d22 ∧X(1)) +X

(2)
2

= max((1, 1) ∧ (X
(1,1)
1 , X

(1,1)
2) +X

(2)
2

= max(X
(1,1)
1 , X

(1,1)
2) +X

(2)
2

= max(X
(1)
1 , X

(1)
2) +X

(2)
2 .

4. Evaluation

To investigate how much impacts brought by the differences of the load balance among
processors in executing parallel programs on the effect of the barrier eliminating algorithm,
we calculated the execution time for four kinds of dependency patterns (DPs) with varying
the coefficient of variation.

We calculated the execution time using Monte Carlo simulation as shown in Algorithm
2. We varied the number of phases m = {2, 3, . . . , 10} as well as the number of processors
n = {2, 4, 8, 16, 32}. We made four kinds of typical dependency patterns and stored them
in dependency matrices D. The details of each D are described later.

In this evaluation, as mentioned in Section 3.4, we assume that all random variables X
(i)
j

follow exponential distribution, Erlang distribution, or hyper-exponential distribution.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ANALYSIS OF LOAD-IMBALANCED PARALLEL APPLICATIONS 157

Table 1: Coefficients of variation (CV)

E100 E4 E2 M H2

0.1000 0.5000 0.7071 1.0000 1.5100

We chose parameters of hyper-exponential distribution so that all of their expected
value is equal to 1

λ
as in two other distributions. As a result, we obtained the PDF of

hyper-exponential distribution as follows:

f(x) =
5

2
λe−5λx +

5

18
λe−

5
9
λx.

We also chose parameter k for Erlang distribution, which appears in Equation (3.1)
and (3.2), as k = {2, 4, 100}. We denote exponential distribution, Erlang distribution with
parameter k, and hyper-exponential distribution by M, Ek, H2, respectively, derived from
Kendall’s notation in queuing theory.

Table 1 shows CVs for the five distributions.
Hereafter, we assume that λ = 1 without loss of generality.

Algorithm 2:

Input: the number of stepsN , dependency matrixD, the number of phasesm, the number
of processors n.

Output: the execution time.

1. As described in Section 3.3, obtain a function T (X
(1)
1 , . . . , X

(m)
n) with mn random vari-

ables as parameters based on D.
2. i← 1.
3. S ← 0.
4. Assign random numbers which follow a probability distribution to mn random variables.
5. S ← S + T (X

(1)
1 , . . . , X

(m)
n).

6. i← i+ 1.
7. If i is N + 1 then go to Step 8, otherwise go to Step 4.
8. Output S

N
.

We performed five simulations for a pair of (m,n) with the initial number of steps N ,
that is, 103. We consider that the simulations are successful if all the five execution times
are equal when the times are rounded off to the second decimal place. If the rounded times
are not equal, we increase N by ten, and then perform five simulations again. Consequently,
we observed that 45 simulations for all pairs of (m,n) are successful before N reached 1010.

4.1. Dependency Pattern 1: depending on the neighboring processors

In DP-1, a processor depends on neighbors and itself. More exactly, Processor j depends
on Processor j − 1, j, and j + 1. Exceptionally, Processor 1 depends on Processor 1 and 2
as well as Processor n depends on Processor n− 1 and n. This dependency pattern appears
in some applications including image processing and physics simulation, in which the value
of a point is computed using neighboring points. The part of D for n = 4 used in DP-1 is
as follows:

D =


(0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(1, 1, 0, 0) (1, 1, 1, 0) (0, 1, 1, 1) (0, 0, 1, 1)
(1, 1, 0, 0) (1, 1, 1, 0) (0, 1, 1, 1) (0, 0, 1, 1)

...
...

...
...

 .

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

158 N. Yonezawa, K. Katou, I. Kino, & K. Wada

Table 2: The execution time (DP-1)

n (E100) n (H2)
m 2 4 8 16 32 2 4 8 16 32
2 2.11 2.19 2.26 2.31 2.36 3.32 4.82 6.41 8.01 9.57
3 3.17 3.28 3.36 3.43 3.49 4.98 7.06 9.10 11.04 12.88
4 4.23 4.36 4.46 4.54 4.61 6.64 9.31 11.76 14.01 16.10
5 5.28 5.45 5.56 5.65 5.73 8.30 11.57 14.42 16.96 19.26
6 6.34 6.53 6.66 6.77 6.85 9.96 13.82 17.07 19.89 22.40
7 7.39 7.62 7.77 7.88 7.97 11.62 16.07 19.73 22.81 25.51
8 8.45 8.70 8.87 8.99 9.09 13.28 18.33 22.38 25.72 28.61
9 9.51 9.79 9.97 10.10 10.20 14.94 20.58 25.04 28.63 31.70
10 10.56 10.87 11.07 11.21 11.32 16.60 22.83 27.70 31.53 34.77

Dependency is fixed as phase ID increases.

Table 2 shows the execution time for E100 and H2. To avoid redundancy, the results for
three other distributions are not shown but their values take place between E100 and H2.
As mentioned above, the expected value of the execution time for a single phase is 1 (= 1

λ
).

For n = 2, the dependency pattern is identical to the pattern in the case that all barriers
are remained. Furthermore, with respect to E2, M, and H2, the execution time obtained by
simulation for n = 2 is identical to the execution time obtained by mathematical analysis
shown in Yonezawa et al. [5], in which it is assumed that a random variable follows one of
E2, M, and H2. Therefore, this imply the correctness of our simulation.

4.2. Dependency Pattern 2: depending on a single specific producer

In DP-2, all processors depend on a single specific producer. It is also known as ‘single
writer, multiple reader’. This pattern appears in master-worker type applications. The part
of D for n = 4 used in DP-2 is as follows:

D =


(0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(1, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)
(1, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)

...
...

...
...

 .

As in DP-1, dependency is fixed as phase ID increases.

Table 3 shows the execution time.

4.3. Dependency Pattern 3: depending on rotating producers

DP-3 is similar to DP-2 since all processors depend on a single producer. However, pro-
ducer’s ID is incremented when processors go to the next phase in DP-3. If Processor n is
the producer in a phase, Processor 1 becomes the next producer in the next phase. This
pattern appears in some applications including Gaussian elimination method in which the
rows of matrix is assigned to processors in block-cyclic manner. The part of D for n = 4

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ANALYSIS OF LOAD-IMBALANCED PARALLEL APPLICATIONS 159

Table 3: The execution time (DP-2)

n (E100) n (H2)
m 2 4 8 16 32 2 4 8 16 32
2 2.10 2.17 2.23 2.28 2.32 3.19 4.56 6.01 7.45 8.87
3 3.13 3.22 3.29 3.35 3.40 4.64 6.35 8.03 9.64 11.20
4 4.16 4.26 4.34 4.41 4.47 6.04 8.02 9.88 11.63 13.31
5 5.18 5.30 5.39 5.47 5.53 7.40 9.61 11.63 13.50 15.27
6 6.21 6.34 6.43 6.52 6.59 8.74 11.15 13.30 15.28 17.14
7 7.23 7.37 7.47 7.56 7.64 10.05 12.64 14.92 16.99 18.93
8 8.25 8.40 8.51 8.60 8.68 11.34 14.10 16.49 18.65 20.67
9 9.27 9.43 9.54 9.64 9.73 12.62 15.53 18.03 20.27 22.36
10 10.28 10.45 10.58 10.68 10.77 13.88 16.94 19.53 21.85 24.01

Table 4: The execution time (DP-3)

n (E100) n (H2)
m 2 4 8 16 32 2 4 8 16 32
2 2.10 2.17 2.23 2.28 2.32 3.19 4.56 6.01 7.45 8.87
3 3.14 3.23 3.30 3.36 3.41 4.74 6.51 8.21 9.83 11.40
4 4.18 4.30 4.37 4.44 4.50 6.30 8.46 10.38 12.14 13.80
5 5.23 5.36 5.45 5.52 5.58 7.85 10.46 12.54 14.42 16.16
6 6.27 6.43 6.52 6.59 6.66 9.40 12.44 14.72 16.68 18.48
7 7.31 7.49 7.59 7.67 7.73 10.95 14.42 16.90 18.93 20.78
8 8.36 8.56 8.67 8.74 8.81 12.50 16.41 19.10 21.18 23.08
9 9.40 9.62 9.74 9.82 9.89 14.05 18.39 21.30 23.43 25.36
10 10.44 10.69 10.81 10.89 10.96 15.60 20.37 23.50 25.69 27.64

used in DP-3 is as follows:

D =



(0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(1, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)
(1, 1, 0, 0) (0, 1, 0, 0) (0, 1, 1, 0) (0, 1, 0, 1)
(1, 0, 1, 0) (0, 1, 1, 0) (0, 0, 1, 0) (0, 0, 1, 1)
(1, 0, 0, 1) (0, 1, 0, 1) (0, 0, 1, 1) (0, 0, 0, 1)
(1, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)
(1, 1, 0, 0) (0, 1, 0, 0) (0, 1, 1, 0) (0, 1, 0, 1)
(1, 0, 1, 0) (0, 1, 1, 0) (0, 0, 1, 0) (0, 0, 1, 1)
(1, 0, 0, 1) (0, 1, 0, 1) (0, 0, 1, 1) (0, 0, 0, 1)

...
...

...
...


.

Unlike DP-1 and 2, dependency is varied as phase ID increases.

Table 4 shows the execution time. For m = 2, because dependency pattern is identical
to the pattern in DP-2, the execution time in DP-3 is also identical to the execution time
in DP-2.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

160 N. Yonezawa, K. Katou, I. Kino, & K. Wada

Table 5: The execution time (DP-4)

n (E100) n (H2)
m 2 4 8 16 32 2 4 8 16 32
2 2.11 2.18 2.24 2.29 2.34 3.32 4.69 6.17 7.67 9.16
3 3.17 3.26 3.33 3.39 3.45 4.98 6.86 8.65 10.42 12.14
4 4.23 4.33 4.42 4.49 4.56 6.64 9.02 11.17 13.17 15.08
5 5.28 5.41 5.51 5.59 5.66 8.30 11.19 13.69 15.94 18.03
6 6.34 6.49 6.59 6.68 6.76 9.96 13.35 16.21 18.71 20.98
7 7.39 7.56 7.68 7.78 7.86 11.62 15.52 18.72 21.48 23.94
8 8.45 8.64 8.77 8.88 8.97 13.28 17.68 21.24 24.25 26.89
9 9.51 9.71 9.86 9.97 10.07 14.94 19.85 23.76 27.01 29.85
10 10.56 10.79 10.95 11.07 11.17 16.60 22.01 26.27 29.78 32.80

Figure 4: The ratio of improvement (m = 10;n = 8)

4.4. Dependency Pattern 4: butterfly operation

DP-4 represents butterfly operation which appears in fast Fourier transform (FFT). The
part of D for n = 4 used in DP-4 is as follows:

D =



(0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(1, 1, 0, 0) (1, 1, 0, 0) (0, 0, 1, 1) (0, 0, 1, 1)
(1, 0, 1, 0) (0, 1, 0, 1) (1, 0, 1, 0) (0, 1, 0, 1)
(1, 1, 0, 0) (1, 1, 0, 0) (0, 0, 1, 1) (0, 0, 1, 1)
(1, 0, 1, 0) (0, 1, 0, 1) (1, 0, 1, 0) (0, 1, 0, 1)

...
...

...
...


.

As in DP-3, dependency is varied as phase ID increases.
Table 5 shows the execution time.

4.5. Discussion

Figure 4 and Figure 5 shows the ratio of improvement which is calculated by 100×(1−Tp/Tb),
where Tb is the execution time in the case that all barriers are remained and Tp is the

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ANALYSIS OF LOAD-IMBALANCED PARALLEL APPLICATIONS 161

Figure 5: The ratio of improvement (m = 10;n = 32)

execution time in DP-1, -2, -3, or -4 for m = 10 and n = 8, 32.

The common trends among four kinds of DPs are 1) if CV increases, namely, if the loads
among processors is more imbalanced, the ratio of improvement also increases, 2) if n, the
number of processors, increases, the ratio of improvement also increases. These trends are
also observed in Yonezawa et al. [5]. For example, the ratio of improvement in the case
that all random variables follow E100 is 11.87% for n = 32 in DP-2 while the ratio in the
case that all random variables follow H2 is 60.37%. Since the program contains much idle
time for H2, once barriers are partially eliminated, the opportunities to move the execution
of phases forward increases. This decreases idle time and therefore increases the ratio of
improvement. If n increases, the deviation of the execution time among processors increases.
This causes idle time if all barriers are remained. Eliminating several barriers mitigates the
deterioration for larger n.

The ratio of improvement in DP-2, -3, and -4 are greater than DP-1. It is caused by the
number of depended processors. In general, when the number of 1s included in dependency
matrix D increases, the number of depended processors also increases. In this evaluation,
the number of 1s in D for DP-2 is equal to the one for DP-3 while D for DP-4 has more 1s
than these DPs and D for DP-1 has the most 1s.

Whereas the number of 1s in D is the same between DP-2 and -3, the execution times
differ. In DP-3, a producer in a phase depends on the previous producer directly. However,
there are depended producers which influence indirectly from the past phases. This makes
a chain of dependency across phases and the producer in Phase j, j > n, depends on all
processors directly or indirectly.

DP-1 spends more time compared with three other DPs. It is caused by the number
of chains of dependency. In DP-1, a processor depends on two neighbors. Therefore, two
chains are generated for the processor. This brings rapid growth of the number of depended
processors indirectly.

In this paper, we consider an imaginary optimal situation, where all barriers are re-
moved and all phases are performed consecutively with disregarding dependencies among
processors. Consequently, the execution time include no idle time in the situation and is

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

162 N. Yonezawa, K. Katou, I. Kino, & K. Wada

Figure 6: Optimal degree (DP-1: n = 32)

regarded as the upper bound of the effect of barrier eliminating method. We call the relative
execution time optimal degree, which are calculated based on the optimal execution time.
Although the value of optimal degree can be affected by the kinds of DPs and CVs, in order
to avoid redundancy, we show the result with varying CV while fixing DP. One can consider
that a CV is near to optimal if the optimal degree is close to 1. Figure 6 shows optimal
degree for n = 32 in DP-1. While we omit the results for three other DPs, optimal degree
tends to decrease when CV increases in four DPs. For example, optimal degree in the case
that all random variables follow E100 is 0.94 with m = 10 while optimal degree in the case
that all random variables follow H2 is 0.64. With E100, the idle time are inherently short
even if all barriers are remained due to a good load balance. In contrast to E100, H2 causes
long idle time, which cannot be removed even after several barriers are eliminated.

Figure 7 shows speedup for m = 10 in DP-1, which is calculated based on mn(= mn
λ
),

that is, the execution time for uniprocessor. Speedup tends to decrease when CV increases.
For example, the maximum speedup is 28.27 for n = 32 when all random variables follow
E100. In contrast, the speedup is limited to 9.20 for H2.

Throughout evaluation, we found that the obtained effect of eliminating barriers is higher
if a processors depends on less other processors. Even if a processor depends on few other
processors, the excess barriers force the processor to wait for other non-depended processors.
If a processor depends on quite a few other processors as in DP-3, the effect of eliminating
barriers is limited due to the necessary interprocessor communications even after eliminating
barriers. With regard to the load balance, we found that a better speedup is obtained if
a load balance is better while the less effect of eliminating barrier is obtained. If loads
among processors are imbalanced as in H2, barrier elimination can contribute to improve
the performance of parallel programs. These observations are consistent to the experimental
results we have shown in Figure 1 and 2.

5. Conclusion

In this paper, we proposed a probabilistic model which describes the behavior of a parallel
program and measured the effect of the algorithm of barrier elimination. In our model,
random variables show the execution time for one phase in which one processor performs.
By introducing dependency matrix, we extended the model we have proposed in our previous

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

PROBABILISTIC ANALYSIS OF LOAD-IMBALANCED PARALLEL APPLICATIONS 163

Figure 7: Speedup (DP-1: m = 10)

work so that our extended model represents dependencies among processors.
For evaluation, we executed four kinds of parallel program in simulation. In order to

investigate how a load balance influences the effect of barrier eliminating method, we adopted
three probability distributions, that is, exponential distribution, Erlang distribution, and
hyper-exponential distribution. We obtained the ratio of improvement, the optimal degree,
and the speedup. Based on these results, we found that a better speedup is obtained if a
load balance is better while the less effect of eliminating barrier is obtained.

In the future, we plan to extend our study as follows:
• we will make our study more accurate by sampling execution times of processors at
runtime of real applications and then applying the samples to our model.

• we will extend dependency matrix to represent dependencies with respect to not only a
previous phase but also two or more previous phases.

• we will evaluate other typical dependency patterns such as a reduction operation.

• the structure of dependency matrix which is proposed in this paper is too complex to
apply algebraic operations. In the future, we will propose several simple dependency
matrices and primitive operations among them. By combining such matrices as building
blocks, we construct desired dependency matrices which represent more complicated
dependency patterns. We might find a correlation between the constructing process of a
dependency matrix and the execution time which is derived from the matrix.

References

[1] S. Dwarkadas, A. L. Cox and W. Zwaenepoel: An Integrated Compile-Time/Run-Time
Software Distributed Shared Memory System. In Proceedings of International Con-
ference on Architectural Support for Programming Languages and Operating Systems
(1996), 186–197.

[2] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M.
Horowitz and M. S. Lam: The Stanford DASH Multiprocessor. Computer, 25 (1992),
63–79.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

164 N. Yonezawa, K. Katou, I. Kino, & K. Wada

[3] J. Sun and G.D. Peterson: An Effective Execution Time Approximation Method for
Parallel Computing. IEEE Trans. Parallel Distrib. Syst., 23 (2012), 2024–2032.

[4] C.-W. Tseng: Compiler Optimizations for Eliminating Barrier Synchronization. In Pro-
ceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (1995), 144–155.

[5] N. Yonezawa, I. Kino and K. Wada: Probabilistic analysis of time reduction by eliminat-
ing barriers in parallel programmes. International Journal of Communication Networks
and Distributed Systems, 6 (2011), 404–419.

[6] N. Yonezawa and K. Wada: quad : Array Section Descriptor for Parallel Computing.
IPSJ Journal, 46 (2005), 1274–1286 (in Japanese).

[7] N. Yonezawa and K. Wada: Reducing Idle Times on Matrix Programs by Eliminating
Barrier Synchronization. IEICE Journal, J91-D (2008), 907–921 (in Japanese).

[8] N. Yonezawa, K. Wada and T. Aida: Barrier Elimination Based on Access Depen-
dency Analysis for OpenMP. In Proceedings of International Symposium on Parallel
and Distributed Processing and Applications (2006), 362–373.

Naoki Yonezawa
Department of Business Management
Teikyo Heisei University
4-21-2 Nakano, Nakano
Tokyo 164-8530, Japan
E-mail: n.yonezawa@thu.ac.jp

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.

