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Abstract Diffusion processes have been widely used for approximations in the queueing theory. There
are different types of diffusion approximations. Among them, we are interested in those obtained through
limits of a sequence of models which describe queueing networks. Such a limit is typically obtained by the
weak convergence of either stochastic processes or stationary distributions. We already have nice reviews
and text books for them. However, this area is still actively studied, and it seems getting hard to have a
comprehensive overview because mathematical results are highly technical. We try to fill this gap presenting
technical background. Although those diffusion approximations have been well developed, there remains a
big problem, which is difficulty to get useful information from the limiting diffusion processes. Their state
spaces are multidimensional, whose dimension corresponds to the number of nodes for a single-class case and
the number of customer types for a multi-class case. We now have a better view for the two dimensional case,
but still know very little about the higher dimensional case. This intractability is somehow against a spirit
of diffusion approximation. This motivates us to reconsider diffusion approximation from scratch. For this,
we highlight the stationary distributions, and make clear a mechanism to produce diffusion approximations.
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1. Introduction

The aim of this paper is to review some technical aspects on diffusion approximation arising
in queues and their networks in heavy traffic. We only consider open networks which have
exogenous arrivals. The diffusion approximation is meant to use a diffusion process for
approximation. Here, a diffusion process is a continuous time strong Markov process which
is characterized by a stochastic integral equation using a Brownian motion and continuous
processes with bounded variations (e.g., see (6.4) for this integration). This diffusion process
has a continuous path, and is called Itô diffusion in some literature, but we will just call it
a diffusion process. A comprehensive introduction about it can be found in Harrison [30]
(see also Kushner [48] for control problems). Mathematical details can be found in Section
5 of Protter [54].

Queueing models can not be described by diffusion processes in general because cus-
tomers are discrete in nature, and therefore their sample paths are not continuous. How-
ever, analytical studies on queueing models are generally very hard particularly for queueing
networks except for special cases. This motivates to use diffusion processes for their approx-
imations because diffusion processes are characterized by fewer modeling parameters, that
is, fewer primitive data, and have simpler state spaces. For example, the first two moments
including covariances are typical primitive data for diffusion processes. Thus, diffusion ap-
proximation may be considered as a two-moment approximation. Their state spaces are
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Diffusion approximation for queueing networks 105

finite dimensional vector spaces, while queueing processes require supplementary states for
describing their dynamics. Those two features are analytical advantages of diffusion approx-
imation. However, one must be careful of such simplification because important information
might be lost.

Another motivation for diffusion approximation comes from queueing dynamics. In
general, queues and their networks are input-output systems, and inputs and outputs can
be described by additive processes. For example, a counting process of arriving customers
and accumulated workload brought by customers are such additive processes. If the additive
process has independent or weakly dependent increments, then it is natural to use Brownian
motion for approximation. In this case, queueing characteristics such as queue lengths are
functionals of Brownian motion, which may not be easily analyzed particularly for the multi-
dimensional case, but fewer primitive data are advantage to study feature of the original
model.

Diffusion approximation is so versatile, and the literature about it is so huge. It is hard
to survey its whole area. Thus, we focus on three things. The first is about a method to
derive diffusion approximations. We are only interested in those approximations supportable
by theory. Namely, they should be asymptotically exact under certain limiting operations.
Because objects of our interest are a stochastic process and its stationary distribution,
the limiting operation is convergence in distribution under scaling of state (and time if
necessary). Here, we will show that scaling in time may not be necessary if we are only
concerned with the stationary distribution. This is different from the standard approach of
diffusion approximation, but may not be surprising because the stationary distribution is
independent of time. Furthermore, Kingman [42] uses such scaling for the waiting time of
a single server queue.

The next step is to derive approximations based on those limiting results. However, this
step is often ignored in the literature because it may be considered obvious. For example,
the limiting processes and distributions may be considered as approximations themselves.
Here is a gap between mathematical results and approximations. To fill this gap, we go
back to the original idea of Kingman [42]. He proposes an approximation for the stationary
waiting time distribution for a single server queue by moving a scaling factor into the limiting
distribution. We think this is a right way to have theoretical support. Of course, we may
be motivated by intuitive arguments, and should not exclude heuristics. However, it also is
important to legitimize them by theory.

The second is about a class of queueing models. Our primary interest is in queueing
networks, but also consider some of single node queues because they are components of
network systems. Key features of a queueing network are routing of customers and idling
of servers. There are two types of routing, choosing next nodes or next types. The latter
is used for a multi-class queueing network. In either case, we assume Markovian routing,
which means that nodes or types are chosen with given probabilities only depending on the
current nodes or types, respectively, independently of everything else. If exogenous arrivals
at nodes are subject to independent renewal processes, if service times at each server are
i.i.d. (independent identically distributed) and if service discipline is first-come first-served,
FCFS for short, then this network model is called a generalized Jackson network, GJN for
short. This network is a main subject of this review.

The third is about objects for approximations. As we mentioned above, a stochastic pro-
cess describing a model is a primary object. However, from the application viewpoint, its
stationary distribution is also very important. Other objects are moments and tail asymp-
totics of the stationary distribution. Note that the weak convergence of the sequence of
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stochastic processes does not imply that of their stationary distributions. That is, the ex-
change of those limits needs proofs. If it is possible, the approximation is considered to have
better support. Similarly, the convergence of the sequence of the stationary distributions
does not imply the convergences of their moments and tail asymptotics. If they do so, we
may say the approximation has better quality.

Theoretical support for diffusion approximation generally requires a heavy traffic condi-
tion. Under this condition, the traffic intensity at each node is close to unit, and therefore
the behavior of a small queue at a fixed node is ignorable. In other words, diffusion approx-
imation is for the behavior of a large queue. This greatly simplifies diffusion approximation
for a single queue. On the other hand, in a queueing network, there are multiple queues
at different nodes, and they may not simultaneously get large. For example, there may be
idle servers when some queues are large. This is a crucial aspect of the queueing network,
and should not be excluded in its approximation. Thus, it is interesting to see how such a
behavior is implemented in diffusion approximation.

Historically, the study of diffusion approximation started from single node queues. Among
them, a GI/GI/1 queue is known as a basic model. This model assumes that customers ar-
rive according to a renewal process, there is a single server and service times are i.i.d. Even
this simple model is known to be hard to get the stationary distribution in closed form.
This motivated Kingman [42, 43] to originate a two-moment approximation for the station-
ary waiting time distribution of the GI/GI/1 queue in heavy traffic. This approximation
is generalized for a GI/GI/s queue with homogeneous servers by Köllerström [46]. Those
studies directly consider the stationary distribution, so do nothing with diffusion approxi-
mation. In particular, scaling is taken only for state, as we already mentioned. However,
their stationary distributions are identical with those obtained by the standard diffusion
approximations (e.g., compare (2.11) with Corollary 3.1 together with (3.34)).

Independent of those studies, Borovkov [5] studied diffusion approximation for the tran-
sient behavior of a many server queue. It refers to Provkov’s 1963 paper, but we are unable
to get this paper. However, Iglehart and Whitt [37] credited that those Russian work is
one of the origin of diffusion approximation. Thus, the work may be the first one to study
diffusion limits for a single queue by scaling state and time. The book [6] of Borovkov is a
good source for those studies.

A next step was an extension from a single queue to a feedforward network. This step was
firstly taken by seminal papers of Iglehart and Whitt. They obtained diffusion processes
as weak limits of the sequence of suitably scaled processes, called a diffusion scaling, in
[36, 37]. Their results are basically for a single queue because functional relations of input
and output of a single queue are essential. For example, they only studied a marginal process
of a given node, but were unable to study a joint process for multiple nodes. However, there
are two things to be notable. The first is an idea for process limit, that is, a weak limit
of the sequence of stochastic processes. The second is that a reflecting Brownian motion
is obtained as one of the process limits. This means that the diffusion approximation is
more than a stochastic process version of the central limit theorem. This approximation is
referred to as a functional limit theorem under normalization similar to that of the central
limit theorem. A similar approach is also studied for a single queue in [6].

A real step toward a queueing network was taken by Harrison [28], who considered a
tandem queue with two nodes, and got a two-dimensional reflecting Brownian motion on
the nonnegative orthant. It still uses an explicit functional relation of input and output,
but it was a big step to move from one-dimensional diffusion process to the two-dimensional
one. Harrison and Reiman [34] studied this reflecting process for an arbitrary dimension.
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It is a multidimensional reflecting Brownian motion on the nonnegative orthant. Because
it has a semi-martingale representation, it is called a semi-martingale reflecting Brownian
motion, SRBM for short. Those studies were culminated by the work of Reiman [56]. It
obtains SRBM as a weak limit of suitably scaled processes for GJNs, where scaling is taken
for both state and time. This scaling is called diffusion scaling, and the weak limit is called
a diffusion limit.

Another source for diffusion approximation is heuristic arguments. A queueing network
including GJN is analytically intractable except for some special cases. Typical examples for
this exceptional case are a Jackson network and its extensions, called product form networks
due to Kelly [40] (see [9, 58] for further development in this line). They are analytically
tractable, but require stronger assumptions. Thus, there have been many attempts for
heuristic approximations for a GJN, particularly for its stationary distribution. For example,
the diffusion approximation of Kobayashi [45] is one of the earliest work. Among them,
Queueing Network Analyzer, QNA for short, proposed by Whitt [62, 63], is well known.
This is a heuristic approximation based on the product form solution and the two-moment
approximation for the queue length at each node.

The concept of QNA has been widely accepted, and similar types of approximations
have been considered for more complicated network models (e.g., see [44]). However, it
lacks the theoretical supports which we have discussed. A theoretical improvement of QNA
was studied by Harrison and Nguyen [31]. They propose another approximation concept,
called QNET, incorporating information from a diffusion limit for the sequence of GJNs in
heavy traffic. This limiting process is an SRBM. We note that this QNET is different from
Q’NET (alternatively spelled as Q-NET) which has been developed for business solutions
by IBM.

The SRBM is much simpler than the GJN, and its primitive data can be expressed by
the mean and covariances of Brownian motion and the reflecting matrix. An approximation
based on it may be considered as a two-moment approximation. However, the stationary
distribution of the SRBM is still hard to get except for either one-dimensional case or the
skew-symmetric case. The latter corresponds to the Jackson network, and has a similar
product form solution. Thus, QNET requires approximation for the stationary distribution
of the SRBM. For this, it uses either the product form or numerically approximated solu-
tion for the stationary distribution. Thus, QNET may not be fully supported by theory.
Nevertheless, QNA and QNET had great impacts on theoretical studies for diffusion ap-
proximation through their design concepts and practical applications using their software
packages.

In present days, diffusion approximations have been studied in various models including
those with customer abandonment and using a different scaling in state, namely, increasing
the number of servers, which is called Halfin-Whitt regime. We will briefly discuss them.

1.1. Paper structure

This paper is made up by seven sections. In Section 2, we introduce a stochastic model
for the GJN, that is, generalized Jackson network, with a single-class of customers. This
section have four subsections.

In Section 2.1, we start with a sample path level of modeling, then introduce stochastic
assumptions for describing a GJN in Section 2.2. We are devoted to the single node case of
the GJN, that is, the GI/G/1 queue, in Sections 2.3 and 2.4. A main interest of these two
subsections is to see how we should scale state and/or time to get a two-moments approxima-
tion for the stationary distribution. For this, we first review Kingman’s [42] approximation
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for the waiting time in Section 2.3, which is only scaled by state. In Section 2.4, we then
consider the queue length process in continuous-time, and show that scaling is only required
for state similarly to the waiting time case. They are turned out to be identical with the
corresponding diffusion approximations. We conjecture that similar approximations can be
obtained for the GJN with an arbitrary number of nodes.

In Section 3, we consider a diffusion approximation for a stochastic process. This sec-
tion is divided into four subsections. In Section 3.1, we formally define the SRBM on a
nonnegative multidimensional orthant, and derive a stationary equation to characterize the
stationary distribution of SRBM, which is called a basic adjoint relationship, BAR for short
(e.g., see [35]). In Section 3.2, we present basic results for deriving a diffusion process as
process limit. In Section 3.3. those results will be used to derive the SRBM from the queue
length processes of the GJNs under scaling state and time. We finally review the case that
each node may have multiple servers in Section 3.4.

In Section 4, we consider quality of diffusion approximations for the stationary distribu-
tion of the GJN and some other characteristics. For the single node case, that is, a single
queue, this approximation can be directly obtained for the stationary distribution as dis-
cussed in Section 2.4. In other words, a limiting process is not needed to get a weak limit
of the stationary distribution. This also would be the case for the network case. However,
in the literature, the SRBM is firstly obtained as a process limit, then the stationary dis-
tributions of the GJNs under diffusion scaling are shown to weakly converges to that of the
SRBM. Surprisingly, this verification has been relatively recently done by Gamarnik and
Zeevi [24] then by Budhiraja and Lee [8] under weaker assumptions. We also review about
diffusion approximations for moments and tail asymptotics of the stationary distribution.

In Section 5, we consider a multi-class queueing network. That is, types are attributed
to customers, and nodes are exclusively attributed to types. Thus, the type of a customer
uniquely specifies its service node. Each type at each node has its own primitive data,
inter-arrival times (if it specifies exogenous arrivals) and service times. Customers may
change their types when their services are completed. We assume that this change of types
is Markovian. This network can not be handled by single-class networks in general because
there may be more than one types of customers at a single node. In the nineties, multi-class
queueing networks were highlighted because such models are found useful in production
lines and unconventional stability conditions have been reported (e.g., see [33, 47]). These
facts in addition to analytical difficulty stimulated people to study diffusion approximation
for a multi-class queueing network. Harrison and Nguyen [31, 32] proposed a grand design
for such diffusion approximation with some conjectures. Right after that, Dai and Wang
[21] negatively answered to those conjectures.

For a multi-class queueing network, a problem is under what conditions diffusion approx-
imation exists in what sense. Harrison [29] suggested to consider non-conventional diffusion
approximation, but there seems no good alternative at least for open queueing networks.
Thus, we here only consider the conventional diffusion approximation by diffusion scaling
and SRBM. As for the conditions, state-space collapse and the completely-S condition for
reflection matrix R have been recognized as key features. We review diffusion approximation
for a multi-class queueing network in this line.

In Section 6, we review another type of diffusion approximations. Consider a GI/G/s
queue. For each fixed s, we can employ the standard diffusion approximation for this model.
However, it ignores information on the number of busy servers, equivalently, the number of
idle servers, so this approximation may be too rough for large s. This motivated Halfin and
Whitt [27] to increase both of the arrival rate and the number s of servers for a GI/M/s
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queue while keeping the service time distribution, which is exponential in this model. This
approximation also assumes heavy traffic condition, and called Halfin-Whitt regime. Its
limiting process is also a diffusion process but state-dependent. This approximation and its
variants have been largely studied because they can be used for call center application.

We finally give some concluding remarks in Section 7.

2. Single-class queueing networks and heavy traffic approximation

We first introduce a stochastic process for a single-class queueing model. Here, a single-class
means that there is only one customer type, in other words, customers have no type. We
assume that the model is open, and has exogenous arrivals. The system is composed of a
finite number of nodes which have single waiting lines with possibly multiple servers, where
waiting capacity is assumed to be infinite. Service times are attached at each servers. We
assume that customers are served in the first-come first-served manner. If there are multiple
nodes, customers may be routed to other nodes.

2.1. Primitive data and two characteristics

In this section, we assume that each node has a single server for simplicity. We describe
this model starting at time 0 by the following notations. Let J ≡ {1, 2, . . . , d} be the
set of nodes, where d is a positive integer. For node i ∈ J , the sequence of service times
{Tsi(ℓ); ℓ ∈ N} is attached, where N is the set of natural numbers. Denote the set of nodes
which have exogenous arrivals by Je, and, for i ∈ Je, let Tei(ℓ) be the inter-arrival time
between the (ℓ − 1)-th and ℓ-th exogenous arrivals at node i for ℓ ∈ N. Note that Tei(ℓ)
may be 0, which means a batch arrival. Let Z+ is the set of all nonnegative integers. For
n ∈ Z+, let Φij(n) be the number of customers who are routed to node j among the first n
departures from node i, where Φij(0) = 0. This j may be 0, which means that customers
leave the network. Thus,

{Tei(ℓ); ℓ ∈ N}, i ∈ Je, {Tsi(ℓ); ℓ ∈ N}, {Φij(n);n ∈ Z+, j ∈ J ∪ {0}}, i ∈ J, (2.1)

specify this queueing network. We call them primitive data. To exclude trivial case, we
assume that Je ̸= ∅.

For i ∈ Je and i′ ∈ J , let

Vei(n) =
n∑

ℓ=1

Tei(ℓ), Vsi′(n) =
n∑

ℓ=1

Tsi′(ℓ), n ∈ N,

then the first two of the primitive data in (2.1) can be replaced by

{Vei(n);n ∈ N}, i ∈ Je, {Vsi(n);n ∈ N}, i ∈ J. (2.2)

We denote the counting processes for arrivals and service completions at node i by

Nei(t) ≡ sup{n;Vei(n) ≤ t}, Nsi(t) ≡ sup{n;Vsi(n) ≤ t}, (2.3)

where Nei(t) ≡ 0 for i ∈ J \ Je. Then, (2.3) is equivalent to (2.2), so can be used for the
primitive data as well. The advantage of (2.3) is that the nodes which have no arrivals
are not necessarily distinguished. Namely, we have just put Nei(t) ≡ 0 for such nodes. It
should be noted that Nei(t) counts exogenous arrivals at node i but Nsi(t) may not count
departures from node i. The latter does so if the server is always busy up to time t.
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So far, we have assumed nothing about probability laws on those primitives, but we
can define queue length and workload in sample path sense. Let Li(t) be the number of
customers at node i at time t, and Ui(t) be the total busy time of the server at node i up
to time t. Then, it is easy to see that, for t ≥ 0 and i ∈ J ,

Li(t) = Li(0) +Nei(t) +
∑
j∈J

Φji(Nsj(Uj(t)))−Nsi(Ui(t)), (2.4)

Ui(t) =

∫ t

0

1(Li(u) ≥ 1)du, (2.5)

because Nsi(Ui(t)) is the number of departing customers from node i in the time interval
[0, t], where 1(·) is the indicator function of the statement “·”, which takes 1 if the statement
is true, and vanishes otherwise. Conversely, it is not hard to see that {Li(t); t ≥ 0} and
{Ui(t); t ≥ 0} for i ∈ J are uniquely determined by (2.4) and (2.5). Hence, we can define
them by those equations.

Since Nei(t) +
∑

j∈J Φji(Nsj(Uj(t))) is the total number of arriving customers at node i
by time t, the workload Wi(t) at node i can be defined as

Wi(t) = Wi(0) + Vsi

(
Nei(t) +

∑
j∈J

Φji(Nsj(Uj(t)))
)
− Ui(t). (2.6)

Let L(t) and W (t) be the vectors whose i-th entries are Li(t) and Wi(t), respectively. Thus,
we have obtained the mappings from the primitive data and the initial data L(0) and W (0)
to L(·) ≡ {L(t); t ≥ 0} and W (·) ≡ {W (t); t ≥ 0}. These mappings are called reflection
mappings. In what follows we mainly consider the queue length process L(·) because similar
arguments can be applied for W (·) with help of L(·).
2.2. Stochastic assumptions for GJN

We now introduce the following stochastic assumptions on the primitive data (2.1).

(2a) {Tei(ℓ); ℓ ∈ N} with i ∈ Je, {Tsi(ℓ); ℓ ∈ N} and {Φij(n);n ∈ Z+, j ∈ J ∪ {0}} with i ∈ J
are independent.

(2b) {Tei(ℓ); ℓ ∈ N} for i ∈ Je and {Tsi(ℓ); ℓ ∈ N} for i ∈ J are sequences of i.i.d. random
variables taking values in R+, and, for each i, Tei(ℓ) and Tsi(ℓ) have finite and positive
first moments, which are denoted by mei and msi, respectively. Let λei = m−1

ei for e ∈ Je
and λei = 0 for i ∈ J \Je. Thus, λei is the exogenous arrival rate at node i ∈ J . Similarly,
the service rate at node i is denoted by λsi ≡ m−1

si .

(2c) {Φij(n);n ∈ Z+, j ∈ J ∪ {0}} is a discrete-time (d + 1)-dimensional counting process
with i.i.d. increments for each i ∈ J , and the increment ∆Φij(n) ≡ Φij(n) − Φij(n − 1)
takes values 0 or 1, and has the distribution given by

P(∆Φij(n) = 1) = pij ≥ 0, j ∈ J.

Let P be the d-dimensional square matrix whose (i, j) entry is pij for i, j ∈ J , and let
P be the (d + 1)-dimensional square matrix whose (i, j) entry is pij for i, j ∈ J ∪ {0},
where p0j = λej(

∑
i=1 λei)

−1 for j ∈ J and p00 = 0. We assume that P is stochastic
and irreducible, which means that customers will leave the network in finite times with
probability one.

The d-node queueing network satisfying those three sets of the conditions is called a gener-
alized Jackson network, GJN for short.
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Under the assumptions (2a)–(2c), we can construct a Markov process for L(·) supple-
mented by auxiliary characteristics. To this end, let Rei(t) and Rsi(t) be the residual times
for the next exogenous arrival and service completion, respectively, at node i at time t,
where Rei(t) ≡ 0 for i ∈ J \ Je and Rsi(t) = 0 if the server at node i is idle at time t. They
are formally defined as

Rei(t) = Vei(Nei(t) + 1)− t, Rsi(t) = (Vsi(Nsi(Ui(t)) + 1)− Ui(t))1(Li(t) ≥ 1).

Denote the vectors whose i-th entries are Rei(t) and Rei(t) by Re(t) and Rs(t). Then, it is
not hard to see that {(L(t),Re(t),Rsi(t)); t ≥ 0} is a Markov process. Furthermore, it is a
strong Markov process (see, e.g., [16]). We refer to this process as a supplemented Markov
process for the GJN.

We next consider the stability of this Markov process, that is, the condition under which
the stationary distribution exists. Recall that λei is the exogenous arrival rate at node i ∈ J .
Consider the set of the following traffic equations for variables λai with i ∈ J .

λaj = λej +
∑
i∈J

λaipij, j ∈ J. (2.7)

Denote the d-dimensional vectors whose entries are λei and λai by λe and λa, respectively.
Since I − P is invertible by (2c), the solution λa for the equations (2.7) is given by

λa = (I − P t)−1λe,

where P t is the transposition of P . Because Je ̸= ∅ and the irreducibility of P in (2c), λa

is positive. Let λsi = m−1
si , and denote the d-dimensional vector whose i-th entry is λsi by

λs. Then, it is well known that the supplemented Markov process is stable if and only if

(I − P t)−1λe < λs, (2.8)

where the inequality of vectors represents entry-wise inequalities (see, e.g. [59]).

2.3. Kingman’s two-moment approximation in heavy traffic

In this and next sections, we consider the GI/G/1 queue, as a pilot example for diffusion
approximation. As we mentioned in Section 1, Kingman [42] is the first one to get the
approximation which corresponds with diffusion approximation. He directly considered the
stationary distribution of the waiting times in the GI/G/1 queue, and derived a limiting
distribution under a certain scaling, using the first two moments of the interarrival and
service times. In his formulation, no continuous-time parameter is involved, which is different
from those in the previous two sections. Nevertheless, his approximation agrees with that
obtained from diffusion approximation.

Here two questions arise. Is a similar approximation possible for the stationary distribu-
tion of the queue length process L(t) ? If so, how it is related to diffusion approximation ?
To address those questions for the GI/G/1 queue, which is the single node case of GJN, we
first summarize Kingman’s [42] approximation for the stationary waiting time distribution,
and make clear how approximation is produced from the limiting distribution. We then
answer the questions in the next section.

We use the same notations of the GJN introduced in the previous two sections, but drop
the index specifying a node for simplicity. For example, L(t), Re(t), Rs(t) and W (t) stand
for L1(t), Re1(t), Rs1(t) and W1(t). We further drop the time index t for those characteristics
in the steady state like L,Re, Rs and W .
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Let D(n) be the waiting time, also called delay, of the n-th arriving customer. Obviously,
we have

D(n) = W ((Te(1) + Te(2) + . . .+ Te(n))−), n = 1, 2, . . . .

However, this expression is not so useful because continuous-time process W (t) is involved.
Instead of it, Kingman directly considers the stationary distribution, using so called Lind-
ley’s equation. Assume that ρ ≡ λe/λs < 1, and let D be a random variable subject to the
stationary distribution of D(n), then the distributional invariance of one step transition in
the steady state yields Lindley’s equation:

D
w
= max(0, D + Ts − Te), (2.9)

where D,Ts, Te are independent, and
w
= stands for the equality in distribution. In this

formulation, no continuous-time process is needed.
Kingman’s [42] idea is to scale the waiting time D in the steady state by

α =
2(λs − λe)

λ2
e(σ

2
e + σ2

s)
,

and to prove that αD weakly converges to the exponential distribution with unit mean,
which is the stationary distribution of a one-dimensional SRBM, as α ↓ 0, under the finite-
ness conditions on some moments of Te and Ts. See Theorem 1 of Köllerström [46] for
a comprehensive proof. Based on this convergence, Kingman [41] suggests the following
approximation for the stationary waiting time D.

P(D ≤ x) ≈ 1− exp
(
− 2(λs − λe)

λ2
e(σ

2
e + σ2

s)
x
)
, x ≥ 0. (2.10)

Here, it is notable to distinguish the following two steps.
(S1) Prove a weak convergence, that is, convergence in distribution, under appropriate

changes of primitive data.

(S2) Derive an approximation from (S1).
(S1) is a purely mathematical issue, while (S2) is not more than proposal. Nevertheless,
we have a clear rule for (S2) as we observed for the above D. Namely, the scaling factor is
moved into the stationary distribution for approximation. When we are discussing about
diffusion approximation, we often only consider (S1). This is because (S2) is automatically
done according to the rule.

Kingman’s as well as Köllerström’s arguments are very clear, but lack the idea of a
sequence of models for the convergence. Such a sequence makes clear how the primitive
data are changed. For this, we here introduce a sequence of the GI/G/1 queues indexed

by n, where the primitive data of the n-th system are denoted by {T (n)
e (ℓ)} and {T (n)

s (ℓ)}.
Denote the stationary waiting time of the n-th queue by D(n). Define α(n) as

α(n) =
2(λ

(n)
s − λ

(n)
e )

(λ
(n)
s σ

(n)
s )2 + (λ

(n)
e σ

(n)
e )2

, n = 1, 2, . . . .

Then, Theorem 1 of Köllerström [46] reads as

lim
n→∞

P(α(n)D(n) ≤ x) = 1− e−x, x ≥ 0, (2.11)
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if the following conditions are satisfied.

lim
n→∞

α(n) = 0, α(n) > 0, n ≥ 1, (2.12)

inf
n≥1

((σ(n)
s )2 + (σ(n)

e )2) > 0, (2.13)

sup
n≥1

E((T (n)
e )2+δ + (T (n)

s )2+δ)) < ∞, for some δ > 0, (2.14)

Because of (2.14), (σ
(n)
s )2 + (σ

(n)
e )2 are uniformly bounded in n, and therefore (2.12) is

equivalent to

lim
n→∞

(λ(n)
s − λ(n)

e ) = 0, (2.15)

which is further equivalent to ρ(n) ≡ λ
(n)
e /λ

(n)
s → 1 if λ

(n)
s is uniformly away from 0. Thus,

we may divide (S1) into further two steps.
(S1-1) Set up a sequence of models indexed by positive integer n.

(S1-2) Scale the state space of the n-th system, and derive the limiting distribution.

In particular, if we choose λ
(n)
u and σ

(n)
u for u = e, s in such a way that

lim
n→∞

λ(n)
u = λu > 0, lim

n→∞
σ(n)
u = σu > 0, u = e, s, (2.16)

where λu and σu are positive constants, then (2.11) becomes

lim
n→∞

P((1− ρ(n))D(n) ≤ x) = lim
n→∞

P
(
α(n)D(n) ≤ α(n)

1− ρ(n)
x
)

= 1− exp
(
− 2

λe(σ2
e + σ2

s)
x
)
, x ≥ 0, (2.17)

since λe = λs. This shows that, in (S1-2), D(n) can be scaled by 1− ρ(n).

2.4. Extension of Kingman’s approximation to the queue length

We next consider diffusion approximation for the stationary distribution of L(t), which is
the queue length including customers being served, that is, the number of customers in
system. In this case, continuous-time is involved, and one may think that it would be easier
to consider scaling a process rather than scaling a stationary distribution. This may be
the reason why diffusion approximation on the queue length has been much less studied
through the stationary equation, while process limits have been well studied as we shall see
in Section 3.3.

We here challenge diffusion approximation for L(t) through the stationary equation, and
like to answer whether or not time scaling is really needed. Intuitively, no time scaling is
needed because the stationary distribution is independent of time. Kingman’s approxima-
tion supports this. However, this has not yet been confirmed, while process limit mandatorily
requires state and time scaling to get a diffusion process.

To attack this problem, we use slightly stronger assumptions on the tails of the inter-
arrival time Te and the service time Ts. We here recall the simplified notation system
introduced in the previous section, which drops the index for a node. Let F̃e and F̃s be the
moment generating functions of Te and Ts, respectively. That is,

F̃e(v) = E(evTe), F̃s(v) = E(evTs), v ∈ R.

Assume the following light tail conditions.
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(2d) There exist δe, δs > 0 such that

F̃u(v) < ∞, v < δu, lim
v↑δu

F̃u(v) = ∞, u = e, s. (2.18)

These conditions are a bit stranger than what we actually need, but typically assumed to
study large deviations (e.g., see [26]).

For θ, ξ ≤ 0, η < δe and some function g(θ) which will be determined later, let

X(t) =

{
g(θ)eηRe(t), L(t) = 0,
eθL(t)+ηRe(t)+ξRs(t), L(t) ≥ 1,

and letNd be the counting process for departing customers. SinceX(t) has jumps at instants
when Ne(t) or Nd(t) is increased, it is obvious to see that

X(t) = X(0) +

∫ t

0

X ′(u)du+

∫ t

0

∆X(u)(Ne(du) +Nd(du)), (2.19)

where ∆X(u) = X(u+) − X(u−). Let Ee,Ed be the expectations under the Palm dis-
tributions with respect to Ne, Nd. Namely, for u = e, d and a continuous function f on
R,

Eu(f(X(0))) = λ−1
u E

(∫ 1

0

f(X(u))Nu(ds)
)
, (2.20)

as long as the expectations are well defined, where λd = λe.
Assume that (L(0), Re(0), Rs(0)) is subject to the stationary distribution, which is also

assumed to exist. Then, taking the expectation of both sides of (2.19) yields

0 = E(X ′(0)) + λeEe(∆X(0)) + λdEd(∆X(0)),

where the expectations are all finite for θ, ξ ≤ 0, η < δe. This formula is called a rate
conservation law in the literature (e.g., see [51]). Hence, letting

φ(θ, η, ξ) = E(eθL(0)+ηRe(0)+ξRs(0)), φ0(η) = E(eηRe(0)1(L(0) = 0)),

φe(θ, ξ) = Ee(e
θL(0−)+ξRs(0−)), φe0−(0) = Pe(L(0−) = 0),

φd(θ, η) = Ed(e
θL(0−)+ηRe(0−)), φd0+(η) = Ed(e

ηRe(0)1(L(0+) = 0)),

we have the stationary equation for θ, ξ ≤ 0, η < δe:

−(η + ξ)φ(θ, η, ξ) + (η(1− g(θ)) + ξ)φ0(η)

+ λe(e
θF̃e(η)− 1)φe(θ, ξ) + λe(e

θF̃e(η)(F̃s(ξ)− 1) + 1− g(θ))φe0−(0)

+ λd(e
−θF̃s(ξ)− 1)φd(θ, η) + λde

−θ(g(θ)− F̃s(ξ))φd0+(η) = 0. (2.21)

Choose η, ξ and g(θ) for θ ∈ R in such a way that

eθF̃e(η) = 1, e−θF̃s(ξ) = 1, g(θ) = eθ. (2.22)

Then, they do exist by the assumption (2.18), and (2.21) boils down to

(η + ξ)φ(θ, η, ξ) = (η(1− eθ) + ξ)φ0(η), θ, ξ ≤ 0, η < δe, (2.23)
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where φ(θ, η, ξ) and φ0(η) are finite because θ, ξ ≤ 0 and

E(eηRe) = λeE
(∫ Te

0

eη(Te−x)dx
)
=

λe

η

(
F̃e(η)− 1

)
< ∞, η < δe,

by the cycle formula, where the singularity of the right-hand term at the origin can be
removed as it can be seen from the middle term.

We next note that η and ξ have nice representations as functions of θ. For this, we define
logarithmic moment generating functions for counting processes Ne and Ns as

γu(θ) = lim
t→∞

1

t
logE(eθNu(t)), u = e, s. (2.24)

These functions play important roles in the theory of large deviations (e.g., see [22]). We
here note the following fact, which is immediate from Theorem 1 of [26] (see also Lemma
4.1 of [53] in a more general context).
Lemma 2.1. Under the assumption (2.18), let η(θ) and ξ(θ) be the solutions η and ξ of
(2.22), then

η(θ) = −γe(θ), ξ(θ) = −γs(−θ), θ ∈ R. (2.25)

We here sketch a proof for the first equation of (2.25) to see the reason why it is obtained
(see [26] for a complete proof). The second equation can be proved similarly. Define function
h for a given constant α as

h(t) = E
(
eθNe(t)+αt), t ≥ 0.

It is easy to see that h satisfies the following renewal equation.

h(t) = eαtP(Te > t) +

∫ t

0

h(t− s)eθ+αsdP(Te ≤ s).

If we choose α such that F̃e(α)e
θ = 1, then this renewal equation has a proper interval

distribution, and therefore we can see that h(t) converges to a finite constant by the key

renewal theorem as long as F̃e(t) is finite around a neighborhood of α. This is always the
case under the assumption (2.18). On the other hand, from the definition of h,

log h(t) = logE
(
eθNe(t)) + αt.

Dividing both sides of this equation by t and letting t to infinity, we have (2.25).
For scaling L, we expand γe(θ) and γs(−θ) as polynomials of θ around the origin.

Lemma 2.2. Under the same assumptions of Lemma 2.1, we have, as θ → 0,

γe(θ) = λeθ +
1

2
λ3
eσ

2
eθ

2 + o(θ2), (2.26)

γs(−θ) = −λsθ +
1

2
λ3
sσ

2
sθ

2 + o(θ2). (2.27)

This lemma is easily obtained from (2.22) and (2.25). For convenience of the reader, we
prove it in Appendix A.

We are now ready to consider a scaled limit for a sequence of the GI/G/1 queues, indexed
by n. Assume that those queues are all stable, that is, ρ(n) < 1 for all n ≥ 1. As we did,
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characteristics of the n-th queue are indexed by superscript (n). By Lemma 2.1, (2.23) for
the n-th system can be written as

−(γ(n)
e (θ) + γ(n)

s (−θ))φ(n)(θ,−γ(n)
e (θ),−γ(n)

s (−θ))

= (γ(n)
e (θ)(eθ − 1)− γ(n)

s (−θ))φ
(n)
0 (−γ(n)

e (θ)).

Divide both sides of this equation by θ and applying Lemma 2.2, we have(
(λ(n)

s − λ(n)
e )− 1

2
((λ(n)

e )3(σ(n)
e )2 + (λ(n)

s )3(σ(n)
s )2)θ + o(θ)

)
× φ(n)(θ,−λ(n)

e θ + o(θ), λ(n)
s θ + o(θ))

=
(
λ(n)
e (eθ − 1) + λ(n)

s − 1

2
(λ(n)

s )3(σ(n)
s )2θ + o(θ)

)
× (1− ρ(n))E(e(−λ

(n)
e θ+o(θ))R

(n)
e (0)|L(0) = 0), (2.28)

where we have used the fact that P(L(n) = 0) = 1− ρ(n).
Let us consider what is an appropriate scaling factor for L(n). Denote it by β(n) > 0.

That is, we scale L(n) as β(n)L(n). This can be done by replacing θ by β(n)θ in (2.28). We
first assume that β(n) → 0 as n → ∞ because we hardly expect to have a reasonable limiting
distribution otherwise. We then examine (2.28), and easily see that we have a meaningful

limiting distribution only when β(n) is proportional to λ
(n)
s − λ

(n)
e > 0. Under this limiting

operation, it is preferable for the terms on the residual times to vanish. Namely, we like to
verify the following conditions.

lim
n→∞

E(e−β(n)θR
(n)
e ) = 1, for some θ < 0, (2.29)

lim
n→∞

β(n)R(n)
s = 0 almost surely. (2.30)

Among these conditions, (2.30) is easily verified if the previous conditions (2.14) and (2.16)

are satisfied because (2.14) implies that E(R(n)
s ) is uniformly bounded in n. However, they

may not be sufficient for (2.29). So far, we here use the following simple assumption.

The distribution of T
(n)
e is independent of n. (2.31)

We now arrive at the following theorem, which corresponds to Kingman’s approximation
for the queue length in the steady state.
Theorem 2.1. For a sequence of the stable GI/G/1 queues satisfying (2.18) for F̃s = F̃

(n)
s ,

if the conditions (2.14), (2.15), (2.16) and (2.31) hold and if ρ(n) < 1 for n ≥ 1, then

lim
n→∞

P((1− ρ(n))L(n) ≤ x) = 1− exp
(
− 2

λ2
e(σ

2
e + σ2

s)
x
)
, x ≥ 0. (2.32)

We already explained major ideas to have this theorem, but its full proof requires careful
arguments. Since they are technical, we defer them into Appendix B. Note that the expo-
nential distribution (2.32) is identical with the stationary distribution of the SRBM, which
will given in Corollary 3.1.

Thus, Theorem 2.1 concludes that time scaling is not needed to get the limiting distri-
bution corresponding to that of SRBM. We here only considered a single node queue, but
can expect a similar result for a general GJN although we have to work on the stationary
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equation instead of the stationary distribution because the latter is unknown for d ≥ 2.
Thus, we may have a completely different story about diffusion approximation for the sta-
tionary distribution of a queueing network in heavy traffic. As we will see in Section 4, this
approach is closely related to a study on the tail decay rates of the stationary distributions.

In what follows, we will review another story, which requires scaling in both state and
time.

3. Diffusion approximation for a single class GJN

We review diffusion approximation for a single class GJN introduced in Sections 2.1 and 2.2
by an SRBM, that is, semi-martingale reflecting Brownian motion on a nonnegative orthant.
This is now standard, and can be found in a text book (e.g., see [12]). Nevertheless, it is
good to see how the diffusion approximation is derived because it is a prototype for diffusion
approximations for stochastic processes.

3.1. From a single class GJN to SRBM

We have observed that the supplemented Markov process may be useful to consider a limit
of the stationary distributions. However, this is not the case for a limit of processes because
an evolution in time needs to match scaling in state. Instead of it, the sample path char-
acterizations (2.4) and (2.5) are known to be useful. To see this, let R = I − P t, and we
rewrite (2.4) as

L(t) = L(0) +X(t) +RY (t), t ≥ 0, (3.1)

where the i-th entry of X(t) is given by

Xi(t) =Nei(t)− λeit+
∑
j∈J

(
Nsj(Uj(t))− λsjUj(t)

)
pji − (Nsi(Ui(t))− λsiUi(t))

+
∑
j∈J

(
Φji(Nsj(Uj(t)))−Nsj(Uj(t))pji

)
+
(
λei +

∑
j∈J

λsjpji − λsi

)
t, (3.2)

and the i-th entry of Y (t) is given by

Yi(t) = λsi(t− Ui(t)). (3.3)

Clearly, t−Ui(t) is the total idle time of the server at node i by time t, and therefore Yi(t) is
non-decreasing in t. Furthermore, Yi(t) increases only when Li(t) = 0. These are precisely
what are meant by (2.5), and we have∫ t

0

Li(u)dYi(u) = 0, i ∈ J. (3.4)

Thus, (2.4) and (2.5) imply (3.1) and (3.4). Conversely, for a given X(·), (L(·),Y (·)) is
uniquely determined by (3.1) and (3.4) as will be given in Theorem 3.1 below. Thus, we
have the reflection mapping from X(·) to (L(·),Y (·)), which is denoted by (ϕ(X),Ψ(X)).
This mapping will be used to study process limit for diffusion approximation.

A basic idea for diffusion approximation is to replace X(t) in (3.1) by a d-dimensional
Brownian motion B(t) with a drift vector µ satisfying B(0) = 0. Namely,

X(t) = B(t) + µt. (3.5)

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



118 M. Miyazawa

Roughly speaking, {B(t)} is an independent incremental process with continuous sample
path. The reader who is not familiar with Brownian motion may refer to Section 5.3 of [12]
for a short summary. Thorough introductions are found in [2, 38, 60].

For this X(t), we rewrite (3.1) and (3.4) for a nonnegative d-dimensional process Z(t)
and a nondecreasing d-dimensional process Y (t) as

Z(t) = Z(0) +X(t) +RY (t), (3.6)∫ t

0

Zi(u)dYi(u) = 0, i ∈ J, t ≥ 0. (3.7)

Let D(Rd) be the set of functions from [0,∞) to Rd which are right continuous and have
left-hand limit. In general, finding a solution (Z(·),Y (·)) in D(R2d) satisfying (3.6) and
(3.7) for a given Z(0) and X(·) with X(0) = 0 is called a Skorohod problem. The following
theorem answers this problem for R = I − P t.
Theorem 3.1 (Theorem 1 of [24], Theorem 7.2 of [12]). Let R = I−P t. For each function
x(·) ∈ D(Rd), there exists a unique pair of nonnegative function z(·) and a nondecreasing
function y(·) with y(0) = 0 which satisfy

z(t) = x(t) +Ry(t), (3.8)∫ t

0

zi(u)dyi(u) = 0, i ∈ J, t ≥ 0. (3.9)

Furthermore, the mapping ϕ and Ψ from x(·) to z(·) = ϕ(x) and y(·) = Ψ(x) are Lipschitz
continuous. Namely, there exist constants C1 and C2 for each t such that, for H1 = ϕ and
H2 = Ψ,

sup
0≤u≤t

∥Hk(x1)(u)−Hk(x2)(u)∥ ≤ Ck sup
0≤u≤t

∥x1(u)− x2(u))∥, k = 1, 2,

for x1(·),x2(·) ∈ D(Rd), where ∥ · ∥ is the Euclidean metric in the vector space Rd.
If we choose X(·) of (3.5) and take {Z(0) +X(t)} for x(·) in this theorem, we have a

unique solution (Z(·),Y (·)) of (3.6) and (3.7). Here, it is important for R to be I − P t,
which is always the case for GJN. However, some other models may require more general
matrix R, which is indeed the case for a multi-class queueing network (see Section 5). Thus,
we first define (Z(·),Y (·)) for a general square matrix R.
Definition 3.1. Continuous d-dimensional processes {Z(t); t ≥ 0} and {Y (t); t ≥ 0} are
called a semimartingale reflecting Brownian motion, SRBM for short, and a regulator, re-
spectively, if there exists a family of probability measures {Px;x ∈ Rd

+} on some filtration
{Ft} and the following conditions are satisfied for Z(0) = x under Px-almost surely for
every x ∈ Rd

+.
(i) {X(t)} is a d-dimensional Brownian motion with drift vector µ, that is, given by (3.5),

and {B(t)} is {Ft}-martingale.

(ii) {Y (t)} is a {Ft}-adapted nondecreasing process with Y (0) = 0.

(iii) {Z(t)} is a {Ft}-adapted process.

(iv) (3.6) and (3.7) are satisfied.
To use this definition, it is important to see when Z(·) and Y (·) uniquely exist. From

Theorem 3.1, we can see that, if R = I−P t, then they uniquely exist, which is independent
of a choice of Px. This existence problem was completely solved by Reiman and Williams
[57] for necessity and by Taylor and Williams [61] for sufficiency. The answer is:
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Theorem 3.2. The SRBM Z(·) uniquely exists if and only if R is a completely-S ma-
trix, which is a square matrix whose all principal submatrices are S-matrices, where an
ℓ-dimensional square matrix A is called an S-matrix if there is an ℓ-dimensional vector
v > 0 such that Av > 0.

It is easy to see that I − P t is a special case of a completely-S matrix because we can
choose (I−P t)−11 for the v, where 1 is the d-dimensional vector whose entries are all units.

In the remaining part of this section, we assume that R is a completely S-matrix, so
the SRBM {Z(t)} exists. We denote the covariance matrix of the Brownian motion B(t)
by Σ ≡ {σij; i, j ∈ J}, and assume that Σ is non-singular. Thus, (Σ,µ, R) is the primitive
data. Clearly, this SRBM is a Markov process with respect to filtration {Ft}, and its
dynamics is specified by Itô integration formula. Namely, let C2

b (Rd) be the set of twice
continuously differentiable and bounded functions from [0,∞) to Rd, then, for f ∈ C2

b (Rd),
computing the difference f(Z(u))−f(Z(0)) by the integration with respect to the integrator
d(X(u) +RY (u)) yields the following formula almost surely.

f(Z(u))− f(Z(0)) =

∫ t

0

(∇f(Z(u)))t(µ du+ dB(u))

+

∫ t

0

Lf(Z(u)) du+

∫ t

0

(∇f(Z(u))tRdY (u), t ≥ 0, (3.10)

where

∇f(x) =
( ∂

∂x1

f(x), . . . ,
∂

∂xd

f(x)
)t

, Lf(x) = 1

2

∑
i,j∈J

σij
∂2

∂xi∂xj

f(x).

If one is not familiar with Itô integration, he may have a trouble with the second integration
term in (3.10). This term is so called an integration by quadratic variations, which arise
from unbounded variation of the sample path of a Brownian motion. On the other hand,
the integration with respect to dB(u) in the first integration is just a Riemann integral,
whose expectation vanishes. We now have nice text books for Itô integration. For example,
Chung and Williams [15] is recommended for first reading.

We next consider a stable SRBM, that is, an SRBM which has a stationary distribution.
The stability condition has not yet been completely obtained in terms of the primitive data
for d ≥ 4 (see [7]). However, if R is an M-matrix, which is a matrix of the form I −G for
some nonnegative matrix G such that I − G is invertible, then the SRBM is stable if and
only if

R−1µ < 0. (3.11)

In particular, this is the stability condition for R = I − P t since this R is an M-matrix.
We return to a general R which is completely S, and assume that the SRBM is stable.

We denote its stationary distribution by π, and define measure νi on Rd
+ as

νi(A) = Eπ

(∫ 1

0

1(Z(u) ∈ A)dYi(u)
)
, A ∈ B(Rd

+), i ∈ J, (3.12)

where B(Rd
+) is the Borel σ-field on Rd

+, and Eπ stands for the expectation under π, that
is, under the condition that Z(0) is subject to π. Obviously, νi is a finite measure because
E(Xi(t)−Xi(0)) is bounded for t ∈ [0, 1]. In the literature (e.g., see [38]), the measure νi is
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called a Palm measure with respect to the random measure generated by Yi(·). Since Yi(t)
does not increases for Zi(t) > 0, this measure concentrates on the face Fi given by

Fi = {x ∈ Rd
+; xi = 0}.

Let us take the expectation of (3.10) under π, then it is immediate to have the part (a) of
the following theorem.
Theorem 3.3. Let R be a completely S-matrix. (a) If the SRBM has the stationary distri-
bution π, then, for f ∈ C2

b (Rd),∫
Rd
+

Lf(x)π(dx) +
∫
Rd
+

⟨∇f(x),µ⟩π(dx) +
∑
i∈J

∫
Rd
+

⟨∇f(x), R[i]⟩νi(dx) = 0, (3.13)

where ⟨a, b⟩ is the inner product atb of vectors a, b ∈ Rd, and R[i] is the i-th column of R.
(b) Conversely, if there are a probability distribution π on (Rd

+,B(Rd
+)) and finite measures

νi on (Fi,B(Fi)) for i ∈ J , then π is the stationary distribution of the SRBM, and (3.12)
holds.
Remark 3.1. (3.13) for all f ∈ C2

b (Rd) is equivalent to(1
2
⟨θ,Σθ⟩+ ⟨µ,θ⟩

)
φ̃(θ) +

∑
i∈J

⟨R[i],θ⟩φ̃i(θ) = 0, θ ≤ 0, (3.14)

where φ̃(θ) and φ̃i(θ) are the moment generating functions of the stationary distribution π
and the Palm measure νi, respectively. (3.14) is immediate from (3.13) with f(x) = e⟨θ,x⟩

for x ∈ Rd
+. The converse is also easy to see at least intuitively because Laplace transform

uniquely determines a distribution and measure on the nonnegative orthant. A detailed proof
for the converse is given in Appendix D of the arXiv version [19].

This equation (3.13) is called a basic adjoint relationship, BAR for short (e.g., see [35]).
Since (3.13) is nothing but a stationary equation, (b) must be true intuitively. However, its
proof is technically quite involving (see [17, 39]).

3.2. Basic tips for process limit

For diffusion approximation, we will consider a sequence of stochastic processes which con-
verges to some stochastic process. Recall that this limit is called a process limit. To formally
define this convergence, we need topology or metric on the set of functions. We summarize
some basic tips for them. The reader may skip this subsection if it is familiar with them.
The materials here can be found in standard text books [2, 12, 38, 64]. The book chapter
[25] is a good reference for OR readers.

Let S be a complete and separable normed space with norm ∥ · ∥S, and let C(E, S)
(D(E, S)) be the set of all functions from an interval E ⊂ R+ to S which are continuous
(are right-continuous and have left-hand limits, respectively). For E = R+, we omit E, so
C(R+, S) and D(R+, S) are simply denoted by C(S) or D(S), which we already used for
C(Rd) or D(Rd) in Section 3.1.

Stochastic processes which we consider are functions from the sample space Ω to either
C(S) or D(S). In particular, a sample path of a Brownian motion belongs to C(S) with
S = Rd, while a sample path for the GJN belongs to D(S). Thus, we need topology or
metric on both C(S) and D(S) to consider diffusion approximation. They can be defined
through metrics on C([0, t], S) and D([0, t], S) for each t > 0. Let

∥x− y∥t = sup
u∈[0,t]

∥x(u)− y(u)∥S, x, y ∈ C([0, t], S) or D([0, t], S),
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which is called a uniform norm. C([0, t], S) typically uses this uniform norm as its metric.
On the other hand, D([0, t], S) uses J1-metric, which is defined as

dJ1(x, y, t) = inf
λ∈Λ(t)

max(∥x ◦ λ− y∥t, ∥λ− λ0∥t), x, y ∈ D([0, t], S),

where Λ(t) is the set of strictly increasing and continuous function from [0, t] to [0, t], x ◦
λ(u) = x(λ(u)) and λ0(u) = u for u ∈ [0, t]. As one can see from its definition, J1-metric is
to minimize discontinuity of functions by a suitable time scaling.

Let Xn(·) ≡ {Xn(t); t ≥ 0} for n = 1, 2, . . . and X(·) ≡ {X(t); t ≥ 0} be stochastic
processes whose sample paths are in D(S). Then, Xn(·) is said to converge to X(·) in
distribution, which is denoted by Xn(·)

w−→ X(·), if, for any bounded continuous function
f from D(S) to R,

lim
n→∞

E(f(Xn(·))) = E(f(X(·))). (3.15)

We also refer to this convergence as weak convergence.
The following theorem is an immediate consequence of these definitions.

Theorem 3.4 (Continuous mapping theorem). Let g be a continuous mapping from D(S)
to D(S), and assume that Xn(·)

w−→ X(·) for the sequence of stochastic processes Xn(·) and
that of X(·) whose sample paths in D(S), then we have

g(Xn)(·)
w−→ g(X)(·).

Another useful tool is to replace convergence in distribution by almost surely conver-
gence. For this, sample paths for the sequence of stochastic processes must be suitably
chosen, but it is quite useful to prove the weak convergence of functionals of those stochas-
tic processes. A random variable version of this theorem is not hard to prove (e.g., see [3]),
but its proof is quite technical for stochastic processes.
Theorem 3.5 (Skorohod representation theorem, Theorem 6.7 of [2]). For the sequence of
stochastic processes Xn(·) and that of X(·) whose sample paths are in D(S), if Xn(·)

w−→
X(·), then there exist stochastic processes X̃n(·) and X̃(·) such that they have the same
distributions as those of Xn(·) and X(·), respectively, and X̃n(·) almost surely converges to
X̃(·) as n → ∞.

In general, verifying the convergence condition (3.15) is not easy. A typical situation is
to use a finite dimensional convergence of Xn(·) in distribution. Namely, for each k ≥ 1,
each sequence t1, t2, . . . , tk ∈ R+ and each bounded continuous function fk from Sk to R,

lim
n→∞

E(fk(Xn(t1), Xn(t2), . . . , Xn(tk))) = E(fk(X(t1), X(t2), . . . , X(tk))).

Clearly, Xn(·)
w−→ X(·) implies this finite dimensional convergence in distribution, but

its converse is generally not true although the limiting distribution of Xn(·) is uniquely
identified if it exists (e.g., see [25]). For the converse to be true, an extra condition is
required. A typical condition for this is tightness. The sequence of Xn(·) is said to be tight
if, for any ϵ > 0, there exists a compact set K of D(S) such that

lim inf
n→∞

P(Xn(·) ∈ K) > 1− ϵ.

This tightness also may not be easy to verify. So, various sufficient conditions have been
studied in the literature (e.g., see [2, 38]). Those are quite technical, and we will not get
into their details.

Another useful technique is a random change of time.
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Lemma 3.1 (Lemma on page 151 of [2]). Let {X(n)(·);n = 1, 2, . . .} be the sequence of
processes whose sample paths are in D(S), and let A(n)(·) be the sequence of non-decreasing
non-negative valued processes. If there are X(n)(·) ∈ D(S) and nondecreasing A(n)(·) such
that (X(n)(·), A(n)(·)) w−→ (X(·), A(·)) and if P(X(·) ∈ C(S)) = 1, then X(n)(·) ◦A(n)(·) w−→
X(·) ◦ A(·), where the composition f ◦ g is defined as f ◦ g(x) = f(g(x)).

We finally refer to process versions of the central limit theorems (called Lindeberg-Feller
Theorems, e.g., see Theorem 7.2.1 of [14]). They are all sources of diffusion approximation.

Theorem 3.6 (An extended version of Donsker’s theorem (e.g., see Problem 8.4 of [2])).

For each n ≥ 1, let τ
(n)
i , τ

(n)
2 , . . . be independent and identically distributed random variables

with finite mean m(n) and finite variance (σ(n))2. Assume that

lim
n→∞

σ(n) = σ > 0, (3.16)

sup
n≥1

E((τ (n))2+δ) < ∞, ∃δ > 0, (3.17)

and define X̂(n)(t) as

X̂(n)(t) =
1√
nσ(n)

[nt]∑
ℓ=1

(τ
(n)
ℓ −m(n)),

then X̂(n)(·) w−→ B(·), where [a] is the largest integer not greater than real number a, and
B(·) is the standard Brownian motion.

Remark 3.2. The conditions (3.16) and (3.17) guarantees for Lindeberg condition to hold
(see Theorem 27.3 of [3]).

A similar scaling limit can be obtained for the counting process N (n), which is defined
as

N (n)(t) = sup
{
ℓ ≥ 0;

ℓ∑
k=1

τ
(n)
k ≤ t

}
.

The next theorem is obtained from Theorem 3.6 using Lemma 3.1 (e.g., see [25] for details).

Theorem 3.7 (Counting process version of Donsker’s theorem, Theorem 14.6 of [2]). As-

sume that there exist positive and finite m and σ such that X̂(n)(·) w−→ B(·) holds under the
assumptions of Theorem 3.6. Let λ(n) = 1/m(n). Assume that

lim
n→∞

λ(n) = λ,

and define

Ẑ(n)(t) =
1

√
nσ(n)(λ(n))

3
2

(
N (n)(nt)− ntλ(n)

)
, t ≥ 0,

then Ẑ(n)(·) w−→ B(·).
From Lemma 2.2, we can see that the variance V (N (n)(t)) ∼ (λ(n))3(σ(n))2t as t → ∞.

This is the reason why σ(n)(λ(n))
3
2 appears in the normalizing factor above. For convenience

of the reader, we directly verify this fact in Appendix C.
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3.3. Process limit for diffusion approximation

We now consider a process limit of the joint queue length process {L(t)} of the GJN under
suitable scaling in time and state. A key step for obtaining this limit is to change Xi(t)
of (3.2) to the following X i(t) by replacing accumulated busy times Ui(t) and Uj(t) by
deterministic time t.

X i(t) =Nei(t)− λeit+
∑
j∈J

(
Nsj(t)− λsjt

)
(pji − δij)

+
∑
j∈J

(
Φji(Nsj(t))−Nsj(t)pji

)
+
(
λei +

∑
j∈J

λsjpji − λsi

)
t, (3.18)

where δij = 1(i = j). We denote the vector whose i-th coordinate is X i(t) by X(t).
One can guess that the process {X(t)} converges to a Brownian motion under normal-

ization. For this, we require additional conditions on the finiteness of variances. Denote
generic random variables which have the same distributions as Tei(ℓ) and Tsi(ℓ) respectively
by Tei and Tsi. In what follow, we assume:

(3a) Tei and Tsi have finite variances, which are denoted respectively by σ2
ei and σ2

si, where we
let σei = 0 for i ∈ J \ Je, and ∑

i∈J

(σ2
ei + σ2

si) > 0. (3.19)

The condition (3.19) is just to exclude a trivial case in a simple way, but can be weakened
as we will see later.

We next introduce the sequence of the GJN’s for diffusion approximation. We index those
GJN’s by positive integer n. For the n-th GJN, all random elements as well as constant
parameters are indexed by n such as T

(n)
ei (ℓ), T

(n)
si (ℓ), λ

(n)
ei , L

(n)(t), X(n)(t) and so on, while
keeping the non-indexed notations for the original GJN satisfying the assumptions (2a)–(2c)
and (3a). In particular, we will not change the routing matrix P , so R is unchanged. We
define the n-th GJN by

T
(n)
ei (ℓ) = Tei(ℓ), i ∈ Je (3.20)

T
(n)
si (ℓ) = Tsi(ℓ)−msi +

(
1− 1√

n

)
λ−1
ai , i ∈ J, (3.21)

keeping the other primitive data, where we recall that λai(≡ λ
(n)
ai ) is the total arrival rate

at node i, which is obtained by (2.7). Then, it is easy to see that

√
n
(
λ
(n)
ai − λ

(n)
si

)
= −λsi < 0, i ∈ J. (3.22)

On the other hand, the variances of T
(n)
ei and T

(n)
si are unchanged, that is,

σ
(n)
ei = σei, σ

(n)
si = σsi, i ∈ J.

Instead of those assumptions, one can choose λ
(n)
ei , λ

(n)
si , σ

(n)
ei , σ

(n)
si as long as the following two

sets of conditions are satisfied (e.g., see [56]).

(3b) limn→∞ λ
(n)
ei = λei, limn→∞ λ

(n)
si = λsi, limn→∞ σ

(n)
ei = σei, limn→∞ σ

(n)
si = σsi, and

limn→∞
√
n
(
λ
(n)
ai − λ

(n)
si

)
= ci for some ci ∈ R.
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(3c) supn≥1 E((T
(n)
ei )2+δ1(i ∈ Je) + (T

(n)
si )2+δ) < ∞ for some δ > 0.

In what follows we simply assume (3.20) and (3.21). Obviously, (3b) is satisfied for this
case, and (3c) is not needed because Lindeberg condition for the central limit theorem is
automatically satisfied in this case. For the n-th GJN, we define diffusion scaling processes
by

L̂
(n)

(t) =
1√
n
L(n)(nt), Ŷ

(n)
(t) =

1√
n
Y (n)(nt),

X̂
(n)

(t) =
1√
n
X(n)(nt), X̂

(n)
(t) =

1√
n
X(n)(nt).

We would like to show that {X̂
(n)

(t)} has the same limiting process as that of {X̂
(n)

(t)}.
For this, we use the following fact.

Lemma 3.2 (Proposition 4 of [56]). U
(n)

i (t) ≡ n−1U
(n)
i (nt) converges to t in probability as

n → ∞.
By this lemma and Lemma 3.1, we have

X̂
(n)
i (t) =

1√
n
X

(n)
i (U

(n)
i (nt)) =

1√
n
X

(n)
i (nU

(n)

i (t)) ≃ X̂
(n)

i (t), n → ∞, (3.23)

where ≃ stands to have the same distribution asymptotically as n → ∞.

Thus, for L̂
(n)

(t) to weakly converges to an SRBM, it remains to show that

X̂
(n)

i (t) =
1√
n

(
N

(n)
ei (nt)− λ

(n)
ei nt

)
+
∑
j∈J

1√
n

(
N

(n)
sj (nt)− λ

(n)
sj nt

)
(pji − δji)

+
∑
j∈J

1√
n

(
Φji(N

(n)
sj (nt))−N

(n)
sj (nt)pji

)
+
√
n
(
λ
(n)
ei +

∑
j∈J

λ
(n)
sj pji − λ

(n)
si

)
t

weakly converges to a d-dimensional Brownian motion with a constant drift term, where
λ
(n)
ei = λei by (3.20), but we keep the notation λ

(n)
ei for arguments to be parallel for service

times. Letting

N̂
(n)
ei (t) ≡ 1√

n

(
N

(n)
ei (nt)− λ

(n)
ei nt

)
,

it follows from Theorem 3.7 that

N̂
(n)
ei (·) w−→

√
λ3
eiσ

2
eiB

∗
ei(·), (3.24)

where {B∗
ei(t)} is the standard Brownian motion. We here choose {B∗

ei(t)} to be independent
for i ∈ Je.

Let N̂
(n)

e (t) is the random vector whose i-th coordinate is N̂
(n)
ei (t). We similarly define

N̂
(n)

s (t). It is immediate from (3.24) that

N̂
(n)

e (·) w−→ diag({λ
3
2
eiσei})B∗

e(·), (3.25)

where diag({ai}) is the diagonal matrix whose i-th diagonal entry is ai, and B∗
e(·) is the

d-dimensional standard Brownian motion, which means that its covariance matrix is the
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identity matrix. Note that the right-hand side of (3.25) is |Je|-dimensional Brownian motion
because λei = 0 for i ∈ J \ Je. Similarly, we have

N̂
(n)

s (·) w−→ diag({λ
3
2
siσsi})B∗

s(·), (3.26)

where B∗
s(·) is the d-dimensional standard Brownian motion. By the modeling assumptions,

we can choose B∗
s(·) to be independent of B∗

e(·).
Let χ(n)(t) be the random vector whose i-th component is given by

χ
(n)
i (t) ≡

∑
j∈J

1√
n

(
N

(n)
sj (nt)− λ

(n)
sj nt

)
(pji − δji),

then, it follows from (3.26) that

χ(n)(·) w−→ ΛχB
∗
s(·), (3.27)

where ΛχΛ
t
χ is the covariance matrix whose ik-entry is given by∑

j∈J

λ3
sjσ

2
sj(pji − δji)(pjk − δjk).

We define Φ̂
(n)

(t) as the random vector whose i-th component is given by

Φ̂
(n)
i (t) ≡ 1√

n

∑
j∈J

(
Φji([nt])− [nt]pji

)
,

and define the fluid scaling of N
(n)
sj (t) as

N
(n)

sj (t) =
1

n
N

(n)
sj (nt).

Let us compute the covariance matrix of Φ̂
(n)

(1), whose kℓ-entry is given by

1

n
E
( ∑

i,j∈J

(
Φik(n)− npik

)(
Φjℓ(n)− npjℓ

))
=

∑
i∈J

pik(δkℓ − piℓ), (3.28)

where recall that δij = 1(i = j). Let

̂
Φ(n) ◦N (n)

sj (t) =
1√
n

∑
j∈J

(
Φji(N

(n)
sj (nt))−N

(n)
sj (nt)pji

)
.

Since N
(n)

sj (t) → λsjt almost surely as n → ∞ and

1√
n

∑
j∈J

(
Φji(N

(n)
sj (nt))−N

(n)
sj (nt)pji

)
=

1√
n

∑
j∈J

(
Φji(nN

(n)

sj (t))− nN
(n)

sj (t)pji
)

≃ 1√
n

∑
j∈J

(
Φji([nλsjt])− [nλsjt]pji

)
,
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applying Lemma 3.1 yields

̂
Φ(n) ◦N (n)

sj (·) w−→ ΛΦB
∗
Φ(·), (3.29)

where B∗
Φ(·) is the d-dimensional standard Brownian motion which is independent of B∗

e(·)
and B∗

s(·), and ΛΦΛ
t
Φ is the d-dimensional covariance matrix whose ik-entry is given by∑

j∈J

λsjpji(δik − pjk),

which comes from (3.28).

Finally, the last term in the formula for X̂
(n)

i (s) is

√
n
(
λ
(n)
ei +

∑
j∈J

λ
(n)
sj pji − λ

(n)
si

)
=

√
n
(
λ
(n)
ai −

∑
j∈J

λ
(n)
aj pji +

∑
j∈J

λ
(n)
sj pji − λ

(n)
si

)
=

√
n
∑
j∈J

(λ
(n)
aj − λ

(n)
sj )(δji − pji)

= − [Rλs]i ,

where the last equality comes from (3.22).

Summarizing all the computations, we have that X̂
(n)

(·) weakly converges to the Brow-
nian motion with the covariance matrix Σ whose ik-entry Σik is

Σik = λ3
eiσ

2
eiδik +

∑
j∈J

(
λ3
sjσ

2
sj(pji − δji)(pjk − δjk) + λsjpji(δik − pjk)

)
, i, k ∈ J, (3.30)

and drift vector µ whose i-entry µi is given by

µ = −Rλs. (3.31)

Combing this with (3.23) and Theorem 3.1 and applying Theorem 3.4, we arrive at the
following theorem.
Theorem 3.8 (A version of Theorem 1 of Reiman [56]). Assume (2a)–(2c), and define the
n-th GJN by (3.20) and (3.21) and the routing matrix P , then the diffusion scaled process
{ 1√

n
L(n)(nt); t ≥ 0} converges in distribution to the SRBM {Z(t)} with the primitive data

(Σ,−Rλs, R), where Σ by (3.30). Thus, this SRBM is always stable.
Remark 3.3. If we assume (3b) and (3c) instead of (3.20) and (3.21), then the limiting
SRBM has primitive data (Σ,−Rc, R), which is stable if and only if c > 0.

The following corollary is immediate from Theorems 3.3 and 3.8 and (3.30).
Corollary 3.1. Under the assumptions of Theorem 3.8, if d = 1, then the limiting SRBM
has the stationary distribution given by

P(Z1(∞) ≤ x) = 1− exp
(
− 2

λ2
e1(σ

2
e1 + σ2

s1)
x
)
, x ≥ 0, (3.32)

where Z1(∞) is a random variable subject to the stationary distribution.

Let ρ
(n)
i = λ

(n)
ei /λ

(n)
si . Since (3.22) implies that

1√
n
= 1− ρ

(n)
i , i ∈ J,
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we have the following approximation for the stationary queue length process L(·).

L(·) ≈ diag({1− ρi})−1Z(·), (3.33)

where Z(·) is the SRBM with the primitive data (Σ,−Rλs, R).

We have not discussed about the workload process W (t). Let Ŵ
(n)

(t) = 1√
n
W (n)(nt),

then one may guess that

Ŵ
(n)

(·) w−→ diag({λsi})−1Z(·). (3.34)

and therefore, as λsi − λei ↓ 0 for all i ∈ J ,

W (·) ≈ diag({λsi − λei})−1Z(·). (3.35)

We check that (3.34) indeed holds true. For simplicity, we assume that W (n)(0) = 0
and L(n)(0) = 0. Then, using (2.4) for the n-th GJN and the fact that

U
(n)
i (nt) = V

(n)
si (N

(n)
si (U

(n)
i (nt))) + A

(n)
si (nt),

where A
(n)
si (t) is the attained service time of a customer being served at node i if any while

A
(n)
si (t) = 0 if no customer in service there, the workload representation (2.6) for the n-th

GJN is rewritten as

Ŵ
(n)
i (t) =

1√
n
V

(n)
si

(
L

(n)
i (nt) +N

(n)
si (U

(n)
i (nt))

)
− 1√

n

(
V

(n)
si (N

(n)
si (U

(n)
i (nt))) + A

(n)
si (nt)

)
=

L
(n)
i (nt)√

n

1

L
(n)
i (nt)

N
(n)
si (U

(n)
i (nt))+L

(n)
i (nt)∑

ℓ=N
(n)
si (U

(n)
i (nt))+1

T
(n)
si − 1√

n
A

(n)
si (nt).

Since L
(n)
i (nt)

a.s.−→ ∞, which can be checked by fluid approximation, we have

1

L
(n)
i (nt)

N
(n)
si (U

(n)
i (nt))+L

(n)
i (nt)∑

ℓ=N
(n)
si (U

(n)
i (nt))+1

T
(n)
si

a.s.−→ 1

λsi

, (n → ∞).

Hence, 1√
n
A

(n)
si (nt)

a.s.−→ 0 and Theorem 3.8 yields (3.34).

We have derived Theorem 3.8 along the line due to Reiman [56]. Some years later,
Chen and Mandelbaum [10] simplified a part of the proof using Skorohod representation of
Theorem 3.5. This does not have so much benefit for proving Theorem 3.8, but it does for
extensions or modifications of the GJN. A closed GJN in [10] is such an example.

3.4. Extension to many server nodes

Theorem 3.8 can be extended for the case where each node may have multiple servers and
their service times may have different distributions, while keeping i.i.d service times at each
server. This extension is already mentioned in [56], but was firstly proved in [11]. The basic
idea for this extension is called a sandwich method (see also [13] for a single node queue).
We present this extension following Chen and Shanthikumar [11].
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Assume that node i has ci servers and the j-th server there has service times {Tsij(ℓ)}
with finite mean service time µ−1

sij and variance σ2
sij. Define the counting process of departures

from this server by Nsij(t) as

Nsij(t) = sup
{
n ≥ 0;

n∑
ℓ=1

Tsij(ℓ) ≤ t
}
,

and let Uij(t) be the total time when the j-th server at node i is busy in the time interval
[0, t]. Then, for the GJN with multiple servers at nodes, Xi(t) of (3.2) are changed to

Xi(t) =Nei(t)− λeit+
∑
j∈J

cj∑
k=1

(
Nsjk(Ujk(t))− λsjkUjk(t)

)
pji

+
∑
j∈J

cj∑
k=1

(
Φji(Nsjk(Ujk(t)))−Nsjk(Ujk(t))pji

)
−

ci∑
k=1

(Nsik(Uik(t))− λsikUik(t)) +
(
λei +

∑
j∈J

cj∑
k=1

λsjkpji −
ci∑

k=1

λsik

)
t, (3.36)

but we can keep L(t) of (3.1) with X(t) whose i-th component is this Xi(t). However,
we can not uniquely determine L(t) and Y (t) by (3.1) and (3.4) obviously because the
information for Uik(t) is not sufficient, where

Yi(t) =

ci∑
k=1

λsik(t− Uik(t)).

We modify X(t) similar to X(t) of (3.18) as

X i(t) =Nei(t)− λeit+
∑
j∈J

cj∑
k=1

(
Nsjk(t)− λsjkt

)
(pji − δij)

+
∑
j∈J

cj∑
k=1

(
Φji(Nsjk(t))−Nsjk(t)pji

)
+
(
λei +

∑
j∈J

cj∑
k=1

λsjkpji −
ci∑

k=1

λsik

)
t. (3.37)

We next let (ϕ(X),Ψ(X)) be the reflection map for (3.1) and (3.4) with X(·) of (3.37).
Since Ψ(X) is the minimal solution, we have

Ψ(X)(t) ≤ Y (t). (3.38)

On the other hand, for the d-dimensional vector c whose i-th component is the number of
servers ci at node i, it can be shown that Ψ(X − c) is the maximal element in the set:{

y ∈ T ; (xi(t) + [Ry(t)]i)dyi(t) ≤ ci, i ∈ J,∀t ≥ 0
}
,

where where T is the set of non-decreasing functions, and therefore

Y (t) ≤ Ψ(X − c)(t). (3.39)

Thus, we have

Ψ(X)(t) ≤ Y (t) ≤ Ψ(X − c)(t).
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We are now ready to introduce the sequence of the GJN with multiple servers at each
node. For the n-th GJN, we use the following notation at each node i. The mean arrival
rate and the variance of the inter-arrival time are denoted by λ

(n)
ei and (σ

(n)
ei )2, which are the

same as those for the single server case. For the j-th server of node i, the mean service rate
and the variance of the service time are denoted by λ

(n)
sij and (σ

(n)
sij )

2. We assume that there
exist constants λei, λsik, hei and hsik such that

lim
n→∞

√
n(λ

(n)
ei − λei) = hei, lim

n→∞

√
n(λ

(n)
sij − λsij) = hsij, (3.40)

λei +
∑
j∈J

cj∑
k=1

λsjkpji −
ci∑

k=1

λsik = 0, lim
n→∞

σ
(n)
ei = σei, lim

n→∞
σ
(n)
sij = σsij, (3.41)

sup
n≥1

E
(
(T

(n)
ei )2+δ +

cj∑
j=1

(T
(n)
sij )

2+δ
)
< ∞, ∃δ > 0. (3.42)

Then, (3.38), (3.39) and (3.37) for the n-th GJN concludes the following theorem.
Theorem 3.9 (Theorem 5.2 of [11]). Under the assumptions (3.40) (3.41) and (3.42), the

diffusion scaled process L̂(n)(·) ≡ { 1√
n
L(n)(nt); t ≥ 0} converges in distribution to the SRBM

Z(·) with the primitive data (Σ,µ, R), where Σ and µ are given by

Σik = λ3
eiσ

2
eiδik +

∑
j∈J

cj∑
ℓ=1

(
λ3
sjℓσ

2
sjℓ(pji − δji)(pjk − δjk) + λsjℓpji(δik − pjk)

)
,

µi = hei +
∑
j∈J

cj∑
k=1

hsjkpji −
ci∑

k=1

hsik.

This theorem tells us that the diffusion approximation for the GJN with heterogeneous
many servers at all nodes is identical with that for the GNJ with single servers at all nodes
with the mean service rate and the variance of service times at node j, respectively, given
by

∑cj
ℓ=1 λsjℓ and ( cj∑

ℓ=1

λsjℓ

)−3
cj∑
ℓ=1

λ3
sjℓσ

2
sjℓ.

In particular, if servers are identical at each node, that is, λsjℓ = λsj and σsjℓ = σsj, then
the above variance becomes σ2

sj/c
2
j , and therefore the result is compatible with Kingman’s

conjecture for the stationary waiting time in the GI/GI/k queue for k = cj, which is proved
by Köllerström [46].

4. Quality of the diffusion approximation

We have discussed about the diffusion approximation through a process limit. This may

not imply the weak convergence for the stationary distribution. Let L̂
(n)

(∞) and Z(∞) be

random vectors subject to the stationary distributions of the diffusion scaled process L̂
(n)

(·)
and the SRBM Z(·), respectively. Then, the following implication, which is referred to as
continuity of the stationary distribution, is important for application because the stationary
distribution is widely used for performance evaluation.

L̂
(n)

(·) w−→ Z(·) implies L̂
(n)

(∞)
w−→ Z(∞). (4.1)
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However, this continuity does not automatically hold in general, and it requires a proof.
Similar continuity also may be considered for characteristics of the stationary distribution
such as moments and tail asymptotics. Those continuity can be considered as quality
support for the diffusion approximation, and therefore their verifications are important for
application. In this section, we review the current status for those continuity.

4.1. Continuity of the stationary distribution and its moments

As already mentioned in Section 1, this continuity has been verified by Gamarnik and Zeevi
[24] and Budhiraja and Lee [8]. They use the fact that the tightness for the sequence of

L̂
(n)

(∞), that is, the sequence of the stationary distributions, is sufficient to prove (4.1).
This is because we can construct a stationary process for the n-th GJN taking its station-
ary distribution as the initial distribution at time 0 and choose the subsequence of those
stationary distributions which weakly converges to a distribution by the tightness.

In [24], uniformly light tails over n (see (1) and (2) of [24] for their precise definitions)

are assumed for sequences of the inter-arrival time T
(n)
ei and the service time T

(n)
si , where

we dropped the index (ℓ) from T
(n)
ei (ℓ) and T

(n)
si (ℓ). This convention for indexed random

variables will be used in what follows if their distributions are only concerned. Then, it is
proved that there are positive constants a1 and a2 for a positive vector w ∈ Rd such that

P(⟨w, L̂
(n)

(∞)⟩ > x) ≤ a1e
−a2x, ∀x > 0.

See Theorem 7 of [24]. This is a stronger result more than what is needed for the tightness,
and gives an exponential upper bound for the tails of the stationary distribution of the
corresponding SRBM, which implies that the moment with any order has the continuity.
Furthermore, a finer upper bound is obtained in [24]. However, those bounds may not be so
interesting because a stable SRBM is known to have the light tailed stationary distribution
if reflection matrix R is an M-matrix.

In [8], (4.1) is proved under the standard uniformly integrable assumptions for (T
(n)
ei )2

and (T
(n)
si )2. Furthermore, they proved that, if E([T (n)

ei ]p) for i ∈ Je and E([T (n)
si ]p) for i ∈ J

are uniformly finite over n and if certain asymptotic condition on N
(n)
ei (·) and N

(n)
si (·) are

satisfied (see (i) in (A8.p) of [8]), then the moment with order less than p of the stationary
distribution also has the continuity (see Theorem 3.1 of [8]). However, it is known from
the finite moment condition for the GI/GI/1 queue that E([Li]

p+1) = ∞ if E([Tsi]
p) = ∞

at least for i ∈ Je (e.g., see Theorem 2.1 of Section X of [1]). Thus, we can not have the
continuity for the (p+ 1)-th moment of the stationary distribution in this case because the
limiting distribution, which is the stationary distribution of the SRBM, always has light tail
and therefore has finite moments for all order (e.g., see [4]). We may say that the diffusion
approximation by SRBM is not good if service time distributions have heavy tails although
the continuity holds for the stationary distribution as long as the uniformly integrability
holds.

As we demonstrated in Section 2.4, the continuity of the stationary distribution has
been directly verified for the single node case of the GJN. As suggested there, the same
verification may be possible for a general GJN. Since no time scaling is required for this
limiting operation, this continuity has a stronger aspect than the obtained in [8] and [24].
Furthermore, more information on the convergence may be obtained. In fact, we will see
such an example for the tail decay rate of the stationary distribution in the next section.
However, a large part of this approach is still open for future study.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Diffusion approximation for queueing networks 131

4.2. Continuity of the tail decay rate of the stationary distribution

The continuity of the tail decay rate of the stationary distribution is studied for a feedfor-
ward queueing network with deterministic service times by Majewski [49]. This network is
assumed to have multi-class customers and FCFS discipline. See Section 5 for a multi-class
queueing network. It seems that the feedforward assumption and deterministic service times
greatly simplifies arguments but its application is limited. It is claimed that the continuity
holds for the tail decay rate, precisely, for the large deviations rate function (see Theorem
9 of [49]).

For a general routing but single-class and two node GJN, the author [52] recently ob-
tained the tail decay rate of the marginal stationary distribution in an arbitrary direction,
assuming a Markov modulated Poisson arrivals and phase type service time distributions,
which includes the special case that an arrival process is renewal with a phase type inter-
arrival distribution. For simplicity, we assume this renewal arrival.

In the rest of this subsection, we will discuss the continuity on those decay rates. Assume
that d = 2. Recall that Nei(t) is the number of exogenous arrivals at node i during the time
period [0, t], and define the logarithmic generating functions similar to (2.24) as

γei(θ) = lim
t→∞

1

t
logE(eθNei(t)), i = 1, 2. (4.2)

Because Tei has a phase-type distribution, the assumption (2d) is satisfied for Tei, and
therefore these functions are well defined for all θ ∈ R. We similarly define γsi(θ) for the
counting process Nsi(t) for service completions, that is, departures, from node i during a
busy period.

Similarly in Section 2.4, we denote the moment generating functions of Tui is denoted
by

F̃ui(θ) = E(eθTui), u = e, s, i = 1, 2,

then we have the following facts similar to Lemma 2.1.

Lemma 4.1. F̃ui has a unique inverse F̃−1
ui whose domain is R, and, for u = e, s and

i = 1, 2,

γui(θ) = −F̃−1
ui (e

−θ), θ ∈ R. (4.3)

We next consider a logarithmic moment generating function for customers’ movement
at their departure. Recall that departures from node i are routed to node j according to
the Markovian routing function Φij(·). Hence, if a server at node i is busy for all time up
to t, then we define the logarithmic moment generating function for departing and routing
customers for busy node i as

γdi(θ) = lim
t→∞

1

t
logE(e−θiNsi(t)+θ3−iΦi(3−i)(Nsi(t))), θ ≡ (θ1, θ2) ∈ R2.

Let ti(θ) = e−θi(pi0 + pije
θj) for j = 3− i, then it is not hard to see that

γdi(θ) = lim
t→∞

1

t
logE(ti(θ)Nsi(t))

= lim
t→∞

1

t
logE(eNsi(t) log ti(θ)) = γsi(log ti(θ)). (4.4)
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We are now ready to present main results. For this, we need some notations. Let

γ+(θ) = γe1(θ1) + γe2(θ2) + γd1(θ) + γd2(θ),

which stands for the logarithmic generating function for the total net flow. The following
notations are geometric objects.

Γ = {θ ∈ R2; γ+(θ) < 0}, ∂Γ = {θ ∈ R2; γ+(θ) = 0}, ,
Γi = {θ ∈ Γ; t3−i(θ) > 1}, ∂Γi = {θ ∈ ∂Γ; t3−i(θ) > 1}, i = 1, 2,

Γmax = {θ ∈ R2; ∃θ′ ∈ ∂Γ,θ < θ′}.

Let φ(θ) ≡ E(e⟨θ,L(∞)⟩) be the moment generating function of L(∞) subject to the
marginal stationary distribution with respect to the numbers of customers at nodes 1 and
2, and define D as

D = the interior of {θ ∈ R2;φ(θ) < ∞},

which is referred to as a convergence domain of φ. Denote the two extreme points of Γi by

θ(i,Γ) = argθ∈R2 sup{θi ≥ 0;θ ∈ ∂Γi}, i = 1, 2.

Using these points, we define the vector τ by

τ1 = sup{θ1 ∈ R;θ ∈ ∂Γ1; θ2 < θ
(2,Γ)
2 },

τ2 = sup{θ2 ∈ R;θ ∈ ∂Γ2; θ1 < θ
(1,Γ)
1 }.

We refer to the following results (see [52] for their proofs).
Theorem 4.1 (Theorems 3.1 and 3.3 of Miyazawa [52]). For the two node generalized
Jackson network under phase type setting, if it is stable, then D = {θ ∈ Γmax;θ < τ}, and,
for any non-zero vector c ≥ 0,

lim
x→∞

1

x
logP(⟨c,L(∞)⟩ > x) = − sup{u > 0;uc ∈ D}. (4.5)

Note that this theorem shows that the decay rates are determined by (4.2) and (4.4).
Hence, we can expect that Theorem 4.1 hold beyond the phase-type setting and more general
routing mechanism.

It is also notable that these decay rates are obtained in the exactly same way as those
of the stationary distribution of the two-dimensional SRBM (see Theorems 2.1, 2.2 and 2.3
of [18]). To prove the continuity of the decay rates, we here briefly present results in [18].

Let {(Z(t),Y (t))} be the two dimensional SRBM with the primitive data (Σ,µ, R), and
assume that R is a completely-S matrix and the stability condition R−1µ < 0 is satisfied.
Define the following functions and sets.

γ̃+(θ) =
1

2
⟨θ,Σθ⟩+ ⟨µ,θ⟩, γ̃i(θ) = ⟨R[i],θ⟩, i = 1, 2,

Γ̃ = {θ ∈ R2; γ̃+(θ) < 0}, Γ̃i = {θ ∈ Γ̃; γ̃3−i(θ) < 0},
Γ̃max = {θ ∈ R2;∃θ′ ∈ Γ̃,θ < θ′},

where we recall that R[i] is the i-th column of R. Let Z(∞) be a random vector subject
to the stationary distribution of {Z(t)}. Note that this stationary distribution is uniquely
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determined by γ̃+ and γ̃i (see Remark 3.1 for its reason). Recall that φ̃(θ) = E(e⟨θ,Z(∞)⟩).
Define the convergence domain of φ̃(θ) as

D̃ = the interior of {θ ∈ R2; φ̃(θ) < ∞}.

We also define θ̃
(i,Γ)

and τ̃ in the exactly same way as θ(i,Γ) and τ . Then, similar to
Theorem 4.1, we have the following results from Theorems 2.1, 2.2 and 2.3 in [18], in which
finer tail asymptotics are obtained, but we do not use them here.
Theorem 4.2 (Dai and Miyazawa [18]). For the two node generalized Jackson network

under phase type setting, if it is stable, then D̃ = {θ ∈ Γ̃max;θ < τ̃}, and, for any non-zero
vector c ≥ 0,

lim
x→∞

1

x
logP(⟨c,Z(∞)⟩ > x) = − sup{u > 0;uc ∈ D̃}. (4.6)

We now consider the sequence of the GJNs whose joint queue length processes under
diffusion scaling weakly converge to a stable SRBM. For this, we use the same notations
and assumptions in Section 2. For example, recall that λ

(n)
ei , λ

(n)
si and (σ

(n)
ei )2, (σ

(n)
si )2 are the

arrival and service rates and the variances of the inter-arrival and service times, respectively.
We assume the heavy traffic condition (3b) with ci = λai−λsi and regularity condition (3c).
Then, the covariance matrix Σ and the drift vector µ of this SRBM are given by (3.30)
and (3.31), respectively, and R = I − P t. The logarithmic generating function of the n-th
system under diffusion scaling is defined as

γ̂
(n)
ui (θ) = lim

t→∞

1

t
logE(eθ

1√
n
N

(n)
ui (nt)

) = nγ
(n)
ui

( 1√
n
θ
)
, u = e, s. (4.7)

Hence, by Lemmas 2.2 and 4.1, for u = e, s,

γ̂
(n)
ui (θ) = −n(F̃

(n)
ui )−1

(
e
− θ√

n
)
=

√
nλ

(n)
ui θ +

1

2
(λ

(n)
ui )

3(σ
(n)
ui )

2θ2 + o(1),

and therefore it follows from (4.4) that, for i = 1, 2 and j = 3− i,

γ̂
(n)
di (θ) = −n(F̃

(n)
si )−1

(
e
− log ti

(
1√
n
θ
))

= n

(
λ
(n)
si log ti

(
1√
n
θ

)
+

1

2
(λ

(n)
si )

3(σ
(n)
si )2 log2 ti

(
1√
n
θ

))
+ o(1)

=
√
nλ

(n)
si (−θi + pijθj) +

1

2
λ
(n)
si pij(1− pij)θ

2
j +

1

2
(λ

(n)
si )

3(σ
(n)
si )2(θi − θj)

2 + o(1).

From these facts, we can see that

lim
n→∞

γ̂
(n)
+ (θ) = γ̃+(θ), lim

n→∞
(−(λ

(n)
si

√
n)−1)γ̂

(n)
di (θ) = γ̃i(θ), i = 1, 2. (4.8)

Thus, in the view of Theorems 4.1 and 4.2, we are very close to have the continuity of the
decay rates. However, the second equation of (4.8) is a bit short to prove the following
theorem. We give a complete proof in Appendix D.
Theorem 4.3. For a sequence of two node GJNs with phase type T

(n)
e ≡ Te and T

(n)
s , if they

are stable and satisfy the condition (3.21), then the convergence domain D(n) of the moment
generating function of the stationary distribution of the n-th GJN converges to the domain
D̃ for the limiting SRBM, and therefore the decay rate of ⟨c,L(n)(∞)⟩ for any non-zero
c ≥ 0 converges to that of the limiting SRBM.
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5. Multi-class queueing network

We discuss how diffusion approximation is obtained for a multi-class queueing network with
FCFS service discipline, following Williams [66]. We modify the GJN for this. We denote the
set of customer types by K ≡ {1, 2, . . . , c}. Type k customers are served only at node β(k),
and changed to type k′ customer after service completion with probability pkk′ independent
of everything else. Similarly, Tei and Tsi are changed to Tek and Tsk, respectively, for k ∈ K.

Let Nek(t), Nak(t), Nsk(t), Ndk(t) be the counting processes for exogenous arrivals, total
arrivals, potential service completions, departures of type k customers. Let Lk(t), Uk(t)
be the number of customers and the accumulated service time for type k customers. Let
Wi(t), Yi(t) be the workload and the accumulated idle time at node i at time t, respectively.
For simplicity, we assume that L(0) = 0 and W (0) = 0. Then, they satisfy the following
set of equations for i ∈ J and k ∈ K. Recall that the composition f ◦ g is defined as
f ◦ g(x) = f(g(x)) for appropriate functions f and g.

Nak(t) = Nek(t) +
∑
k′∈K

(Φk′k ◦Ndk′)(t), (5.1)

Lk(t) = Nak(t)−Ndk(t), (5.2)

Ndk(t) = (Nsk ◦ Uk)(t), (5.3)

Wi(t) =
∑
k∈K

cik(Vsk ◦Nak)(t)− t+ Yi(t), (5.4)

Yi(t) = t−
∑
k∈K

cikUk(t), (5.5)∫ t

0

Wi(u)dYi(u) = 0, (5.6)

where cik = 1(β(k) = i). One can see that (5.2) with (5.1), (5.4) with (5.5), and (5.6) are
parallel to (2.4), (2.6) and (3.7) of a single-class queueing network. An essential feature
here is that the workload W (t) plays a key role while the queue length L(t) did so in the
single-class case. It also indicates the lack of information because L(t) is higher dimensional
than W (t). To fill this gap, we need to specify service discipline among customer types at
each node.

Once the service discipline is specified, we can fully characterize W (t) and L(t) by (5.1)–
(5.6). For example, if the service discipline is FCFS independent of types, then the following
conditions are sufficient.

Nak(t) = Ndk(t+Wβ(k)(t)), (5.7)

which represents that the type k customers arriving up to time t will depart up to time
t + Wβ(k)(t). However, this is said in principle, and it is almost impossible to compute
them. On the other hand, one may guess that the number of each type customers in node
i would be proportional to their arrival rate in heavy traffic because the queue there would
be very long and service does not discriminate types. This is called a state-space collapse,
which will be formally defined below. Thus, if the state-space collapse occurs, then we may
compute L(t) from the lower dimensional W (t). This is exactly a key idea to get diffusion
approximation for a multi-class queueing network.

We now introduce the sequence of the multi-class GJN’s. They are indexed by natural
numbers similar to those of the single-class GJN’s. Thus, the n-th system have the following
notations. T

(n)
ek (ℓ) and T

(n)
sk (ℓ) are the inter-arrival (from the outside) and service times of
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type k customers. It is assume that they are i.i.d. for each fixed n and k ∈ K. Counting
processes of type k customers and their mean rates are denoted by N

(n)
uk (t) and λ

(n)
uk for

u = e, a, s, d. Routing function, the number of type k customers, the total workload brought
by ℓ customers of type k are denoted by Φ

(n)
kk′(ℓ), L

(n)
k (t), V

(n)
sk (ℓ) for k ∈ K. The workload

and total idle time at node i are denoted by W
(n)
i (t), Y

(n)
i (t) for i ∈ J . Vectors and matrix

whose entries are given by them are denoted by N (n)
u (t) and λ(n)

u for u = e, a, s, d, Φ(n)(ℓ),
L(n)(t), V (n)

s (ℓ), W (n)(t) and Y (n)(t), respectively. We also introduce |K| × |K| matrices

P ≡ {pkk′ ; k, k′ ∈ K} and M (n) ≡ diag({m(n)
sk ; k ∈ K}), d×K matrix C ≡ {1(β(k) = i); i ∈

J, k ∈ K}, where m
(n)
sk = (λ

(n)
sk )

−1. We define the traffic intensity ρ
(n)
k = λ

(n)
ak m

(n)
sk , where the

total arrival rate of type k customer λak is given by

λ(n)
a = (I − P t)−1λ(n)

e .

We define fluid scaling versions of the above processes as

N
(n)

uk (t) =
1

n
N

(n)
uk (nt), Φ

(n)

kk′(t) =
1

n
Φ

(n)
kk′([nt]),

L
(n)

k (t) =
1

n
L
(n)
k (nt), V

(n)

sk (t) =
1

n
V

(n)
sk ([nt]),

W
(n)

i (t) =
1

n
W

(n)
i (nt), Y

(n)

i (t) =
1

n
Y

(n)
i (nt).

Similarly, diffusion scaling versions are defined as

N̂
(n)
uk (t) =

1√
n

(
N

(n)
uk (nt)− λ

(n)
uk nt

)
, Φ̂

(n)
kk′(t) =

1√
n

(
Φ

(n)
kk′([nt])− pkk′ [nt]

)
L̂

(n)
k (t) =

1√
n
L
(n)
k (nt), V

(n)

sk (t) =
1√
n

(
V

(n)
sk ([nt])−m

(n)
sk [nt])

)
,

Ŵ
(n)
i (t) =

1√
n
W

(n)
i (nt), Ŷ

(n)
i (t) =

1√
n
Y

(n)
i (nt),

̂
V

(n)
sk ◦N (n)

ak (t) =
1√
n

(
V

(n)
sk ◦N (n)

ak (nt)− λ
(n)
ak m

(n)
sk nt

)
,

̂
Φ

(n)
kk′ ◦N

(n)
dk (t) =

1√
n

(
Φ

(n)
kk′ ◦N

(n)
dk (nt)− λ

(n)
dk p

(n)
kk′nt

)
.

From those definitions, we have

Φ̂
(n)
k′k(N

(n)

dk′(t)) =
1√
n

(
Φ

(n)
k′k(N

(n)
dk′ (nt))− pk′kN

(n)
dk′ (nt)

)
=

̂
Φ

(n)
k′k ◦N

(n)
dk′ (t)− pk′kN̂

(n)
dk′ (t). (5.8)

Similarly,

V̂
(n)
sk (N

(n)

ak (t)) =
̂

V
(n)
sk ◦N (n)

ak (t)−m
(n)
sk N̂

(n)
ak (t). (5.9)

Substituting (5.8) into the n-th diffusion scaling version of (5.1), we have

N̂
(n)
ak (t) = N̂

(n)
ek (t) +

∑
k′∈K

̂
Φ

(n)
k′k ◦N

(n)
dk′ (t)

= N̂
(n)
ek (t) +

∑
k′∈K

(
Φ̂

(n)
k′k(N

(n)

dk′(t)) + pk′kN̂
(n)
dk′ (t)

)
.
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Substituting the n-th diffusion scaling version of (5.2) into this equation, we have

N̂
(n)
ak (t) = N̂

(n)
ek (t) +

∑
k′∈K

(
Φ̂

(n)
k′k(N

(n)

dk′(t)) + pk′k(N̂
(n)
ak′ (t)− L̂

(n)
k′ (t))

)
,

which is expressed as, in vector-matrix notation,

N̂
(n)

a (t) = N̂
(n)

e (t) +
∑
k′∈K

Φ̂
(n)

k′ (N
(n)

dk′(t)) + P t(N̂
(n)

a (t)− L̂
(n)

(t)).

Hence, multiplying Q ≡ (I − P t)−1 from the left, we have

N̂
(n)

a (t) = QN̂
(n)

e (t) +Q
∑
k′∈K

Φ̂
(n)

k′ (N
(n)

dk′(t))−QP tL̂
(n)

(t). (5.10)

We further substitute (5.10) into the n-th diffusion version of (5.4), then, using (5.9)
and again (5.10), arrive at

Ŵ
(n)

(t) = C ̂V (n)
s ◦N (n)

a (t) +
√
nt(ρ(n) − 1) + Ŷ

(n)
(t)

= C
(
V̂

(n)

s (N
(n)

a (t)) +M (n)N̂
(n)

a (t)
)
+
√
nt(ρ(n) − 1) + Ŷ

(n)
(t)

= C
(
V̂

(n)

s (N
(n)

a (t)) +M (n)Q(N̂
(n)

e (t) +
∑
k′∈K

Φ̂
(n)

k′ (N
(n)

dk′(t))
)

− CM (n)QP tL̂
(n)

(t) +
√
nt(ρ(n) − 1) + Ŷ

(n)
(t). (5.11)

We now formally define the state space collapse according to [65].

Definition 5.1. State space collapse is said to hold for K × J nonnegative matrix ∆(n),
which is called a lifting matrix, if ki-entry of ∆(n) vanishes if β(k) ̸= i and, for each t ≥ 0,

∥L̂
(n)

(·)−∆(n)Ŵ
(n)

(·)∥t
P−→ 0, n → ∞, (5.12)

where
P−→ stands for convergence in probability.

Assume that state space collapse holds for the sequence of lifting matrices ∆(n), and
∆(n) converges to ∆ ̸= 0. In particular, we assume FCFS service discipline. Then, as we
expected, it can be proved that the condition (5.12) holds if

∆
(n)
ki =

λ
(n)
ak∑

β(k)=i λ
(n)
ak m

(n)
sk

, (5.13)

and therefore

CM (n)∆(n) = I. (5.14)

We write the condition (5.12) as

L̂
(n)

(t) = ∆(n)Ŵ
(n)

(t) + ϵ̂(n)(t) with ∥ϵ̂(n)(t)∥t
P−→ 0, n → ∞,
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and substitute L̂
(n)

(t) into (5.11), then we have

(I + CM (n)QP t∆(n))Ŵ
(n)

(t) =C
(
V̂

(n)

s (N
(n)

a (t)) +M (n)Q(N̂
(n)

e (t) +
∑
k′∈K

Φ̂
(n)

k′ (N
(n)

dk′(t))
)

− CM (n)QP tϵ̂(n)(t) +
√
nt(ρ(n) − 1) + Ŷ

(n)
(t). (5.15)

Define G(n) as

G(n) = CM (n)QP t∆(n).

Because of (5.14), we have

I +G(n) = CM (n)(I +QP t)∆(n) = CM (n)Q∆(n). (5.16)

We now assume the heavy traffic conditions: For some constant ck ∈ R,

λ
(n)
ek → λek, m

(n)
sk → msk,

√
n(ρ

(n)
k − 1) → ck, (5.17)

where ρk = λakmsk and λak is given by

λa = Qλe.

For diffusion approximation, we assume the finiteness of variances. Let

(σ
(n)
ek )2 = E((T (n)

ek (1))2), (σ
(n)
sk )2 = E((T (n)

sk (1))2), k ∈ K,

where we use the convention that (σ
(n)
ek )2 = 0 if λ

(n)
ek = 0, and assume that

σ
(n)
ek → σek, σ

(n)
sk → σsk. (5.18)

Because we did not choose specific sequences for the inter-arrival times T
(n)
ek (ℓ) and the ser-

vice times T
(n)
sk (ℓ) as we did for the single-class GJN, we here require the following Lindeberg

type conditions.

max
k∈K

sup
n∈N

E
(
(T

(n)
ek (1))2;T

(n)
ek (1) > n) → 0, (5.19)

max
k∈K

sup
n∈N

E
(
(T

(n)
sk (1))2;T

(n)
sk (1) > n) → 0. (5.20)

Under these assumptions, it can be proved the following convergence in distribution.

V̂
(n)

s (N
(n)

a (t))
w−→ diag({λ

1
2
skσsk})B∗

s(·) (5.21)

N̂
(n)

e (t)
w−→ diag({λ

3
2
ekσek})B∗

e(·) (5.22)

Φ̂
(n)

k′ (N
(n)

dk′(t))
w−→ λ

1
2

ak′Γk′B
∗
k′(·), (5.23)

where B∗
s(·), B∗

e(·) and B∗
k(·) are independent |K|, |Ke| and |K| dimensional standard

Brownian motions, and Γk′Γ
t
k′ is the K ×K covariance matrix defined by

[Γk′Γ
t
k′ ]ℓℓ′ =

{
pkℓ(1− pkℓ), ℓ′ = ℓ,
−pkℓpkℓ′ , ℓ′ ̸= ℓ.
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Let G = limn→∞ G(n), and assume that I +G is invertible. Let R ≡ (I +G)−1. Taking
(5.15) and (5.21)–(5.23) into account, define X(t) as

X(t) = RC
(
Λ

1
2 diag({σsk})B∗

s(t) +MQ
(
diag({λ

3
2
ekσek})B∗

e(t)

+
∑
k′∈K

λ
1
2

ak′Γk′B
∗
k′(t)

))
+ tRc.

Since R(n) ≡ (I+G(n))−1 is well defined for sufficiently large n, and for such n, (5.15) is can
be written as

Ŵ
(n)

(t) =X(n)(t) +R(n)Ŷ
(n)

(t), (5.24)

where

X(n)(t) =R(n)C
(
V̂

(n)

s (N
(n)

a (t)) +M (n)Q(N̂
(n)

e (t) +
∑
k′∈K

Φ̂
(n)

k′ (N
(n)

dk′(t))
)

−R(n)CM (n)QP tϵ̂(n)(t) +
√
ntR(n)(ρ(n) − 1).

It can be shown that X(n)(·) w−→ X(·). Furthermore, Ŷ
(n)
k (t) increases only when

Ŵ
(n)
k (t) = 0. Similar to the reflection mapping, if R is a completely S-matrix, this suggests

that (5.24) implies that there are unique nonnegative W (·) and Y (·) such that

W (t) =X(t) +RY (t), (5.25)

This implication is actually proved in [67]. One also needs to check the tightness for
W (n)(·) w−→ W (·) and Y (n)(·) w−→ Y (·).
Theorem 5.1 (Theorem 7.1 of [66]). Under the assumptions (5.17) and (5.18)–(5.23), if the
service discipline is FCFS and if I+G is invertible and its inverse is a completely S-matrix,
then we have

(X(n)(·),W (n)(·),Y (n)(·),L(n)(·)) w−→ (X(·),W (·),Y (·),L(·)).

Furthermore, this convergence still holds for any head of line service discipline as long as
the state collapse condition holds for some sequence ∆(n) converging ∆.

For the multi-class GJN, there is no results about the continuity of the stationary dis-
tribution. The difficulty for this case is remarked in Section 5 of [24].

6. Halfin-Whitt regime

As we have observed in Section 3.4, the diffusion approximation by SRBM is still possible
for the GJN with many server nodes. However, it ignores the influence of the number
of idle servers which varies from 0 to the total number of servers at one node. So, the
approximation may be too coarse. On the other hand, if there are infinitely many servers at
a node, one may apply the central limit theorem to get asymptotics for approximation. In
this case, there is no queue, and this is another extreme. Furthermore, the limiting process
is Gaussian, and therefore not a diffusion process. So, we will not discuss about them.
Comprehensive discussions about such a limiting process is found in Section 9 of [25].

One may wonder what approximation is possible between those two extremes. This
motivated Halfin and Whitt [27] to increase the number n of servers as well as the arrival rate
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of customers in a single queue with many servers while keeping service time distributions.
In this case, a network model may be too complicate because different nodes may have
different numbers of customers. So, this type of limits has been studied mainly for a single
node, that is, a single queue. We here refer to results in [27] for such a model.

Assume that the n-th system has n servers, and let L(n)(t) be the number of customers
in system at time t. Customers arrives according to a renewal process, and their service
times are i.i.d.. An arriving customer has to wait if all servers are busy. An important
assumption here is that the service time distribution is exponential. This is the crucial
assumption which makes analysis possible and results tractable.

We will use the following notations. λ(n) is the arrival rate of customers, µ is the service
rate, ρ(n) = λ(n)/(nµ). We assume the following heavy traffic condition. There is a constant
β such that

lim
n→∞

√
n(1− ρ(n)) = β, β > 0. (6.1)

We further assume the following condition on the moments of the inter-arrival time T (n)(ℓ)
for the n-th system.

lim
n→∞

(λ(n))2V ar(T (n)(1)) = c2, (6.2)

sup
n≥1

(λ(n))3E((T (n)(1))3) < ∞. (6.3)

Define the following diffusion scaling for the number of customers in system.

L̃(n)(t) =
1√
n
(L(n)(t)− n).

The following theorems are obtained by Halfin and Whitt [27].

Theorem 6.1 (Theorem 3 of [27]). Assume (6.1)–(6.3). If L̃(n)(0)
w−→ Z(0), then L̃(n)(·) w−→

Z(·), where Z(·) ≡ {Z(t); t ≥ 0} is a diffusion process characterized by the following stochas-
tic integration.

Z(t) = Z(0) +

∫ t

0

σ(Z(u))dB(u) +

∫ t

0

m(Z(u))du, t ≥ 0, (6.4)

where B(·) is the standard Brownian motion, and σ2(x) and m(x) are given by

m(x) = −µ(β + µx1(x < 0)), σ2(x) = µ(1 + c2).

Theorem 6.2 (Theorem 4 of [27]). Assume (6.1)–(6.3), and let L̃(n)(∞) and Z(∞) be

random variables subject to the stationary distributions of L̃(n)(·) and Z(·), respectively, of
Theorem 6.1, then L̃(n)(∞)

w−→ Z(∞). Furthermore, let β∗ = 2β/(1 + c2) and let ΦN(x) be
the standard normal distribution function, then

lim
n→∞

P(L(n) ≥ n) = P(Z(∞) ≥ 0) = (1 +
√
2πβ∗ΦN(β

∗)exp((β∗)2/2))−1,

and

P(Z(∞) > x|Z(∞) ≥ 0) = e−xβ∗
, x > 0,

P(Z(∞) ≤ x|Z(∞) ≤ 0) =
ΦN(β

∗ + x)

ΦN(β∗)
, x ≤ 0.
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This approximation is popular for the performance evaluation of call centers, and there
have been several attempts for its generalization concerning the service time distribution
(e.g., see [23, 55]). In particular, Reed [55] identifies the limiting process Z(·) for L̃(n)(·) as
the solution of a certain integral equation. However, it is hard to see the property of this
solution. So, Gamarnik and Goldberg [23, 55]) derive bounds for the tail probability of the
stationary distribution.

7. Concluding Remarks

From the diffusion approximations in Sections 2, 3 and 5, we can see the following facts.

(7a) For both single-class and multi-class queueing networks, SRBM is obtained as a process
limit of the sequence of diffusion scaling processes.

(7b) The SRBM for a single-class GJN is determined by the asymptotic means and variances
of the counting processes Nei(·) and Nsi(·) and random routing function Φij(·).

(7c) The SRBM for a multi-class GJN requires the asymptotic mean and variance of the
accumulated workload Vsi(·) in addition to those for a single-class queueing network.

For (7b), we can get those data of Nei(·) and Nsi(·) from their logarithmic moment gen-
erating functions as defined in (4.2). Those logarithmic generating functions play important
roles in the stationary equation of the GJN, which is the reason why they arise in the tail
decay rate of the stationary distribution in Section 4.2.

Although SRBM is very important for diffusion approximation, very little is known about
its stationary distribution for the more than two dimensional case. Thus, it is often to use
a product form stationary distribution, which is obtained only when the so called skew
symmetric condition holds. However, a choice of the primitive data is very limited under
this condition. Thus, it would be very nice if we can find some features of the stationary
distribution.

The author and his colleagues [20] recently studied to decompose the stationary dis-
tribution of SRBM into two marginals. They show that, if the stationary distribution is
decomposable, then the marginal distributions are obtained as lower dimensional SRBM,
and their primitive data are identified. This suggests that we may have more flexible choice
of the primitive data than the skew symmetric case, so we may have a better approximation.

There are two interesting observations in Section 2.4 and Appendix D. One is the fact
that time scaling is not essential to get the limit of a sequence of the stationary distribu-
tions for diffusion compatible approximation. This may be useful for simulation to get the
stationary distribution of the SRBM. Another is that large deviations rate functions are
closely related to diffusion approximation through logarithmic moment generating function.
Both observations may not be surprising, but it is notable that they are mathematically
confirmed.
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Appendix

A. Proof of Lemma 2.2

We only prove the first formula of (2.26) because (2.27) can be obtained similarly. By the

assumption (2.18), F̃e(w) with complex variable w is analytic in a neighborhood of the origin
in the complex plain C. Since

∂

∂w

(
ezF̃e(w)− 1

)∣∣
(z,w)=(0,0)

= F̃ ′
e(0) = E(Te) ̸= 0,

ezF̃e(w)− 1 = 0 has a unique root w = w(z) which is analytic in z in a neighborhood of the
origin by the implicit function theorem (e.g., see Theorem 3.11 of the Volume II of [50]).
Hence, γe(z) is analytic in a neighborhood of the origin, and therefore, it follows from Taylor
expansion that

γe(θ) = −η(θ) = −
(
η(0) + η′(0)θ +

1

2
η′′(0)θ2 + o(θ2)

)
, θ → 0.

Obviously, η(0) = 0. By differentiating both sides of eθF̃e(η) = 1, we have

F̃ ′
e(η)

dη

dθ
+ F̃e(η) = 0, (A.1)

where η is a function θ, namely, η(θ), but we drop θ for simplicity. This implies that
η′(0) = −λe. Differentiating (A.1), we have

F̃ ′
e(η)

d2η

dθ2
+ F̃ ′′

e (η)
(dη
dθ

)2

+ F̃ ′
e(η)

dη

dθ
= 0, (A.2)

which yields that η′′(0) = −λ3
eσ

2
e . Thus, we obtain (2.26).

B. Proof of Theorem 2.1

Let β(n) = 1− ρ(n). Since (2.29) and (2.30) hold, (2.28) yields, for θ ≤ 0,

lim
n→∞

φ(n)(β(n)θ,−λ(n)
e β(n)θ + o(β(n)θ), λ(n)

s β(n)θ + o(β(n)θ)) =
2

2− λ2
e(σ

2
e + σ2

s)θ
, (B.1)

where the condition (2.14) is tacitly used to the small order terms o(β(n)θ) as n → ∞. To
complete the proof, we need to show that

lim
n→∞

φ(n)(β(n)θ, 0, 0) =
2

2− λ2
e(σ

2
e + σ2

s)θ
, θ ≤ 0. (B.2)

For this, denote the right-hand side of (B.2) by f(θ). Then, by a triangular inequalities, we
have

|φ(n)(β(n)θ, 0, 0)− f(θ)|
≤ |φ(n)(β(n)θ,−λ(n)

e β(n)θ + o(β(n)θ), λ(n)
s β(n)θ + o(β(n)θ))− f(θ)|

+ |φ(n)(β(n)θ, 0, 0)− φ(n)(β(n)θ,−λ(n)
e β(n)θ + o(β(n)θ), λ(n)

s β(n)θ + o(β(n)θ))|.
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From (B.1), the first absolute term in the right-hand side of this inequality vanishes as
n → ∞. Thus, we only need to show that its second absolute term vanishes as n → ∞. For
this, we write down it in terms of expectations for θ ≤ 0.

The second absolute term =
∣∣∣E(eβ(n)θL

(
1− e(−λ

(n)
e β(n)θ+o(β(n)θ))Re+(λ

(n)
s β(n)θ+o(β(n)θ))R

(n)
s

))∣∣∣
≤

∣∣∣1− e(−λ
(n)
e β(n)θ+o(β(n)θ))Re

∣∣∣
+
∣∣∣e(−λ

(n)
e β(n)θ+o(β(n)θ))Re

(
1− e(λ

(n)
s β(n)θ+o(β(n)θ))R

(n)
s

))∣∣∣.
The right-hand side converges to 0 by the bounded convergence theorem because θ ≤ 0 and
β(n) > 0 converges to 0. This completes the proof of Theorem 2.1 because the convergence
of Laplace transfers implies the convergence of the corresponding distributions.

C. Normalizing factor in Theorem 3.7

We check the normalizing factor to be correct in Theorem 3.7. For this, we derive a limiting
distribution for the one-dimensional marginal. It follows from the definition of N (n) that

N (n)(nt) > [kt] if and only if

[kt]∑
ℓ=1

τ
(n)
ℓ < nt.

Hence,

1√
nt

(N (n)(nt)− λ(n)nt) >
1√
nt

([kt]− λ(n)nt)

if and only if
1√

[kt]σ(n)

[kt]∑
ℓ=1

(τ
(n)
ℓ −m(n)) <

1√
[kt]σ(n)

(nt−m(n)[kt]).

We let n, k → ∞ so that 1√
[kt]σ(n)

(nt−m(n)[kt]) converges to an arbitrarily given x. Then,

λ(n)nt− [kt] ∼ λ(n)
√

[kt]σ(n)x,

where we recall that λ(n) = 1/m(n), and therefore

1√
nt

([kt]− λ(n)nt) ∼ −
λ(n)

√
[kt]σ(n)x√

(
√
[kt]σ(n)x+m(n)[kt])t

∼ −λ(n)σ(n)x√
m(n)

= −
√
(λ(n))3σ(n)x,

[kt] ∼ λ(n)nt ∼ λnt

Thus, we have

lim
n→∞

P
( 1√

nt
(N (n)(nt)−λ(n)nt) > −

√
(λ(n))3σ(n)x

)
= lim

n→∞
P
( 1√

[λnt]σ(n)

[λnt]∑
ℓ=1

(τ
(n)
ℓ −m(n)) < x

)
.

Since the right-hand side is the standard normal distribution function, σλ
3
2 correctly appears

in the theorem.
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D. Proof of Theorem 4.3

We only need to prove that (4.8) implies the convergence of D(n) to D̃. A major problem
is to show that 1/

√
n in the second formula of (4.8) is a right scaling factor. For this, we

first derive the stationary equation similar to (2.21) for a general GJN. The reason why we
consider general d rather than d = 2 is that there are not so much difference between them
and the general case may have own interest. For i, j ∈ J and θ,η, ξ ∈ Rd, let

φ(θ,η, ξ) = E(e⟨θ,L(0)⟩+⟨η,Re(0)⟩+⟨ξ,Rs(0)⟩),

φi0(θ,η, ξ) = E(e⟨θ,L(0)⟩+⟨η,Re(0)⟩+⟨ξ,Rs(0)⟩1(Li(0) = 0)),

φei(θ,η, ξ) = Eei(e
⟨θ,L(0−)⟩+⟨η,Re(0−)⟩+⟨ξ,Rs(0−)⟩),

φei0−(θ,η, ξ) = Eei(e
⟨θ,L(0−)⟩+⟨η,Re(0−)⟩+⟨ξ,Rs(0−)⟩1(Li(0−) = 0)),

φsi(θ,η, ξ) = Esi(e
⟨θ,L(0−)⟩+⟨η,Re(0−)⟩+⟨ξ,Rs(0−)⟩),

φsi0+(θ,η, ξ) = Esi(e
⟨θ,L(0+)⟩+⟨η,Re(0+)⟩+⟨ξ,Rs(0+)⟩1(Li(0+) = 0)),

φsij0(θ,η, ξ) = Esi(e
⟨θ,L(0+)⟩+⟨η,Re(0+)⟩+⟨ξ,Rs(0+)⟩1(Li(0+) = 0, Lj(0−) = 0)),

where Eui represents the expectation with respect to the Palm measure concerning Nui for
u = e, s, which is defined similarly to (2.20). We then apply the rate conservation law
similarly to (2.19) for the following X(t).

X(t) =

{
gi(θ)e

⟨θ,L(t)⟩+⟨η,Re(t)⟩+⟨ξ,Rs(t)⟩, Li(t) = 0,
e⟨θ,L(t)⟩+⟨η,Re(t)⟩+⟨ξ,Rs(t)⟩, Li(t) ≥ 1.

This yields the following formula for θ ≤ 0, where θ0 = 0.

−
∑
i∈J

(ηi + ξi)φ(θ,η, ξ) +
∑
i∈J

(ηi(1− gi(θ)) + ξi)φi0(θ,η, ξ)

+
∑
i∈J

λei(e
θiF̃ei(ηi)− 1)φei(θ,η, ξ)

+
∑
i∈J

λei

(
eθiF̃ei(ηi)(F̃si(ξi)− 1) + 1− gi(θ))φei0−(θ,η, ξ

)
+
∑
i∈J

λsi

( ∑
j∈J∪{0}

e−θi+θjpijF̃si(ξi)− 1
)
φsi(θ,η, ξ)

+
∑
i∈J

∑
j∈J∪{0}

λsie
−θi+θjpij(gi(θ)− F̃si(ξi))φsi0+(θ,η, ξ)

+
∑
i∈J

∑
j∈J

λsie
−θi+θjpijgi(θ)(F̃sj(ξj)− 1)φsij0(θ,η, ξ) = 0. (D.1)

We next choose ηi, ξi and gi(θ) in such a way that

eθiF̃ei(ηi) = 1, F̃si(ξi)
∑

j∈J∪{0}

e−θi+θjpij = 1, gi(θ) = F̃si(ξi), i ∈ J.

Denote these ηi and ξi by ηi(θi) and ξi(θ), and let η(θ) and ξ(θ) be their vectors, then we
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arrive at

−
∑
i∈J

(ηi(θi) + ξi(θ))φ(θ,η(θ), ξ(θ))

+
∑
i∈J

(ηi(θi)(1− F̃si(ξi(θ))) + ξi(θ))φi0(θ,η(θ), ξ(θ))

+
∑

i,j∈J,i̸=j

λsie
−θi+θjpijF̃si(ξi(θ))(F̃sj(ξj(θ))− 1)φsij0(θ,η(θ), ξ(θ)) = 0. (D.2)

For d = 2, it follows from (4.3) and (4.4) that

ηi(θi) = −γei(θi), ξi(θ) = −γdi(θ).

We now consider the n-th GJN with d = 2, and its characteristics are indexed by
superscript “(n)”. Hence, recalling the definition of γ+, (D.2) becomes, for θ ≤ 0,

γ
(n)
+ (θ)φ(n)(θ,−γ(n)

e (θ),−γ
(n)
d (θ))−

∑
i=1,2

γ
(n)
di (θ)φ

(n)
i0 (θ,−γ(n)

e (θ),−γ
(n)
d (θ))

−
∑
i=1,2

γ
(n)
ei (θi)(1− t−1

i (θ))φ
(n)
i0 (θ,−γ(n)

e (θ),−γ
(n)
d (θ))

+
∑

(i,j)=(1,2),(2,1)

λ
(n)
si e

−θi+θjpijt
−1
i (θ)

× (t−1
j (θ)− 1)φ

(n)
sij0(0,−γ(n)

e (θ),−γ
(n)
d (θ)) = 0, (D.3)

where we have used the fact that

φ
(n)
sij0(θ,−γ(n)

e (θ),−γ
(n)
d (θ)) = φ

(n)
sij0(0,−γ(n)

e (θ),−γ
(n)
d (θ)),

because L(0) = 0 implies that ⟨θ,L(0)⟩ = 0 = ⟨0,L(0)⟩. Thus, using the diffusion scaling

γ̂
(n)
ui (θ) of (4.7) and substituting 1√

n
θ into the first variable θ of φ(n), φ

(n)
i0 , φ

(n)
sij0 in (D.3), we

have, under diffusion scaling,

γ̂
(n)
+ (θ)φ(n)

( 1√
n
θ,− 1

n
γ̂(n)
e (θ),− 1

n
γ̂
(n)
d (θ)

)
−

∑
i=1,2

γ̂
(n)
di (θ)φ

(n)
i0

( 1√
n
θ,− 1

n
γ̂(n)
e (θ),− 1

n
γ̂
(n)
d (θ)

)
−

∑
i=1,2

γ̂
(n)
ei (θi)

(
1− t−1

i

( 1√
n
θ
))

φ
(n)
i0

( 1√
n
θ,− 1

n
γ̂(n)
e (θ),− 1

n
γ̂
(n)
d (θ)

)
+

∑
(i,j)=(1,2),(2,1)

nλ
(n)
si e

−θi+θjpijt
−1
i

( 1√
n
θ
)

×
(
t−1
j

( 1√
n
θ
)
− 1

)
φ
(n)
sij0

(
0,− 1

n
γ̂(n)
e (θ),− 1

n
γ̂
(n)
d (θ)

)
= 0. (D.4)

Since 1
n
γ̂
(n)
ui (θ) → 0 as n → ∞ for u = e, d by (4.8), we have, using similar arguments in

Appendix B,

lim
n→∞

φ(n)
( 1√

n
θ,− 1

n
γ̂(n)
e (θ),− 1

n
γ̂
(n)
d (θ)

)
= φ̃(θ).
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Since t−1
j

(
1√
n
θ
)
− 1 has the order 1/

√
n as n → ∞, this and the fact that (D.4) converges

to the BAR (3.14) of the limiting SRBM concludes

lim
n→∞

λ
(n)
si

√
nφ

(n)
i0

( 1√
n
θ,− 1

n
γ̂(n)
e (θ),− 1

n
γ̂
(n)
d (θ)

)
= φ̃i(θ),

and therefore −(λ
(n)
si

√
n)−1γ̂

(n)
di (θ) is a right term to converge to γ̃i(θ) so that the continuity

of the stationary distribution holds. Since −γ̂
(n)
di (θ) and −γ

(n)
di (θ) have the same sign and

−γ
(n)
di (θ) = (F̃

(n)
si )−1(t−1

i (θ)),

−γ
(n)
di (θ) < 0 if and only if ti(θ) > 1, which is the condition to determine Γ3−i for Theo-

rem 4.1. This completes the proof of Theorem 4.3.
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