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Abstract In this paper, we consider a model of valuing callable financial securities when the underlying
asset price dynamic depends on a finite-state Markov chain. The callable securities enable both an issuer
and an investor to exercise their rights to call. We formulate this problem as a coupled stochastic game
for the optimal stopping problem with two stopping boundaries. Then, we show that there exists a unique
optimal price of the callable contingent claim which is a unique fixed point of a contraction mapping. We
derive analytical properties of optimal stopping rules of the issuer and the investor under general payoff
functions by applying a contraction mapping approach. In particular, we derive specific stopping boundaries
for the both players by specifying for the callable securities to be the callable American call and put options.
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1. Introduction

The purpose of this paper is to develop a dynamic valuation framework for callable financial
securities with general payoff function. Such examples of the callable financial security may
include game options (Kifer [1], Kyprianou [2]), convertible bond (Yagi and Sawaki [3]),
callable put and call options (Black and Scholes [4], Brennan and Schwartz [5], Geske and
Johnson [6], McKean [7]). Kifer [8] provides a review of a research on optimal stopping
games and discusses the work on Israeli (game) options and related derivatives securities.
Most studies on these securities have focused on the pricing of the derivatives when the
underlying asset price processes follow a Brownian motion defined on a single probability
space. In other words the realizations of the price process come from the same source of
the uncertainty over the planning horizon. However, the valuation of financial securities
is subject to randomly changing environmental conditions that affect the price as well as
payoff of the securities. The structural changes of the underlying asset prices are based on
the macro-economic environment, fundamentals of the real economy and financial policies
including international monetary cooperation. The term Markov-modulated dynamics is
used to describe such the environmental changes. More specifically, the coefficients of price
process are modulated by a finite-state Markov chains.

In Sato and Sawaki [9], we formulate the valuation model as a Markov decision process
equipped with a contraction mapping. They show that there exists a unique price which is
a fixed point of the contraction mapping. In addition, it is shown that there exists a pair of
optimal stopping rules for the issuer and for the investor, and derive the value of the coupled
game. Should the payoff functions be specified like options, some analytical properties of
the optimal stopping rules and their values can be explored under the several assumptions.
They derive the optimal stopping boundaries of the both of the issuer and the investor in
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the cases of callable American put and call options, respectively. In this paper, we provide
a numerical method to illustrate the optimal boundaries of callable American put option
by using binomial tree model. It enables us to verify the analytical properties of optimal
boundaries obtained in Sato and Sawaki [9].

The organization of our paper is as follows: In section 2, we formulate a discrete time
valuation model for a callable contingent claim, which can be presented as a Markov decision
process with two state variables, the underlying asset price and the state of the economy.
And then we derive optimal policies and investigate their analytical properties by using
contraction mappings. Section 3 discusses two special cases of the payoff functions to derive
the specific stop and continue regions for callable put and call, respectively. In Section 4
we present numerical results for the American callable put option using binomial model.
Finally, last section concludes the paper with further comments. It summarizes results of
this paper and raises further directions for future research.

2. A Genetic Model of Callable-Putable Financial Commodities

In this section we formulate the valuation of callable securities as an optimal stopping
problem in discrete time. Let T be the time index set {0, 1, · · · }. We consider a complete
probability space (Ω,F ,P), where P is a real-world probability. We suppose that the
uncertainties of an asset price depend on its fluctuation and the economic states which are
described by the probability space (Ω,F ,P). Let {1, 2, · · · , N} be the set of states of the
economy and i or j denote one of these states. We denote Z := {Zt}t∈T be the finite Markov
chain with transition probability Pij = Pr{Zt+1 = j | Zt = i}. We assume that the decision
maker can completely observe the environmental state†. Let r be the market interest rate of
the bank account. We suppose that the price dynamics B := {Bt}t∈T of the bank account
is given by

Bt = Bt−1e
r, B0 = 1.

Let S := {St}t∈T be the asset price at time t. We suppose that {X i
t} be a sequence of i.i.d.

random variable having mean E[X i
t ] = µi < ∞ for all i with the probability distribution

Fi(·) and its parameters depend on the state of the economy modeled by Z. Here, the
sequence {X i

t} and {Zt} are assumed to be independent. Then, the asset price is defined as

St+1 = StX
i
t . (2.1)

The Esscher transform is well-known tool to determine an equivalent martingale measure
for the valuation of options in an incomplete market (Elliott et al. [12] and Ching et al. [15]).
Ching et al. [15] define the regime-switching Esscher transform in discrete time and apply
it to determine an equivalent martingale measure when the price dynamics is modeled by
high-order Markov chain.

We define Y i
t = logX i

t and Y := {Yt}t∈T . By Jensen’s inequality, we have E[Y i
t ] =

E[logX i
t ] ≤ logE[X i

t ] < ∞ for all i. Let FZ
t and FY

t denote the σ-algebras generated by
the values of Z and Y , respectively. We set G = FZ

t ∨ FY
t for t ∈ T . We assume that θt

†In recent years, a regime switching model have gotten attention to represent the state-dependent price
process in which the state of the economy is unobservable. The regime switching model is driven by a
hidden Markov chain process and applied to option pricing problem (e.g. Naik [10], Guo [11], Elliott et
al. [12], Guo and Zhang [13], Le and Wang [14], Ching et al. [15]). Although the unobservability of the state
seems reasonable in practice, but the assumption is useful for analytical purposes. We leave the relaxing
assumption for future work.
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be a FZ
T -measurable random variable for each t = 1, 2, · · · . It is interpreted as the regime-

switching Esscher parameter at time t conditional on FZ
T . Let MY (t, θt) denote the moment

generating function of Y i
t given FZ

T under P , that is, MY (t, θt) := E[eθtY
i
t | FZ

T ]. We define
Pθ as a equivalent martingale measure for P on GT associated with (θ1, θ2, · · · , θT ).

The next proposition follows from Ching et al. [15].
Proposition 2.1. The discounted price process {St/Bt}t∈T is a (G,Pθ)-martingale if and
only if θt satisfies

MY (t+ 1, θt+1 + 1)

MY (t+ 1, θt+1)
= er. (2.2)

If the dynamics Y is governed by the following Markov-modulated binomial model:

P (Y i
t = y) =

{
p(i), if y = b(i),

1− p(i), if y = a(i),
(2.3)

then the following proposition provides the Esscher transform of this process. For simplicity
of notation, we write pt, at and bt instead of p(i), a(i) and b(i), respectively.
Proposition 2.2. The Esscher transform of the Markov modulated binomial model with
parameter pt is again a binomial model with the parameter er−eat

ebt−eat
.

Proof. The moment generating function of Y i
t defined by equations (2.3) is given by

MY (t+ 1, θt+1) = (1− pt+1)e
at+1θt+1 + pt+1e

bt+1θt+1. (2.4)

Thus, we have

MY (t+ 1, θt+1 + 1)

MY (t+ 1, θt+1)
= π(θt+1)e

bt+1 + (1− π(θt+1))e
at+1 , (2.5)

where

π(θt+1) =
pt+1e

bt+1θt+1

(1− pt+1)eat+1θt+1 + pt+1ebt+1θt+1

. (2.6)

It follows from equation (2.2) that π(θt) =
er−eat

ebt−eat
. By Lemma 3.2 of Ching et al. [15], we

have

MY (t, ρ | θ) =
MY (t, θt + ρ)

MY (t, θt)
, (2.7)

where MY (t, ρ | θ) is the moment generating function of Yt given FZ
T under Pθ evaluated at

ρ. Substituting π(θt) =
er−eat

ebt−eat
into equation (2.7), we obtain

MY (t, ρ | θ) = π(θt)e
btρ + (1− π(θt))e

atρ. (2.8)

This proves the proposition.

A callable contingent claim is a contract between an issuer I and an investor II addressing
the asset with a maturity T . The issuer can choose a stopping time σ to call back the claim
with the payoff function fσ and the investor can also choose a stopping time τ to exercise
his/her right with the payoff function gτ at any time before the maturity. Should neither of
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them stop before the maturity, the payoff is hT . The payoff always goes from the issuer to
the investor. Here, we assume

0 ≤ gt ≤ ht ≤ ft, 0 ≤ t < T

and
gT = hT . (2.9)

The investor wishes to exercise the right to maximize the expected payoff. On the other
hand, the issuer wants to call the contract to minimize the payment to the investor. Then,
for any pair of the stopping times (σ, τ), define the payoff function by

R(σ, τ) = fσ1{σ<τ≤T} + gτ1{τ<σ≤T} + hT1{σ∧τ=T}. (2.10)

When the initial asset price S0 = s, our stopping problem becomes the valuation of

v0(s, i) = min
σ∈J0,T

max
τ∈J0,T

Eθ
s,i[β

σ∧τR(σ, τ)], (2.11)

where β ≡ e−r, 0 < β < 1 is the discount factor, J is the finite set of stopping times
taking values in {0, 1, · · · , T}, and Eθ[·] is an expectation under Pθ. Since the asset price
process follows a random walk, the payoff processes of gt and ft are both Markov types. We
consider this optimal stopping problem as a Markov decision process. Let vn(s, i) be the
price of the callable contingent claim when the asset price is s, the state is i and n denote
the number of periods remaining. Here, the trading period moves backward in time indexed
by n = 0, 1, 2, · · · , T . It is easy to see that vn(s, i) satisfies

vn+1(s, i) ≡ (Uvn)(s, i)

≡ min

{
fn+1(s, i),max

(
gn+1(s, i), β

N∑
j=1

Pij

∫ ∞

0

vn(sx, j)dFi(x)

)}
(2.12)

with the boundary conditions are v0(s, i) = h0(s, i) for any s, i and vn(s, 0) ≡ 0 for any n
and s. Define the operator A as follows:

(Avn)(s, i) ≡ β
N∑
j=1

Pij

∫ ∞

0

vn(sx, j)dFi(x). (2.13)

Remark 2.1. The equation (2.12) can be reduced to the non-switching model when we set
Pii = 1 for all i, or fn(s, i) = fn(s), gn(s, i) = gn(s), h0(s, i) = h0(s) and µi = µ for all i, n
and s.

Let V be the set of all bounded measurable functions with the norm ∥v∥ = sups∈(0,∞) |v(s, i)|
for any i. For u, v ∈ V , we write u ≤ v if u(s, i) ≤ v(s, i) for all s ∈ (0,∞). A mapping U
is called a contraction mapping if

∥Uu− Uv∥ ≤ β∥u− v∥

for some β < 1 and for all u, v ∈ V .
Lemma 2.1. For any 0 < c2 < c1 and 0 < b ≤ a, we have

min{a,max(b, c1)} −min{a,max(b, c2)} ≤ min(a, c1)−max(b, c2). (2.14)
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Proof. Put ψ = min{a,max(b, c1)} − min{a,max(b, c2)}. If c2 < c1 < b, then ψ = 0. If
c2 < b < c1, then ψ = min(a, c1)− b. If b ≤ a < c2 < c1, then ψ = 0. If b < c2 < min(a, c1),
then ψ = min(a, c1)− c2. Thus, we have ψ ≤ min(a, c1)−max(b, c2).

Lemma 2.2. The mapping U as defined by equation (2.12) is a contraction mapping.

Proof. For any un, vn ∈ V , we have

(Uun)(s, i)− (Uvn)(s, i) = min{fn+1(s, i),max(gn+1(s, i),Aun)}
−min{fn+1(s, i),max(gn+1(s, i),Avn)}

≤ min(fn+1(s, i),Aun)−max(gn+1(s, i),Avn)
≤ Aun −Avn

≤ β
N∑
j=1

Pij

∫ ∞

0

sup(un(sx, j)− vn(sx, j))dFi(x)

≤ β∥un − vn∥

where the first inequality follows from Lemma 2.1. Hence, we obtain

sup
s∈(0,∞)

{(Uu)(s, i)− (Uv)(s, i)} ≤ β∥u− v∥. (2.15)

By taking the roles of u and v reversely, we have

sup
s∈(0,∞)

{(Uv)(s, i)− (Uu)(s, i)} ≤ β∥v − u∥. (2.16)

Putting equations (2.15) and (2.16) together, we obtain

∥Uu− Uv∥ ≤ β∥u− v∥.

Corollary 2.1. There exists a unique function v ∈ V such that

(Uv)(s, i) = v(s, i) for all s, i. (2.17)

Furthermore, for all u ∈ V ,

(UTu)(s, i) → v(s, i) as T → ∞,

where v(s, i) is equal to the fixed point defined by equation (2.17), that is, v(s, i) is a unique
solution to

v(s, i) = min{f(s, i),max(g(s, i),Av)}.

Since U is a contraction mapping from Corollary 2.1, the optimal value function v for
the perpetual contingent claim can be obtained as the limit by successively applying an
operator U to any initial value function v for a finite lived contingent claim.

To establish an optimal policy, we make some assumptions;
Assumption 2.1.
(i) F1(x) ≥ F2(x) ≥ · · · ≥ FN(x) for all x.
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(ii) fn(s, i), gn(s, i) and hn(s, i) are monotone in s for each i and n, and are non-decreasing
in n for each s and i.

(iii) For each k ≤ N ,
∑N

j=k Pij is non-decreasing in i.

Assumption (i) means X i+1
n first order stochastically dominates X i

n for any i and n.
That is, as the state i increases, the economy is going well. Thus, the state N represents
that the most ”Good” economy. Assumption (ii) implies that the payoff values decreases as
the maturity approaches. Assumption (iii) asserts that the probability of a transition into
any block of states {k, k + 1, · · · } is an increasing function of the present state.

Lemma 2.3. Suppose Assumption 2.1 holds.

(i) For each i, (Unv)(s, i) is monotone in s for v ∈ V .

(ii) v satisfying v = Uv is monotone in s.

(iii) If fn(s, i), gn(s, i) and hn(s, i) are non-decreasing in i for each s and n, and vn(s, i) is
non-decreasing in s for each i and n, then vn(s, i) is non-decreasing in i.

(iv) If fn(s, i), gn(s, i) and hn(s, i) are non-increasing in i for each s and n, and vn(s, i) is
non-increasing in s for each i and n, then vn(s, i) is non-increasing in i.

(v) vn(s, i) is non-decreasing in n for each s and i.

(vi) For each i, there exists a pair (s∗n(i), s
∗∗
n (i)), s∗∗n (i) < s∗n(i), of the optimal boundaries

such that

vn(s, i) ≡ (Uvn−1)(s) =


fn(s, i), if s∗n(i) ≤ s,
Avn−1, if s∗∗n (i) < s < s∗n(i), n = 1, 2, · · · , T,
gn(s, i), if s ≤ s∗∗n (i),

with v0(s, i) = h0(s, i).

Proof.

(i) The proof follows by induction on n. For n = 1, we have

(U1v)(s, i) = min

{
f1(s, i),max

(
g1(s, i), β

N∑
j=1

Pij

∫ ∞

0

h0(sx, j)dFi(x)

)}
(2.18)

which, since Assumption 2.1 (ii), implies that (U1v)(s, i) is monotone in s. Suppose that
(Unv)(s, i) is monotone for n > 1. Then, we have

(Un+1v)(s, i) = min

{
fn+1(s, i),max

(
gn+1(s, i), β

n∑
i=1

Pij

∫ ∞

0

(Unv)(sx, j)dFi(x)

)}
,(2.19)

which is again monotone in s.

(ii) Since limn→∞(Unv)(s, i) point-wisely converges to the limit v(s, i) from Corollary 2.1,
the limit function v(s, i) is also monotone in s.

(iii) For n = 0, it follows from Assumption 2.1 (ii) that v0(s, i) = h0(s, i) is non-decreasing
in i. Suppose (iii) holds for n. If vn(s, i) is non-decreasing in s, then vn(sx, i) is also
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non-decreasing in x for each s. Then, from Assumption 2.1 (i), we obtain

β

N∑
j=1

Pij

∫ ∞

0

vn(sx, j)dFi(x) ≤ β

N∑
j=1

Pij

∫ ∞

0

vn(sx, j)dFi+1(x)

= β

∫ ∞

0

N∑
k=1

(vn(sx, k)− vn(sx, k − 1))
N∑
j=k

PijdFi+1(x)

≤ β

∫ ∞

0

N∑
k=1

(vn(sx, k)− vn(sx, k − 1))
N∑
j=k

Pi+1jdFi+1(x)

= β

N∑
j=1

Pi+1j

∫ ∞

0

vn(sx, j)dFi+1(x),

where the second inequality follows from Assumption 2.1 (iii). Hence, we obtain

vn+1(s, i) = min{fn+1(s, i),max(gn+1(s, i),Avn(s, i)}
≤ min{fn+1(s, i+ 1),max(gn+1(s, i+ 1),Avn(s, i+ 1)}
= vn+1(s, i+ 1). (2.20)

(iv) The proof is similar to the proof of (iii).
(v) For n = 1 in equation (2.12), it follows from Assumption 2.1 (ii) that

v1(s, i) = min{f1(s, i),max(g1(s, i),Av0)}
≥ min{f1(s, i), g1(s, i)} = g1(s, i) ≥ g0(s, i) = v0(s, i).

Suppose (v) holds for n. We obtain

vn+1(s, i) = min{fn+1(s, i),max(gn+1(s, i),Avn)}
≥ min{fn(s, i),max(gn(s, i),Avn−1)}
= vn(s, i).

(vi) Should vn(s, i) = (Un−1v)(s, i) be monotone in s, then there exists at least one pair of
boundary values s∗n(i) and s

∗∗
n (i) such that

vn(s, i) =

{
fn(s, i), if s ≥ s∗n(i),
max(gn(s, i),Avn−1), otherwise,

and

max(gn(s, i),Avn−1) =

{
gn(s, i), for s ≤ s∗∗n (i),
Avn−1, otherwise.

Corollary 2.2. The relationship between gn, fn and vn(s, i) is given by

gn(s, i) ≤ vn(s, i) ≤ fn(s, i).

Proof. The proof directly follows from equation (2.12).
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We define the stopping regions SI for the issuer and SII for the investor as

SI
n(i) = {(s, n, i) | vn(s, i) ≥ fn(s, i)}, (2.21)

SII
n (i) = {(s, n, i) | vn(s, i) ≤ gn(s, i)}. (2.22)

Moreover, the optimal exercise boundaries for the issuer and the investor are defined as

s∗n(i) = inf{s ∈ SI
n(i)}, (2.23)

s∗∗n (i) = inf{s ∈ SII
n (i)}. (2.24)

3. A Simple Callable American Option with Markov-modulated Prices

Interesting results can be obtained for the special cases when the payoff functions are spec-
ified. In this section we consider callable American options whose payoff functions are
specified as a special case of callable contingent claim. If the issuer call back the claim in
period n, the issuer must pay to the investor gn(s, i) + δin. Note that δin is the compensate
for the contract cancellation, and varies depending on the state and the time period. If the
investor exercises his/her right at any time before the maturity, the investor receives the
amount gn(s, i). In the following subsections, we discuss the optimal cancel and exercise
policies both for the issuer and investor and show the analytical properties under some
conditions.

3.1. Callable Call Option

We consider the case of a callable call option where gn(s, i) = (s − Ki)+ and fn(s, i) =
gn(s, i) + δin, 0 < δin < Ki. Here, Ki is the strike price on the state i. We set out the
assumptions to show the analytical properties of the optimal exercise policies.

Assumption 3.1.

(i) βµN ≤ 1

(ii) K1 ≥ K2 ≥ · · · ≥ KN ≥ 0.

(iii) 0 ≤ δ1n ≤ δ2n ≤ · · · ≤ δNn for each n.

(iv) δi0 = 0 and δin is non-decreasing and concave in n > 0 for each i.

(v) β
∑N

j=1 Pijδ
j
n − δin is non-increasing in i for each n.

Assumption (i) means the expected rate of variability for the asset price is less than
or equal to 1

β
= er. Assumption (ii) and (iii) imply that the strike price decreases and

the compensate increases as the economy is getting better. Assumption (iv) shows that
the compensate becomes smaller and smaller as the maturity approaches. Assumption (v)
implies that the value of the postponement for cancellation decreases as the economy is
getting better.

Remark 3.1. For example, δin = δie−r(T−n) = δi

(1+r)T−n satisfies Assumption 3.1(iv).

By the form of payoff function, the value function vn is not bounded. To apply the result
of Corollary 2.1, we assume that the issuer has to call back the claim when the payoff value
exceeds a value M > K1. Define s̃in ≡ inf{s | fn(s, i) ≥M}. Since fn(s, i) is increasing in s
and i for any n, we have s̃1n > s̃in for any i, n and s̃1n =M +K1 − δ1n for any n.

The stopping regions for the issuer SI
n(i) and investor SII

n (i) with respect to the callable
call option are given by

SI
n(i) = {s | vn(s, i) ≥ (s−Ki)+ + δin} ∪ {s̃1n}, for n = 1, · · · , T ,
SI
n(i) = ϕ, for n = 0,

SII
n (i) = {s | vn(s, i) ≤ (s−Ki)+}, for n = 0, 1, · · · , T .
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For each i and n, we define the thresholds for the callable call option as

s∗n(i) = inf{s | vn(s, i) = (s−Ki)+ + δin} ∧ s̃1n,
s∗∗n (i) = inf{s | vn(s, i) = (s−Ki)+}.

The following lemma represents the well known result that American call options are
identical to the corresponding European call options.

Lemma 3.1. Callable call option with the maturity T <∞ can be degenerated into callable
European, that is SII

n (i) = ϕ for n > 0 and SII
0 (i) = {Ki} for each i.

Proof. Since the discounted price process {St/Bt}t∈T is (G,Pθ)-martingale, βσ∧τgt(Sσ∧τ , i) =
βσ∧τ max(Sσ∧τ −Ki, 0) is a (G,Pθ)-submartingale. Applying the Optional Sampling Theo-
rem, we obtain that

vt(s, i) = min
σ∈Jt,T

max
τ∈Jt,T

Eθ
s [β

σ∧τR(σ, τ)]

= min
σ∈Jt,T

max
τ∈Jt,T

Eθ
s [β

σ∧τ (ft(Sσ∧τ , i)1{σ<τ} + gt(Sσ∧τ , i)1{τ<σ} + hT1{σ∧τ=T})]

= min
σ∈Jt,T

Eθ
s [β

σft(Sσ, i)1{σ<T} + βThT1{σ=T}]. (3.1)

This completes the proof.

It implies that it is optimal for the investor not to exercise his/her putable right before
the maturity. However, the issuer should choose an optimal call stopping time so as to
minimize the expected payoff function.

Lemma 3.2. If Assumption 3.1 (i) holds, then vn(s, i) − s is decreasing in s for s > Ki,
and vn(s, i) is non-decreasing in s for s ≤ Ki for each n, i.

Proof. We prove it by induction. For n = 0, the claim certainly holds. It is sufficient to
prove for the case of s > Ki. Suppose the claim holds for n, then we have

vn+1(s, i)− s = min{s−Ki + δin+1,max(s−Ki,Avn)} − s

= min
{
−Ki + δin+1,max

(
−Ki

, β

N∑
j=1

Pij

∫ ∞

0

(vn(sx, j)− sx)dFi(x) + (βµi − 1)s

)}
.

Since the statement is true for n, vn(sx, j)−sx is decreasing in s for x > Ki. Assumption 2.1
(i) implies that µ1 ≤ µ2 ≤ · · · ≤ µN . If µN ≤ 1

β
, then (βµi − 1)s is non-increasing in s.

Hence, vn+1(s, i)− s is decreasing in s for s > K i.

Lemma 3.3.

(i) Suppose that n∗
i = inf{n | δin < van(K

i, i)}, where van(s, i) = max{(s −Ki)+,Avn−1(s, i)}
and va0(s, i) = (s −Ki)+. If n∗

i ≤ n ≤ T , we have SI
n(i) = {Ki}. If 0 ≤ n < n∗

i , we have
SI
n(i) = {s̃1n}.

(ii) n∗
i is non-decreasing in i.

Proof.
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(i) Let ΨI
n(s, i) = vn(s, i)− (s−Ki)+ − δin. For s = Ki, we have

ΨI
n(K

i, i) = vn(K
i, i)− δin

= min{0,max{0,Avn−1(K
i, i)} − δin}

= min{0, van(Ki, i)− δin}.

If van(K
i, i) > δin, then ΨI

n(K
i, i) = 0 for any i and n. Since δin is non-decreasing and concave

in n by Assumption 2.1 (iii) and vn(s, i) is non-decreasing in n by Assumption 3.1 (iv), there
exists at least one value n∗

i such that n∗
i = inf{n | δin < van(K

i, i)}.
By Lemma 3.2, the function ΨI

n(s, i) is non-decreasing for s ≤ Ki and is decreasing for
Ki < s. It implies that it is unimodal function in s, and Ki is a maximizer of ΨI

n(s, i).
Thus, vn(s, i) < (s − Ki)+ + δin if s ̸= Ki. Moreover, s̃1n = M + K1 − δ1n > Ki for any i.
Therefore, SI

n(i) = {Ki} for n∗
i ≤ n ≤ T . For 0 ≤ n < n∗

i , since δ
i
n > van(K

i, i) for each i
and n, we have

vn(K
i, i) = min{0, van(Ki, i)− δin}+ δin = van(K

i, i) < δin ≤ (s−Ki)+ + δin.

Hence, we have ΨI
n(K

i, i) < 0, so SI
n(i) = {s̃1n}.

(ii) For n = 0, by Assumption 3.1 (iii), va0(K
i, i)− δi0 is non-increasing in i. We suppose that

van−1(K
i, i)−δin−1 is non-increasing in i. Since van(K

i, i)−δin = max{−δin,Avn−1(K
i, i)−δin},

it is enough to show that Avn−1(K
i, i)−δin is non-increasing in i. From Assumption 3.1 (v),

we have

Avn−1(K
i, i)− δin = β

N∑
j=1

Pij

∫ ∞

0

vn−1(sK
i, j)dFi(x)− δin

= β

N∑
j=1

Pijvn−1(sK
i, j)− δin

≥ β
N∑
j=1

Pij(vn−1(sK
i, j)− δjn) + β

N∑
j=1

Pijδ
j
n − δin

≥ β
N∑
j=1

Pi+1jvn−1(sK
i, j)− δi+1

n

= Avn−1(K
i, i+ 1)− δi+1

n

So, van(K
i, i)−δin is non-increasing in i. Since van(K

i, i)−δin is non-decreasing in n, the value
n∗
i is non-decreasing in i.

Theorem 3.1. Suppose that Assumption 3.1 (i)-(v) holds. The stopping regions for the
issuer and investor can be obtained as follows;

(i) The optimal stopping region for the issuer:{
SI
n(i) = {Ki}, if n∗

i ≤ n ≤ T ,

SI
n(i) = {s̃1n}, if 0 ≤ n < n∗

i ,
(3.2)

where K1 ≥ K2 ≥ · · · ≥ KN ≥ 0, and n∗
i ≡ inf{n | δin ≤ van(K

i, i)} which is non-
decreasing in i. Here, van(s, i) = max{(s−Ki)+,Avn−1(s, i)}.
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(ii) The optimal stopping region for the investor:{
SII
n (i) = ϕ, if n > 0,

SII
0 (i) = {Ki}, if n = 0.

(3.3)

Moreover, the thresholds for the issuer and investor are s∗n(i) = Ki for n∗
i ≤ n ≤ T and

s∗∗0 (i) = Ki, respectively.

Proof. Part (i) follows from Lemma 3.3. Part (ii) is obtained from Lemma 3.1. In additon,
since s∗∗n (i) = inf{s | (s−Ki)+ ≤ s−Ki} = Ki for n = 0, we obtain SII

0 (i) = {Ki}.

3.2. Callable Put Option

We consider the case of a callable put option where gn(s, i) = max{Ki− s, 0} and fn(s, i) =
gn(s, i) + δin. The stopping regions for the issuer SI

n(i) and the investor SII
n (i) with respect

to the callable put option are given by
SI
n(i) = {s | vn(s, i) ≥ (Ki − s)+ + δin}, for n = 1, · · · , T ,
SI
n(i) = ϕ, for n = 0,

SII
n (i) = {s | vn(s, i) ≤ (Ki − s)+}, for n = 0, 1, · · · , T .

For each i and n, we define the optimal exercise boundaries for the issuer s̃∗n(i) and the
investor s̃∗∗n (i) as

s̃∗n(i) = inf{s | vn(s, i) = (Ki − s)+ + δin}, (3.4)

s̃∗∗n (i) = inf{s | vn(s, i) = (Ki − s)+}. (3.5)

Assumption 3.2.
(i) βµN ≤ 1
(ii) K1 ≥ K2 ≥ · · · ≥ KN ≥ 0.
(iii) δ1n ≥ δ2n ≥ · · · ≥ δNn ≥ 0 for each n.
(iv) δi0 = 0 and δin is non-decreasing and concave in n > 0 for each i.
(v) β

∑N
j=1 PijK

j −Ki is non-increasing in i.

(vi) β
∑N

j=1 Pijδ
j
n − δin is non-decreasing in i for each n.

Assumptions (i), (ii) and (iv) is the same as that of call option in Section 3.1. Assumption
(iii) implies that the compensate decreases as the economy is getting better, because good
economy decreases the likelihood of exercising the put option by investor. Assumption (v)
asserts that the difference between the discounted expected value of a strike price when
the state transits to any state and the strike price of present state is an non-increasing
function of the present state. In other words, the value of the postponement for exercise
becomes smaller as the economy is getting better. Assumption (vi) means the value of the
postponement for cancellation increases as the economy is getting better.
Lemma 3.4. If Assumption 3.2 (i) holds, then vn(s, i) + s is increasing in s for s < Ki,
and vn(s, i) is non-increasing in s for Ki ≤ s.

Proof. It is sufficient to prove for the case of s < K i. The claim holds for n = 0. Suppose
the assertion holds for n. Then, we have

vn+1(s, i) + s = min{Ki − s+ δin+1,max(Ki − s,Avn)}+ s

= min
{
Ki + δin+1,max

(
Ki

, β
N∑
j=1

Pij

∫ ∞

0

(vn(sx, j) + sx)dFi(x) + (1− βµi)s

)}
.
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Hence, from Assumption 3.2 (i), vn+1(s, i) + s is increasing in s for s < K i.

Lemma 3.5. vn(s, i)−Ki is non-increasing in i for each s < K i and n.

Proof. When n = 0, the claim holds. Suppose the claim holds for n. For s < K i, we have

vn+1(s, i)−Ki = min{Ki − s+ δin+1,max(Ki − s,Avn(s, i)} −Ki

= min{−s+ δin+1,max(−s,Avn(s, i)−Ki)}

By Lemma 2.3 (iv), vn(x, i) is non-increasing in i. Thus, we have

Avn(s, i)−Ki = β
N∑
j=1

Pij

∫ ∞

0

vn(sx, j)dFi(x)−Ki

≥ β
N∑
j=1

Pij

∫ ∞

0

vn(sx, j)dFi+1(x)−Ki

= β

N∑
j=1

Pij

∫ ∞

0

(vn(sx, j)−Kj)dFi+1(x) + β

N∑
j=1

PijK
j −Ki

≥ Avn(s, i+ 1)− β
N∑
j=1

(Pi+1j − Pij)K
j −Ki

≥ Avn(s, i+ 1)−Ki+1.

The last inequality comes from Assumption 3.2 (v). Since δin+1 ≥ δi+1
n+1, this leads to

vn+1(s, i)−Ki ≤ vn+1(s, i+ 1)−Ki+1.

Lemma 3.6.

(i) There exists a time n∗
i for each i such that n∗

i ≡ inf{n | δin ≤ van(K
i, i)}, where van(s, i) =

max{(Ki − s)+,Avn−1(s, i)}. Moreover, if n∗
i ≤ n ≤ T , we have SI

n(i) = {Ki}. If 0 ≤ n <
n∗
i , we have SI

n(i) = ϕ.

(ii) n∗
i is non-increasing in i.

Proof. The proof can be done similarly as in the case of the call option in Lemma 3.3.

Lemma 3.7. Suppose Assumption 3.2 (i) holds. Then, there exists an optimal exercise
policy for the both players, and s̃∗∗n (i) < s̃∗n(i) such that the investor exercises the option if
s ≤ s∗∗n (i) and the issuer exercises the option if s∗n(i) ≤ s.

Proof. We first consider the optimal exercise policy for the investor. Let ΨII
n (s, i) ≡ vn(s, i)−

(Ki− s)+. The investor does not exercise the option when s > K i because he/she wishes to
exercise the right so as to maximize the expected payoff. For s ≤ Ki, ΨII

n (s, i) is increasing
in s by Lemma 3.4. Since vn(K

i, i) ≥ 0, there exists a value s̃∗∗n (i) satisfying (3.5). For
s ≤ s̃∗∗n (i), vn(s, i) ≤ (s−Ki)+. Hence, it is optimal for the investor to exercise the option
when s ≤ s∗∗n (i).

It follows from Lemma 3.6 (i) that the optimal exercise policy for the issuer is s̃∗n(i) = Ki

for n∗
i ≤ n ≤ T and s̃∗n(i) = ∞ for 0 ≤ n < n∗

i . Since ΨII
n (s, i) is increasing in s for s ≤ Ki,

we have s̃∗∗n (i) < s̃∗n(i) for each i and n ∈ [n∗
i , T ].

Lemma 3.8.
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(i) s̃∗∗n (i) is non-decreasing in i for each n.
(ii) s̃∗∗n (i) is non-increasing in n for each i.

Proof. We only consider the case of Ki > s.
(i) By Lemma 3.4 and Lemma 3.5, vn(s, i)+s is increasing in s for Ki > s, and vn(s, i)−Ki

is non-increasing in i. Hence, we have

s̃∗∗n (i) = inf{s | vn(s, i) + s = Ki}
≤ inf{s | vn(s, i+ 1) + s = Ki+1}
= s̃∗∗n (i+ 1).

(ii) By Lemma 2.3 (v), vn(s, i) is non-decreasing in n, so we have

s̃∗∗n (i) = inf{s | vn(s, i) + s = Ki}
≥ inf{s | vn+1(s, i) + s = Ki}
= s̃∗∗n+1(i).

Theorem 3.2. Suppose that Assumption 3.2 (i)-(vi) holds. The stopping regions for the
issuer and investor can be obtained as follows;
(i) The optimal stopping region for the issuer:{

SI
n(i) = {Ki}, if n∗

i ≤ n ≤ T ,

SI
n(i) = ϕ, if 0 ≤ n < n∗

i ,
(3.6)

where K1 ≥ K2 ≥ · · · ≥ KN ≥ 0, and n∗
i ≡ inf{n | δin ≤ van(K

i, i)} which is non-
increasing in i. Here, van(s, i) = max{(Ki − s)+,Avn−1(s, i)}.

(ii) The optimal stopping region for the investor:{
SII
n (i) = [0, s̃∗∗n (i)], if n > 0,

SII
0 (i) = {Ki}, if n = 0,

(3.7)

where s̃∗∗n (i) is non-decreasing in i and non-increasing in n. Moreover, s̃∗∗n (i) ≤ Ki for
each i and n.

Proof. Part (i) follows from Lemma 3.6. Part (ii) can be obtained by Lemma 3.7 and 3.8.
For n = 0, since s̃∗∗n (i) = inf{s | (s−Ki)+ ≤ s−Ki} = Ki, we have SII

0 (i) = {Ki}.

4. Numerical Examples

In this section we provide a numerical example for a callable American option by using the
binomial tree model. We assume that the transition probability matrix is given by

P =

(
p1 1− p1

1− p2 p2

)
. (4.1)

For a fixed T , let us divide the interval [0, T ] into M subintervals such that T = hM .
Suppose that b(Zt) = bi and a(Zt) = −bi, i = 1, 2, in equation (2.3). By Proposition 2.2,
the probability of upward in the state i is given by

qi =
erh − di
ui − di

, i = 1, 2, (4.2)
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where ui = ebi and di = e−bi . Let ui,j and di,j be the upward and downward rate when
the state changes from i to j, respectively. The probability distribution function of X i

t is
described by

P (X i
t = x) =


qipi, if x = ui,i,

qi(1− pi), if x = ui,j,

(1− qi)pi, if x = di,i,

(1− qi)(1− pi), if x = di,j,

(4.3)

where i = 1, 2, i ̸= j. It is easy to show that the process is a martingale. The asset price
after n periods on tree can be obtained by

Sn = S0u
n1
1 u

n2
2 d

n3
1 d

n4
2 (4.4)

where n1 + n2 + n3 + n4 = n.
Remark 4.1. Aingworth et al. [16] show that the number of distinct underlying prices at
period n is n+2N−1C2N−1. Here, N is the number of the state of the economy.

Let v̄in(n1, n2, n3) be the value of the callable American put at time period n when the
number of the up moves in the state 1 is n1, the number of the up moves in the state 2
is n2 and the number of the down moves in the state 1 is n3. Then our optimal stopping
problems can be rewritten as follows;

v̄i0(0, 0, 0) = (Ki − s)+, i = 1, 2, (4.5)

v̄1n(n1, n2, n3) = min{(K1 − Sn)
+ + δ1n,max{(K1 − Sn)

+, β{p1q1v̄1n+1(n1 + 1, n2, n3)

+p1(1− q1)v̄
1
n+1(n1, n2, n3 + 1) + (1− p1)q1v̄

2
n+1(n1, n2 + 1, n3)

+(1− p1)(1− q1)v̄
2
n+1(n1, n2, n3)}}}, (4.6)

v̄2n(n1, n2, n3) = min{(K2 − Sn)
+ + δ2n,max{(K2 − Sn)

+, β{p2q2v̄2n+1(n1, n2 + 1, n3)

+p2(1− q2)v̄
2
n+1(n1, n2, n3) + (1− p2)q2v̄

1
n+1(n1 + 1, n2, n3)

+(1− p2)(1− q2)v̄
1
n+1(n1, n2, n3 + 1)}}}. (4.7)

We set the parameters as T = 1, M = 300, r = 0.1, b1 = 0.03, b2 = 0.01, p1 = 0.7,
p2 = 0.8, K1 = K2 = 100, δ1n = 6 and δ2n = 5 for all n. These parameters satisfy Assumption
2.1 (i) and Assumption 3.2. The optimal exercise regions for the issuer and the investor is
represented in Figure 1. We see that the properties of regions are consistent with Theorem
3.2. Next, we vary a parameter S0, T , b1, p2 or δ1 and keep all other parameters fixed. The
resulting value for callable American put option are listed in Table 1. The option values are
decreasing in S0, T and p2, and non-decreaing in b1 and δ1.

5. Concluding Remarks

In this paper we consider the discrete time valuation model for callable contingent claims
in which the asset price depends on a Markov environment process. It is shown that such
valuation model with the Markov-modulated price dynamics can be formulated as a coupled
optimal stopping problem of a two person game between the issuer and the investor. In
particular, we show under some assumptions that there exists a simple optimal call policy for
the issuer and optimal exercise policy for the investor which can be described by the control
limit values. If the distributions of the state of the economy are stochastically ordered, then
we investigate analytical properties of such optimal stopping rules for the issuer and the
investor, respectively, possessing a monotone property.
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Figure 1: Optimal exercise boundaries for the callable American put.

We assume that the asset price follows a random walk with first order stochastic domi-
nance constraint. We wish to extend it to the one with second order stochastic dominance.
Moreover, it is of interest to extend it to the three person games among the issuer, investor
and the third party like stake holders. If we can directly observe the state of the econ-
omy but be able to partially observable, a regime switching model can be formulated as a
partially observable Markov one. We shall leave it for future research.
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