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Abstract This paper presents an efficient algorithm that enumerates all the bottom-left stable positions
for a given layout of rectangles. Its time complexity is O((n +K) log n), where n is the number of placed
rectangles (i.e., input size) and K is the number of bottom-left stable positions (i.e., output size). This
is the first non-trivial algorithm that works for layouts without bottom-left stability and with overlap.
In addition to the theoretical analysis of the time complexity, we evaluate the computation time of the
proposed algorithm via computational experiments and confirm that it is applicable to very large-scale
instances having one million rectangles.
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1. Introduction

Rectangle packing is an important problem with applications in steel, wood, glass, paper
and many other industries. There are a number of variants of the problem with different
objectives and constraints, but the essential task is to place a given set of rectangles in
a given larger area without overlap so that the wasted space in the resulting layout is
minimized. (See [19] for a typology of cutting and packing problems.) Almost all variants
of the problem are known to be NP-hard, and many heuristic algorithms have been proposed
in the literature. One of the typical frameworks of existing heuristic algorithms is the bottom-
left strategy, which places rectangles one by one at bottom-left stable positions [2, 12, 16]. A
fundamental problem to be solved for executing these algorithms is to enumerate all bottom-
left stable positions (or to find a bottom-left stable position with some properties) for a set
of already placed rectangles and one new rectangle to be placed next.

Bottom-left stable positions are defined for a given area (in this paper, we assume that
the shape of the given area is rectangular), a set of rectangles placed in the area, and one
new rectangle. A bottom-left stable position is a point in the area where the new rectangle
can be placed without overlap with already placed rectangles and the new rectangle cannot
move to the bottom or to the left. There are many bottom-left stable positions in general
and the lowest one (if there are ties, the leftmost one among the lowest) is called the bottom-
left position. We also define bottom-left stability for a layout: If there is no overlap among
rectangles and no rectangle can move to the bottom or to the left, the layout satisfies
bottom-left stability.

Some constructive heuristic algorithms for the rectangle packing problem place rectangles
at a bottom-left stable position [2, 10, 12, 16], and hence any layouts constructed by these
algorithms (including intermediate layouts) satisfy bottom-left stability. For layouts with
bottom-left stability, Chazelle [4] showed that the number of bottom-left stable positions
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for a new rectangle is at most n+1 when the number of placed rectangles is n and proposed
an algorithm to enumerate all the bottom-left stable positions in linear time.

Another common framework of heuristic algorithms for the rectangle packing problem is
the improvement method, which places all the rectangles in the given area without overlap
and iteratively improves the layout by some operations. These kinds of algorithms often
place a rectangle at a bottom-left stable position, but in this case, they may need to solve
the problem of finding such a position in a layout without bottom-left stability. For this case,
Healy et al. [9] showed that the number of bottom-left stable positions for a new rectangle
is O(n) when n rectangles are placed in the area without overlap, and they proposed an
O(n log n) time algorithm to enumerate all the bottom-left stable positions.

For some packing problems including the two-dimensional irregular packing problem,
algorithms with compaction and separation operations were proposed [3, 8, 11, 15]. These al-
gorithms generate layouts with overlap during their execution. However, efficient algorithms
to enumerate bottom-left stable positions in layouts with overlap have not been proposed
yet.

In this paper, we consider the problem of enumerating bottom-left stable positions
for a new rectangle within a given layout that may not satisfy bottom-left stability and
may have overlap between rectangles. We propose an enumeration algorithm that runs in
O((n + K) log n) time, where n is the number of placed rectangles and K is the number
of bottom-left stable positions. It is noted that if the given layout has no overlap between
the placed rectangles, then K = O(n) and the time complexity of our algorithm becomes
O(n log n), which is the same as the result in [9]. We use no-fit polygons and a sweep line
to enumerate bottom-left stable positions efficiently, where no-fit polygons are widely used
in packing algorithms and the sweep line technique is used for many problems in compu-
tational geometry and other areas. Our algorithm enumerates bottom-left stable positions
from bottom to top (from left to right for positions with an identical y-coordinate), and
hence it outputs the bottom-left position first in O(n log n) time.

The bottom-left strategy can naturally be generalized to the three dimensional case [13].
An important consequence of the algorithm proposed in this paper is that it can be uti-
lized to design an efficient algorithm to execute such a bottom-left algorithm for the three-
dimensional packing problem. Kawashima et al. [14] showed that the time complexity was
improved from the previous best-known O(n4) (in [17]) to O(n3 log n). In their proof, our
algorithm is used as a core part of the algorithm, and the applicability of our algorithm to
the case with rectangles having overlap is crucial, i.e., existing algorithms for enumerating
bottom-left stable positions such as those proposed in [4, 9] cannot be used for this purpose.

2. Problem Description

We are given a set of n rectangles I = {1, 2, . . . , n} and one large rectangular area, also
called the container. The container has its width and height (W,H) and its bottom left
point is placed at (0, 0) in the plane. Each rectangle i ∈ I has its width and height (wi, hi),
and is placed orthogonally in the plane. Let (xi, yi) be the coordinate of the bottom left
point of rectangle i. We note that the given rectangles may protrude from the container and
may overlap each other. We are also given one new rectangle j ̸∈ I with size (wj, hj) that
has not been placed yet. The objective is to enumerate all the bottom-left stable positions in
the container for rectangle j. See Figure 1(a) for an example of bottom-left stable positions;
black points in this figure denote bottom-left stable positions for rectangle j. Let K be the
number of bottom-left stable positions for a given layout and one new rectangle. It is easy
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Figure 1: Bottom-left stable positions
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Figure 2: (a) The given area (container), and (b) container rectangles to represent the area

to see that K = O(n2) and K can be Θ(n2) for some cases (see Figure 1(b) for an example).

3. Algorithms

In this section, we propose algorithms to enumerate bottom-left stable positions. We first
introduce no-fit polygon, which is often used in packing algorithms to check overlap effi-
ciently. In Section 3.2, we give a technique to compute for each point p in the plane the
number of no-fit polygons containing p by using a sweep line. In Section 3.3, we propose
an algorithm for enumerating bottom-left stable positions. We estimate the computational
complexity of our algorithms in Section 3.4.

Instead of considering the constraint that requires a new rectangle to be placed in the
container, we use a set of four sufficiently large virtual rectangles C = {cl, cr, ct, cb} that
satisfies the following condition: Rectangle j does not have overlap with rectangles i′ ∈ I∪C
if and only if it is placed in the container without overlap with rectangles i ∈ I. We call these
virtual rectangles container rectangles; see Figure 2 for an example of container rectangles.
We denote I ′ = I ∪ C; then |I ′| = |I|+ 4 holds.

3.1. No-fit polygon

No-fit polygons (NFP) [1] are widely used as a geometric technique to check overlap of two
polygons in two-dimensional space. An NFP is defined for an ordered pair of two polygons i
and j, where the position of polygon i is fixed and polygon j can be moved. The no-
fit polygon of i and j, denoted by NFP(i, j), is the set of positions of polygon j having
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intersection with polygon i (more precisely, the interior of polygon j intersects with the
interior of polygon i). In this paper, we only treat the situation such that both of two
polygons i and j are rectangles, and hence it is easy to compute NFP(i, j), whose shape is
also rectangular. Suppose that rectangle i is placed at (xi, yi) and rectangle j is the new
rectangle. Then NFP(i, j) is defined as follows:

NFP(i, j) = {(x, y) | xi − wj < x < xi + wi, yi − hj < y < yi + hi}.

We also define the overlap number Bj(x, y) of no-fit polygons at point (x, y) as follows:

Bj(x, y) =
∣∣{i ∈ I ′ | (x, y) ∈ NFP(i, j)}

∣∣.
Note that every no-fit polygon is an open set (i.e., the points on the boundary are not
included in the NFP), and hence an NFP does not contribute to Bj(x, y) if (x, y) is on its
boundary. By using this overlap number, we can characterize bottom-left stable positions
as follows:

(x, y) is a bottom-left stable position for rectangle j

⇐⇒ Bj(x, y) = 0 ∧Bj(x− ε, y) > 0 ∧Bj(x, y − ε) > 0

for any sufficiently small positive number ε.

(3.1)

In the next section, we will describe how to compute the overlap number of no-fit polygons.

3.2. Compute overlap numbers

The algorithm first computes all no-fit polygons NFP(i, j) of rectangle j relative to placed
and container rectangles i ∈ I ′. In order to compute overlap numbers (of no-fit polygons)
in the given area efficiently, the algorithm uses a sweep line parallel to the x-axis and moves
it from bottom to top. When we need to specify the sweep line that is currently located
at a y-coordinate ys, we call it the sweep line at ys. For every fixed y-coordinate ys, the
overlap numbers on the sweep line at ys are defined as the set of overlap numbers Bj(x, ys)
of all points (x, ys) on the line. The overlap numbers on the sweep line can be treated as
a function of x when the position ys of the sweep line is fixed, i.e., Bj(x, ys) is a function
of x for every fixed ys. The algorithm (implicitly) keeps this function and modifies it as the
sweep line moves from bottom to top; to be more precise, the function is modified whenever
the sweep line encounters the top or bottom edge of a no-fit polygon.

Let Nt (resp., Nb) be the set of all the top (resp., bottom) edges of no-fit polygons and
Ntb = Nt∪Nb. As the sweep line moves up, the function representing the overlap numbers on
the sweep line changes only when the sweep line encounters a member of Ntb. Let Nl (resp.,
Nr) be the set of all the left (resp., right) edges of no-fit polygons and Nlr = Nl∪Nr. Because
there are n placed rectangles and four container rectangles, |Nt| = |Nb| = |Nl| = |Nr| = n+4
and |Ntb| = |Nlr| = 2n+ 8 hold. We use the following rule to sort the elements in Nlr.

Rule A. The elements in Nlr are sorted in nondecreasing order of the x-coordinates of the
elements, where ties are broken by giving higher priority to elements in Nr. Moreover,
if the right edges of some no-fit polygons have the same x-coordinate, we give higher
priority to those elements that correspond to no-fit polygons whose top edges have smaller
y-coordinates.

The importance of the tie-breaking rules in Rule A is explained in the next section. Let x
(k)
lr

be the x-coordinate of the kth element in the sorted list of Nlr, and define intervals

Sk =
[
x
(k)
lr , x

(k+1)
lr

]
, k = 1, 2, . . . , 2n+ 7.
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Figure 3: The contribution of NFP(i, j) to Bj(x, ys)

Suppose that for a no-fit polygon NFP(i, j), its left (resp., right) edge is the lth (resp.,
(r + 1)st) element in the sorted list of Nlr. When the sweep line is at a y-coordinate ys
that is between the top and bottom edges of NFP(i, j), this no-fit polygon contributes

one unit to Bj(x, ys) for all x satisfying x
(l)
lr < x < x

(r+1)
lr and has no contribution to it

for the remaining values of x as depicted in Figure 3. For this reason, for every fixed y-
coordinate ys, function Bj(x, ys) is the summation of such functions and hence is a lower
semicontinuous (i.e., Bj(x, ys) ≤ limε→+0min{Bj(x− ε, ys), Bj(x + ε, ys)}) piecewise linear
function whose break points are only on the boundaries of the intervals. That is, the overlap
numbers on the sweep line at ys are the same for all internal points of an interval Sk, i.e.,
Bj(x, ys) = Bj(x

′, ys) holds for all x and x′ that satisfy x
(k)
lr < x < x′ < x

(k+1)
lr . Accordingly,

it suffices to keep one value for every interval to maintain the whole shape of the function
representing the overlap numbers on the sweep line at ys.

The algorithm maintains a value g(k) for each interval Sk during the computation,
where g(k) is maintained so that it represents the overlap numbers on the sweep line for
internal points of Sk except for those intervals whose left and right boundaries have the
same x-coordinate and both are in Nl or both in Nr. We show in Section 3.3 that for
every y-coordinate ys of the sweep line, there is a moment when Bj(x, ys) = mink:x∈Sk

g(k)
holds for all x. Hence we can find any point (x, y) that satisfies Bj(x, y) = 0 by finding
an interval Sk such that x ∈ Sk and g(k) = 0 at an appropriate moment while the sweep
line is at y. Initially, the sweep line is at a sufficiently low position, and it overlaps with no
NFP. At this moment, the value g(k) of every interval Sk is set to zero. We now consider
the moment when the sweep line encounters a member in Ntb. Let NFP(i, j) be the no-fit
polygon whose top or bottom edge is encountered by the sweep line, and assume that the
left (resp., right) edge of NFP(i, j) is the lth (resp., (r + 1)st) element in the sorted list
of Nlr. In this situation, we should increase (resp., decrease) the values of g(k) by one for
k = l, l+1, . . . , r if the encountered edge is a member of Nb (resp., Nt). See Figure 4 for an
example; (a) for a y-coordinate of the sweep line, the value of g(k) for every interval Sk is
shown at the bottom, and (b) when the sweep line moves up and encounters the top edge
of an NFP, the values of g(k) for the third to eighth interval are decreased by one. In this
example, the value of g(k) for every k represents the overlap numbers on the sweep line for
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Figure 4: (a) The value of g(k) for each interval Sk, and (b) the sweep line encounters the
top edge of an NFP and the values of g(k) for six intervals are updated (decreased by one)

all internal points in Sk.
If the values of g(k) are stored simply in an array whose cells correspond to the intervals,

it takes O(n) time to update the g(k) values of relevant cells when the sweep line encounters
a member of Ntb. To update the g(k) values efficiently, we use a complete binary tree whose
leaves represent intervals S1, S2, . . . , S2n+7. Here, the kth leaf from the left corresponds to
interval Sk, and the name of this leaf is k. We note that 2n+7 is not a power of two for any n,
and there are remaining leaves on the right side of the leaf corresponding to interval S2n+7.
Such remaining leaves are called dummy leaves. Corresponding to each dummy leaf k, we
consider a dummy interval Sk (k ≥ 2n+8) such that g(k) = 1 during the entire computation

and that the left boundary x
(k)
lr is to the right of the container rectangle cr on the right of

the container (i.e., Sk is outside of the container). We use a complete binary tree with
the minimum number of dummy leaves. Then the number of dummy leaves is less than
2n+7 and the height of this tree is O(log n). Every node of this tree stores values pself , pmin

and pmax, whose roles are explained as follows.
For two nodes u and v of the tree, let PATH (u, v) be the set of nodes in the path from u

to v including u and v themselves. The algorithm maintains the values of pself for all nodes
of the tree so that ∑

u∈PATH (k,root)

pself(u) = g(k)

is satisfied for every leaf k, where root is the root node of the binary tree. Then it is possible
to compute the value of g(k) for each interval Sk in O(log n) time by using the values of pself
in the path from the corresponding leaf to the root node. We also define the values of pmin(v)
and pmax(v) for each node v of the complete binary tree as follows:

pmin(v) = min
k∈Q(v)

∑
u∈PATH (k,v)

pself(u), (3.2)

pmax(v) = max
k∈Q(v)

∑
u∈PATH (k,v)

pself(u), (3.3)

where Q(v) is the set of all leaves in the subtree rooted at node v. By using the value
of pmin(v) (resp., pmax(v)) and the values of pself(u) for nodes u in the path from the parent
node of v to the root node, it is possible to check whether there exist leaves in Q(v) whose
g(k) values are equal to zero (resp., positive). Let u and u′ be the children of node v and

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Enumerating BL Positions for Rectangles 51

l r

v

root

Figure 5: Complete binary tree to maintain the g(k) values; instead of updating the values
of all leaves between l and r, the values only on the shaded nodes are updated

assume that the values of pmin(u) and pmin(u
′) are known. In this situation, the value of

pmin(v) can be computed in constant time by

pmin(v) = pself(v) + min{pmin(u), pmin(u
′)}. (3.4)

The value of pmax(v) can be computed similarly.

We now explain the algorithm to keep the values of pself , pmin and pmax appropriately.
Consider the moment when the sweep line encounters a member in Ntb. Let NFP(i, j) be
the no-fit polygon whose top or bottom edge is encountered by the sweep line, and let the
left (resp., right) edge of NFP(i, j) be the lth (resp., (r + 1)st) element in the sorted list
of Nlr. Here we assume for simplicity that the encountered edge is the bottom edge of the
NFP. The case when the top edge is encountered is similar; instead of increasing the values
by one, the algorithm decreases the values by one. The algorithm first finds the leaves l
and r that correspond to the lth and rth intervals and increases the values of pself , pmin

and pmax of these two leaves by one. It then traverses nodes in the paths from the leaves l
and r to their least common ancestor v. During this traversal, whenever a node in the path
from l (resp., r) to v is reached from its left (resp., right) child, the algorithm increases the
values of pself , pmin and pmax of the right (resp., left) child by one. It also updates pmin (by
using (3.4)) and pmax for nodes in the paths from l and r to v so that the conditions (3.2)
and (3.3) are satisfied. Finally, the algorithm updates the values of pmin and pmax for all
nodes in the path from v to the root node of the tree. See Figure 5 for an example; instead
of increasing the values of pself for all leaves between l and r, the values only on the shaded
nodes are updated. For every such shaded node u, all leaves in Q(u) are between the leaves l
and r, and for every leaf k between l and r, there exists exactly one such shaded node in
the path from k to the root. For this reason, increasing the value of pself for every shaded
node by one is equivalent to increasing the g(k) value of every leaf between l and r by one.
To satisfy Equations (3.2) and (3.3), the values of pmin and pmax on every shaded node and
those on every node connected to thick edges are updated from bottom to top.

The details of our procedure to update the values on the binary tree efficiently are
summarized as Algorithm UpdateValues(λ, l, r). (The time complexity of this procedure
is discussed in Section 3.4.)
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Algorithm UpdateValues(λ, l, r)

Input: An increment λ (λ = 1 when the sweep line encounters a bottom edge of NFP; λ =
−1 when the sweep line encounters a top edge of NFP), two leaves l and r corresponding
to the leftmost and rightmost intervals and current values of pself , pmin and pmax.

Task: Update the values of pself , pmin and pmax.

Step 1: Increase the values of pself(l), pmin(l), pmax(l), pself(r), pmin(r), pmax(r) by λ (this means
that if λ = −1, these values are actually decreased by one).

Step 2: Let lprev := l and rprev := r, and then let l be the parent of lprev and r be the
parent of rprev. If l ̸= r holds, proceed to Step 3; otherwise go to Step 4.

Step 3: If the right (resp., left) child u of l (resp., r) is different from lprev (resp., rprev),
increase the values of pself(u), pmin(u) and pmax(u) by λ.
Let pmin(l) := pself(l) +min{pmin(u), pmin(u

′)}, where u and u′ are the children of node l.
Update the values of pmax(l), pmin(r), pmax(r) similarly. Return to Step 2.

Step 4: For each node v in the path from l (= r) to the root and the children u and u′

of v, let pmin(v) := pself(v) + min{pmin(u), pmin(u
′)} and update pmax(v) similarly. Then

stop.

3.3. Enumerate bottom-left stable positions

We explain our algorithm that enumerates bottom-left stable positions. Observe that, while
the sweep line parallel to the x-axis is moved from bottom to top, the overlap numbers on
the sweep line decrease only if the top edge of a no-fit polygon is encountered. This means
that bottom-left stable positions can be found only in this case, because a point (x, y) can
be a bottom-left stable position only if Bj(x, y) = 0 and Bj(x, y− ε) > 0 for any sufficiently
small positive ε. For this reason, when the sweep line encounters the bottom edge of a no-fit
polygon, the algorithm just updates the values g(k) (implicitly by updating the values on
some nodes in the binary tree) of relevant intervals Sk according to the rule described in
Section 3.2. On the other hand, when the sweep line encounters the top edge of a no-fit
polygon, the algorithm updates the values of g(k) of relevant intervals and then outputs
bottom-left stable positions on the sweep line if such positions exist. To manage these
events, the following rule is used to sort the elements in Ntb.

Rule B. The elements in Ntb are sorted in nondecreasing order of the y-coordinates of the
elements, where ties are broken by giving higher priority to elements in Nt. If the top
edges of some no-fit polygons have the same y-coordinate, we give higher priority to those
elements that correspond to no-fit polygons whose right edges have smaller x-coordinates
(more precisely, we give higher priority to top edges of no-fit polygons whose right edges
are given higher priority in Nlr).

We show later in this section that every bottom-left stable position (x, y) appears as the
intersection of the sweep line and the left boundary of an interval Sk such that when the
sweep line encounters all top edges in Nt that contain (x, y), g(k) changes from positive to
zero and g(k − 1) is positive. Our algorithm enumerates all such points. For such points,
the above properties correspond to the following facts: (1) g(k) = 0 =⇒ Bj(x, y) = 0,
(2) g(k) > 0 just before the sweep line encounters such top edges =⇒ (x, y) is on the top
edge of a no-fit polygon and hence Bj(x, y − ε) > 0 for any sufficiently small ε > 0, and
(3) g(k−1) > 0 =⇒ (x, y) is on the right edge of a no-fit polygon and hence Bj(x−ε, y) > 0
for any sufficiently small ε > 0.

The details of our algorithm to enumerate all the bottom-left stable positions is formally
described in Algorithm EnumerateBL(j, I). Step 1 initializes the data structures. In
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Figure 6: How to enumerate the bottom-left stable positions on the current top edge

Step 2, for the top or bottom edge e of a no-fit polygon encountered by the sweep line, the
g(k) values of relevant intervals are updated. If a top edge is encountered in Step 2 (we call
it the current top edge), Steps 3 and 4 enumerate the bottom-left stable positions on the
current top edge.

Algorithm EnumerateBL(j, I)

Input: Placed rectangles i ∈ I in the given area and one new rectangle j ̸∈ I.
Output: All the bottom-left stable positions for rectangle j.
Step 1: Compute all no-fit polygons of rectangle j relative to all placed and container

rectangles i ∈ I ′. Sort left and right edges Nlr := Nl ∪Nr of no-fit polygons according to
Rule A. Create the minimum complete binary tree with at least 2n+ 7 leaves. Initialize
the values pself(u) := 0, pmin(u) := 0 and pmax(u) := 0 for all leaves u corresponding to
intervals S1 to S2n+7, and initialize the values pself(u) := 1, pmin(u) := 1 and pmax(u) := 1
for all dummy leaves u. For all internal nodes u, set pself(u) := 0 and compute the values
of pmin(u) and pmax(u). Sort top and bottom edges Ntb := Nt ∪ Nb of no-fit polygons
according to Rule B.

Step 2: Choose the first element e ∈ Ntb and let Ntb := Ntb \ {e} (i.e., e is encountered
by the sweep line). If the y-coordinate of element e is greater than H − hj, stop. Let
NFP (i, j) be the no-fit polygon having the element e as its top or bottom edge, and
assume that its left (resp., right) edge is the lth (resp., (r+1)st) element in Nlr. If e ∈ Nt

(resp., Nb), then set λ := −1 (resp., λ := 1). Call algorithm UpdateValues(λ, l, r). If
e ∈ Nb, return to Step 2; otherwise (i.e., e ∈ Nt) set α := l. If g(α) is positive, go to
Step 3. Otherwise, go to Step 4.

Step 3: By using the values of pmin and pself , find the leftmost interval Sγ that satisfies
γ > α and g(γ) = 0. If γ > r or such a γ is not found, return to Step 2; otherwise,

output a bottom-left stable position (x, y), where x = x
(γ)
lr and y is the y-coordinate of

the current top edge e. Let α := γ and go to Step 4.
Step 4: By using the values of pmax and pself , find the leftmost interval Sγ that satisfies

γ > α and g(γ) > 0. If γ ≥ r or such a γ is not found, return to Step 2; otherwise, let
α := γ and go to Step 3.

To attain efficient enumeration of the bottom-left stable positions on the current top
edge, Steps 3 and 4 are used instead of checking the g(k) values for all leaves from l to r.
Figure 6 shows how the algorithm traverses leaves by applying Step 3 and 4 alternately,
where circles in the figure are the leaves of the tree and the numbers below the circles
denote the g(k) values of corresponding intervals. In Step 3, γ is found as follows. The
algorithm first climbs the binary tree from the leaf α, and whenever a node v is reached
from its left child, it checks whether the subtree rooted at the right child u of v has a leaf k
such that g(k) = 0. When the first node u having such a leaf is found, the algorithm goes
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Figure 7: Tie-breaking rules are necessary to enumerate the bottom-left stable positions;
black (resp., white) points must (resp., must not) be output

down the tree from u, choosing the left-most child including such a leaf. In Step 4, the leaf γ
is found similarly.

We now explain the necessity of the tie-breaking rules in Rule A and B by giving some
examples showing that without them, the output of the algorithm may become incorrect.
Figure 7 (a) is a layout of four rectangles and we want to find bottom-left stable positions
of a new rectangle j in this layout. (There is one bottom-left stable position (black point)
in this layout.) Figure 7 (b) is the layout of corresponding NFPs. The tie-breaking rule
in Rule A that gives higher priority to edges in Nr than those in Nl is necessary to output
the bottom-left stable position (black point) in these figures. This tie-breaking rule is also
crucial to avoid outputting the upper white point, which is not a bottom-left stable position.
Moreover, the tie-breaking rule in Rule A for edges in Nr is necessary to avoid outputting
the lower white point. Figure 7 (c) and (d) are similar; the tie-breaking rule in Rule B that
gives higher priority to edges in Nt than those in Nb is necessary to output (resp., to avoid
outputting) the black point (resp., the right white point). Moreover, as described in Rule B,
if there are some no-fit polygons whose top edges have the same y-coordinate, the top edges
that correspond to no-fit polygons whose right edges have smaller x-coordinates must leave
the sweep line earlier. Without this tie-breaking rule, the algorithm may output positions
(the left white point in Figure 7 (c)) from which rectangle j can move to the left.

In the following, we formally show that Algorithm EnumerateBL(j, I) enumerates all
the bottom-left stable positions.

Lemma 3.1. For every point (x, y) in the container, the following two properties hold:
(1) For every interval Sk that satisfies x ∈ Sk, g(k) ≥ Bj(x, y) holds whenever the sweep
line is at y-coordinate y. (2) There is an interval Sk that satisfies x ∈ Sk and g(k) = Bj(x, y)
when the sweep line is at y-coordinate y and has encountered all of the top edges in Nt that
contain (x, y) but none of the bottom edges in Nb that contain (x, y).
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Note that by the tie-breaking rule in Rule B that gives higher priority to edges in Nt, there
is always such a moment specified in Lemma 3.1 (2). This lemma implies that

Bj(x, y) = min
k:x∈Sk

g(k)

holds for all x when the sweep line has encountered all of the top edges in Nt whose y-
coordinates are y or less but none of the bottom edges in Nb whose y-coordinates are y or
more.

Proof. For every point (x, y) in the container, let N ′
l ⊆ Nl, N

′
r ⊆ Nr, N

′
t ⊆ Nt and N ′

b ⊆ Nb

be the left, right, top and bottom edges that contain (x, y) (including those having (x, y)
at their endpoints in the case of N ′

l and N ′
r), and let Ĩxy be the set of no-fit polygons that

contain (x, y) in their interior regions (n.b., Ĩxy does not contain any no-fit polygon that
touches (x, y) on its boundary). We assume for simplicity that N ′

r is nonempty; the proof
for the opposite case is similar and is omitted. Because no-fit polygons are open sets (i.e.,
they do not contain points on their boundary), no-fit polygons having their edges in N ′

l , N
′
r,

N ′
t or N

′
b do not contribute to the overlap number Bj(x, y), and every no-fit polygon in Ĩxy

contributes one unit to it; hence we have Bj(x, y) = |Ĩxy|. It is not hard to see that for
every interval Sk satisfying x ∈ Sk, when the y-coordinate of the sweep line is y, every no-fit
polygon in Ĩxy contributes one unit to g(k), which implies g(k) ≥ |Ĩxy| = Bj(x, y). Indeed,
the x-coordinate of the left (resp., right) boundary of such a no-fit polygon is strictly less
(resp., greater) than x, and in the sorted list of edges in Nlr, there is no edge between the
two edges corresponding to the left and right boundaries of Sk. Hence in this sorted list,
the left (resp., right) edge of this no-fit polygon is the same as or to the left (resp., right) of
the edge corresponding to the left (resp., right) boundary of Sk. Moreover, the y-coordinate
of the bottom (resp., top) boundary of this no-fit polygon is strictly less (resp., greater)
than y. Accordingly, this no-fit polygon contributes one unit to g(k) when the y-coordinate
of the sweep line is y.

Then, all we have to do to prove (2) is to show that there is an interval Sk satisfying
x ∈ Sk for which at the moment specified in the lemma, none of the no-fit polygons having
their edges in N ′

l , N
′
r, N

′
t or N ′

b contributes to g(k). By the tie-breaking rule in Rule A
that gives higher priority to elements in Nr, there is a right edge e ∈ N ′

r such that in the
sorted list of elements in Nlr, all edges in N ′

r \ {e} are to the left of e and all edges in N ′
l

are to the right of e. Let Sk be the interval whose left boundary corresponds to e. Then all
no-fit polygons having their right edges in N ′

r and those having their left edges in N ′
l cannot

contribute to g(k). At the moment specified in the lemma, the sweep line has encountered
all of the top edges in N ′

t but none of the bottom edges in N ′
b, and the y-coordinate of the

sweep line is y. At this moment, none of the no-fit polygons having their top or bottom
edges in N ′

t or N
′
b can contribute to g(k), and hence g(k) = Bj(x, y) holds.

The following corollary is immediate from this lemma.

Corollary 3.1. If g(k) = 0 holds for an interval Sk when the sweep line is at a y-
coordinate y, then Bj(x, y) = 0 holds for every point (x, y) such that x ∈ Sk.

Proof. Suppose that there is a point (x, y) such that x ∈ Sk and Bj(x, y) > 0 (and y is
the value specified in the claim). Then from Lemma 3.1 (1), g(k) must be positive, which
contradicts the assumption of this corollary.
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By these lemma and corollary, the following theorem holds.

Theorem 3.1. The Algorithm EnumerateBL(j, I) enumerates all the bottom-left stable
positions from bottom to top (from left to right for positions with an identical y-coordinate).

Proof. Let (x̂, ŷ) be a bottom-left stable position. Then, as stated in (3.1) in Section 3.1,
Bj(x̂, ŷ) = 0 and Bj(x̂, ŷ− ε) > 0 hold. Thus, the point (x̂, ŷ) is on the top edge (except the
both end points) of at least one no-fit polygon. Among such no-fit polygons, let NFP(i, j)
be the no-fit polygon whose top edge appears last in the sorted list of top and bottom
edges Ntb. Let the left (resp., right) edge of NFP(i, j) be the lth (resp., (r + 1)st) element
in Nlr. Because (x̂, ŷ) is not on either end of the top edge of NFP(i, j), the x-coordinate of
the left (resp., right) edge of NFP(i, j) is strictly smaller (resp., larger) than x̂.

Consider the time when the algorithm removes the top edge of NFP(i, j) from Ntb.
Lemma 3.1, together with the fact that Bj(x̂, ŷ) = 0, ensures the existence of k′ that
satisfies x̂ ∈ Sk′ and g(k′) = 0. Here, Bj(x̂ − ε, ŷ) > 0 for any small positive ε means
that the x-coordinate of the left boundary of every such interval Sk′ is x̂ (otherwise, we
could choose a positive ε such that x̂ − ε ∈ Sk′ ; then g(k′) = 0 implies Bj(x̂ − ε, ŷ) = 0
by Corollary 3.1). As mentioned above, the x-coordinate of the left (resp., right) edge of
NFP(i, j) is smaller (resp., larger) than x̂, and hence k′ must satisfy l < k′ ≤ r. Let k be
the smallest k′ that satisfies the two conditions x̂ ∈ Sk′ and g(k′) = 0. The x-coordinate
of the right boundary of the interval Sk−1 is x̂, which means x̂ ∈ Sk−1. Then, we must
have g(k − 1) > 0 because k is the smallest among those satisfying the two conditions. In
summary, this interval Sk satisfies the following four conditions: (1) x̂ is the left boundary
of the interval Sk, (2) the value of g(k) for interval Sk is zero, (3) the value of g(k − 1) for
interval Sk−1 immediately to the left of Sk is positive, and (4) l < k ≤ r holds. Then, it is
not hard to see that the algorithm outputs the point (x̂, ŷ) in Step 3 when the value of γ is
k during the repetition of Steps 3 and 4 immediately after the execution of Step 2 in which
the top edge of NFP(i, j) is removed from Ntb.

Assume that the algorithm outputs a point (x̃, ỹ). Let k be the value of γ at the time
this point is output in Step 3. Then interval Sk satisfies the following conditions: (1) the
x-coordinate of its left boundary is x̃, (2) the value of g(k) is zero and (3) g(k−1) is positive
at the time when (x̃, ỹ) was output. Because g(k − 1) > g(k) holds, there must be a no-fit
polygon that contributes to g(k − 1) at this moment but does not contribute to g(k), and
hence the boundary between the intervals Sk−1 and Sk is formed by the right edge of such a
no-fit polygon, which we call NFP(ir, j). The algorithm outputs a point only when the top
edge of a no-fit polygon is encountered by the sweep line in Step 2 (i.e., output occurs during
the subsequent calls to Steps 3 and 4 after such a call to Step 2). Let NFP(it, j) be the
no-fit polygon whose top edge is removed from Ntb in the latest call to Step 2 before (x̃, ỹ)
is output, and let l and r be their values in this call to Step 2. Then it is not hard to see
from the rules in Steps 2–4 that l < k ≤ r is satisfied. This means that the point (x̃, ỹ) is on
the top edge of NFP(it, j) and the value of g(k) decreased when this top edge encountered
the sweep line. The inequality k ≤ r also implies that the right edge of NFP(it, j) is the
same as or to the right of the right boundary of Sk in the sorted list of Nlr, and hence this
right edge is to the right of (i.e., it has lower priority than) the right edge of NFP(ir, j) in
the sorted list.

We first show that the point (x̃, ỹ) is on the right edge of NFP(ir, j) but not on its
either end point. At the time the point (x̃, ỹ) is output, the top edge of NFP(it, j) has just
encountered the sweep line, and NFP(ir, j) contributes to g(k − 1), which means that the
sweep line has encountered the bottom edge of NFP(ir, j) but has not encountered its top
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edge. These facts imply that the top edge of NFP(ir, j) has y-coordinate strictly greater
than ỹ, because otherwise by the tie-breaking rule in Rule B that requires top edges of no-fit
polygons whose right edges have higher priority in Nlr leave the sweep line earlier, the top
edge of NFP(ir, j) would leave the sweep line before the top edge of NFP(it, j), and that the
bottom edge of NFP(ir, j) has y-coordinate strictly less than ỹ, because of the tie-breaking
rule in Rule B that requires bottom edges of no-fit polygons having the same y-coordinate
with some top edges to enter the sweep line after all such top edges leave the sweep line.

We next show that the point (x̃, ỹ) is not at either end of the top edge of NFP(it, j).
It is not at the right end for the following reason. Such a situation would happen only
if the right edge of NFP(it, j) has x-coordinate x̃ (i.e., the right edges of NFP(ir, j) and
NFP(it, j) have the same x-coordinate). As discussed above, the top edge of NFP(ir, j) has
y-coordinate greater than ỹ, while that of NFP(it, j) has y-coordinate ỹ. These imply that
in the sorted list of left and right edges Nlr, the right edge of NFP(ir, j) must be to the
right of the right edge of NFP(it, j) by the tie-breaking rule in Rule A, which requires the
right edges of no-fit polygons having an identical x-coordinate to be sorted so that those
corresponding to no-fit polygons whose top edges have smaller y-coordinates have higher
priority (i.e., arranged to the left). This contradicts the above-mentioned order of the right
edges of NFP(ir, j) and NFP(it, j). Hence the point (x̃, ỹ) is not at the right end of the top
edge of NFP(it, j).

Similarly, the point (x̃, ỹ) is not at the left end of this top edge. This situation would
happen only if the left edge of NFP(it, j) has x-coordinate x̃, which is the same as that of
the right edge of NFP(ir, j). Then, the left edge of NFP(it, j) must be to the right of the
right edge of NFP(ir, j) in the sorted list of left and right edges Nlr by the tie-breaking rule
in Rule A that requires the left edges having the same x-coordinate with some right edges
be arranged to the right of such right edges. Recall that the left edge of NFP(it, j) forms
the left boundary of interval Sl, and the right edge of NFP(ir, j) forms the left boundary
of interval Sk. Then the above-mentioned inequality l < k implies that the left edge of
NFP(it, j) is to the left of the right edge of NFP(ir, j), and the above-mentioned order
contradicts this fact. Hence, (x̃, ỹ) cannot be at the left end of the top edge of NFP(it, j).

To summarize, the point (x̃, ỹ) is on the top edge of NFP(it, j) but not at either end of
this top edge. This implies Bj(x̃, ỹ − ε) > 0. Because the value of g(k) for the interval Sk

is zero, Bj(x̃, ỹ) = 0 holds by Corollary 3.1. We also have Bj(x̃ − ε, ỹ) > 0 because as
mentioned above, the point (x̃, ỹ) is on the right edge of NFP(ir, j) but not at its either
end point. Consequently, the point (x̃, ỹ) is a bottom-left stable position. We note that
the value of g(k) for every dummy leaf k is initialized to one and is not changed during the
execution of the algorithm; hence the dummy leaves have no influence on the output of the
algorithm.

The algorithm uses a sweep line parallel to the x-axis, moves it from bottom to top, and
outputs points on it. Thus, the algorithm outputs points from bottom to top. When the
algorithm outputs two or more points with an identical y-coordinate, the algorithm outputs
points from left to right for the following reason. Let (x, y) and (x′, y) be bottom-left stable
positions with an identical y-coordinate, where x < x′ holds. If the algorithm outputs both
of these points when the top edge of a no-fit polygon was encountered by the sweep line
(i.e., these points are on an identical top edge e and both are output during the subsequent
calls to Steps 3 and 4 immediately after the call to Step 2 in which e encountered the sweep
line), it is trivial to see that the algorithm outputs them from left to right. We consider the
remaining case where the two points are output via different top edges having an identical y-
coordinate. Let NFP(i, j) be the no-fit polygon such that the point (x, y) is output when its
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top edge leaves the sweep line, and xl (resp., xr) be the x-coordinate of the left (resp., right)
edge of NFP(i, j). We similarly define NFP(i′, j), x′

l and x′
r for the point (x′, y). Then, as

discussed above, (x, y) (resp., (x′, y)) is on the top edge of NFP(i, j) (resp., NFP(i′, j)) but
not at its either end, and hence xl < x < xr and x′

l < x′ < x′
r hold. To show that (x, y)

is output before (x′, y), assume the opposite, which would happen only if the top edge of
NFP(i′, j) leaves the sweep line earlier than that of NFP(i, j). Then x′

r ≤ xr holds by the
tie-breaking rule in Rule B. This means that xl < x < x′ < x′

r ≤ xr holds and hence the
point (x′, y) is also on the top edge of NFP(i, j) but not at its either end point. At the
time when the top edge of NFP(i′, j) leaves the sweep line, the bottom edge of NFP(i, j)
has already encountered the sweep line but its top edge has not encountered the sweep
line yet. This means that NFP(i, j) contributes to the g(k) values of all intervals Sk that
satisfy x′ ∈ Sk, and hence the g(k) values of all such intervals are positive. However, for the
algorithm to output (x′, y), there must be an interval Sk that satisfies g(k) = 0 and x′ ∈ Sk,
which is a contradiction.

Therefore, the algorithm outputs bottom-left stable positions from bottom to top (from
left to right for positions with an identical y-coordinate). This property also means that the
algorithm outputs the bottom-left position first.

3.4. Computational complexity

We estimate the time complexity of our algorithms described in Sections 3.2 and 3.3. Algo-
rithm UpdateValues(λ, l, r) proposed in Section 3.2 runs in O(log n) time since the height
of the complete binary tree is O(log n). Algorithm EnumerateBL(j, I) calls algorithm
UpdateValues(λ, l, r) as a subroutine at most 2n+8 times during the whole execution of
the algorithm; then the total time for this part is O(n log n). The time complexity of Step 3
is O(log n) because O(log n) nodes are visited during the traversal from α to γ, and it is
possible for each node u to check in constant time whether the subtree rooted at the node u
has a leaf k that satisfies g(k) = 0 (this is not hard to see from the property explained in
Section 3.2 just after Equation (3.3)). The time complexity of Step 4 is also O(log n) for
a similar reason. Steps 3 and 4 are called at most n + 4 +K times respectively, where K
is the number of all bottom-left stable positions. In summary, the total time complexity
of algorithm EnumerateBL(j, I) is O((n +K) log n). Furthermore, if our algorithms are
utilized for finding the bottom-left position (i.e., the leftmost position among the lowest
bottom-left stable positions), algorithm EnumerateBL(j, I) can be stopped immediately
when it finds the first bottom-left stable position. In this case, the time complexity to find
the bottom-left position is O(n log n).

4. Computational Results

In this section, we evaluate the proposed algorithms via computational experiments. All of
the algorithms were coded in C and experiments were conducted on a PC (Intel Xeon 3GHz,
1GB memory). As a set of placed rectangles, we used test instances for the rectangle pack-
ing problem with 16, 32, 64, . . . , 1048576 rectangles (they are obtained electronically from
http://www.na.cse.nagoya-u.ac.jp/˜imahori/packing/). These sets of rectangles were gener-
ated in [10] with a method proposed by Wang and Valenzela [18]. For each set of rectangles,
a container whose area is equal to the sum of rectangles’ areas was given and we place all
the rectangles into the container randomly. The size of a new rectangle to be placed next
is similar to the placed rectangles.

Table 1 shows the computational results. Column “n” shows the number of rectan-
gles placed in a rectangular area. The number of bottom-left stable positions enumer-
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Table 1: Number of bottom-left stable positions in a layout and time for enumeration

n BLpts time (s)
16 7 6.61 × 10−6

32 9 1.71 × 10−5

64 15 4.55 × 10−5

128 39 1.18 × 10−4

256 76 2.63 × 10−4

512 138 5.84 × 10−4

1024 266 1.25 × 10−3

2048 504 2.66 × 10−3

4096 636 5.72 × 10−3

8192 1248 1.26 × 10−2

16,384 2375 2.80 × 10−2

32,768 2931 6.97 × 10−2

65,536 6044 2.15 × 10−1

131,072 6446 6.54 × 10−1

262,144 12,901 1.73 × 100

524,288 16,036 4.29 × 100

1,048,576 33,483 1.04 × 101

ated is shown in column “BLpts,” and computation time in seconds is reported in column
“time (s).” We note that layouts were randomly generated many times (at least 10 times; it
depends on the number of placed rectangles) and the average number of bottom-left stable
positions and average computation time were reported. From the table, we can confirm
that the proposed algorithm runs in near linear time. Moreover, we can observe that the
proposed algorithm enumerates bottom-left stable positions in short time from a practical
viewpoint. It can enumerate all the bottom-left stable positions among hundreds of rect-
angles within 0.001 seconds, it spends less than 0.1 seconds for instances with up to 32,768
rectangles, and it takes 10.4 seconds to enumerate all the bottom-left stable positions in
layouts with about one million rectangles.

5. Extensions

In the previous sections, the problem of enumerating bottom-left stable positions for a new
rectangle within a layout of rectangles were considered. By using the techniques introduced
in this paper, it is possible to treat similar problems with different shapes.

One of the important candidates of different shapes is arbitrary rectilinear blocks, which
are the shapes bounded by line segments parallel to the x- or y-axis. Packing problems
of arbitrary rectilinear blocks have applications in VLSI design and have been studied in
the literature [5, 7]. As a core part of designing (most of) heuristic algorithms for the
rectilinear block packing problem, the problem of finding (or enumerating) bottom-left stable
position(s) for a new rectilinear block within a layout of rectilinear blocks should be solved
iteratively. For this problem, placed rectilinear blocks are replaced with a set of rectangles
that covers the rectilinear blocks within the layout. For a new rectilinear block, another
set of rectangles that covers the block is arranged, and these rectangles share a reference
point to keep their relative positions. (Note that computing a minimum set of rectangles to
cover a rectilinear area is NP-hard and some approximation algorithms were proposed [6].)
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We compute all no-fit polygons NFP(i, j), where i is a rectangle that represents a part of
a placed block and j is a rectangle representing a part of the new rectilinear block. Then,
the algorithm proposed in this paper can output all the bottom-left stable positions for the
new rectilinear block.

6. Conclusions

In this paper, the problem of enumerating bottom-left stable positions for a given layout of
rectangles was studied. We proposed an algorithm that enumerates all the bottom-left stable
positions in O((n+K) log n) time, where n is the number of placed rectangles and K is the
number of bottom-left stable positions (i.e., the size of the output). One of the important
features of our algorithm is that it works for layouts without bottom-left stability and with
overlap. We also evaluated the proposed algorithm via computational experiments. Even for
instances having one million rectangles, the proposed algorithm works in short computation
time.

A direction of future work is to propose faster algorithms: The proposed algorithm runs
in O((n+K) log n) time, but the existence of algorithms that run in O(n log n+K) is open.
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