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Abstract Dynamic programming has been used to solve numerous complex problems in business and
engineering. This study applies dynamic programming to a retail decision-making problem related to trade
credit. A price, shelf-space, and time-dependent demand function is introduced to model the finite time
horizon inventory. Trade credit was considered in the model because suppliers commonly provide retailers
with credit periods. Consequently, the retailer is not required to pay for goods immediately upon receipt,
and can instead earn interest on the retail price of the goods between the time the goods are sold and the end
of the credit period. The objective of this paper is to determine the periodic retail price, shelf-space quantity,
and ordering quantity that maximize total profit. The numerical examples explain the procedures of the
solution approach and show that dynamic decision making is superior to fixed decision making regarding
profit maximization.
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1. Introduction

In operations research and management science, dynamic programming is a method used for
solving complex problems by dividing them into simpler sub-problems. Because of changing
and uncertain environments, dynamic decision making is becoming increasingly prevalent
in practice. The benefits of dynamic decision-making techniques have long been considered
in industries, such as airline, restaurant, hotel, fashion and high-tech product industries.
For example, Boise Cascade Office Products sells numerous products online. Their prices
on the 12,000 items that are ordered the most frequently online might change as often as
daily.

Elmaghraby and Keskinocak [7] conducted a complete review of relevant literature and
current practices in dynamic pricing. Xiao et al. [14] solved a semi-dynamic pricing and
seat-inventory allocation problem by using the airline industry as an example. Tsao and
Sheen [13] considered the dynamic pricing, promotion, and replenishment policies for a
deteriorating item when payments were permissibly delayed. They assumed that demand
is a linear function of price and time. Aziz et al. [1] proposed a hotel revenue-management
model based on dynamic pricing for maximizing room revenue. Zhao et al. [16] studied
a dynamic pricing problem by considering a monopolist firm selling perishable goods to
consumers who may be influenced by inertia. Xu et al. [15] analyzed the dynamic pricing
decision and compensation strategy of a firm that relies on a heterogeneous sales force to
sell its product in two periods. IBM is investigating software that will enable it to adjust
prices according to demand. Therefore, dynamic pricing is vital in businesses today.
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Wal-Mart, the largest retailer worldwide, uses trade credit as a larger source of capital
than that of its bank loans; Wal-Mart trade credit is eight times the amount of capital
invested by shareholders (Chuledek [6]). In practice, vendors frequently provide forward
financing (trade credit) to buyers. Numerous studies have been published regarding inven-
tory problems occurring in trade credit situations. Recently, Tsao [10] determined two-phase
pricing and inventory decisions regarding trade credit for deteriorating and fashion goods.
Balkhi [2] considered an economic ordering policy of deteriorating items under different
supplier trade credits for a finite horizon case. Tsao [11] discussed how to manage a retail-
competition distribution channel involving a cash discount and credit period. Tsao et al. [12]
discussed the effects of a maintenance policy on an imperfect production system under trade
credit. Therefore, the issue of trade credit is extremely popular in this field of research.

Retail price and shelf space are two central factors that affect demand. Murray et al. [8]
and Szmerekovsky et al. [9] considered a demand function that is decreasing in price and
increasing in shelf-space allocation. Our paper extends the price- and shelf-space-sensitive
demand function for considering a price, shelf-space, and a time-dependent demand function.
The demand form is practical because, in a retail store, such as Wal-Mart or Target, retail
price and shelf space are adjusted periodically. Chen and Chang [4] and Chen [3] stated
that a truly efficient supply chain achieves other objectives in addition to reducing cost. In
this study, we conducted dynamic retail-price, shelf-space, and ordering-quantity decisions
concurrently under trade credit to maximize total profit. Both declining and increasing
market-demand patterns were considered, which enhanced the model applications.

In this study, we determined optimal pricing, shelf-space, and ordering decisions. This
paper introduces a price, shelf-space, and time-dependent demand function. The demand
function is an exponentially decreasing function of the price, which exponentially increases
according to shelf space and varies exponentially over time. Finding the closed form of the
solution directly is impossible because of the complexity of the demand form. Instead, we
solved the problem by applying an extreme value search method. The contributions of this
paper to the literature and to practice are as follows. First, this is the first study to consider
dynamic pricing, shelf-space, and ordering decisions concurrently in a trade credit situation.
Second, a price, shelf-space, and time-dependent demand function was introduced into this
model. Third, we demonstrated that dynamic decision making is superior to fixed decision
making. The results of this study could be used as a reference by business managers or
administrators.

2. MODEL FORMULATION

The following notations are used in this paper:

H: The length of the fixed planning horizon

n: The number of replenishment cycles during the planning horizon

pj: The retail price per unit for cycle j

sj: The shelf-space quantity for cycle j

qj: The ordering quantity for cycle j

c: The cost per unit

A: The ordering cost per order

h: The inventory holding cost per unit per unit time

Ij(t): The inventory level for cycle j at time t

m: The shelf-space maintenance cost per shelf per unit time

tc: The length of the credit period
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D(pj, sj, t): The basic demand rate, D(pj, sj, t) = (αp−β
j sγj )e

λt where α > 0, β > 0, γ > 0

Ie: The interest earned per dollar

Ic: The interest charged per dollar

πi
j: The total profit in the time interval [Zj−1, Zj]; i = 1 for tc ≤ Zj − Zj−1, i = 2 for
tc > Zj − Zj−1

Πj: The cumulated net profit over period [0, Zj]

The mathematical model in this paper was developed based on the following assumptions.

1. A single item is considered over a known and finite planning horizon.

2. Replenishments occur instantaneously.

3. The basic demand rate D(pj, sj, t) = (αp−β
j sγj )e

λt is an exponentially decreasing function
of price that exponentially increases according to shelf space and decreases (increases)
exponentially over time when λ < 0 (λ > 0). The demand function is a blend of the
time-sensitive function proposed by Tsao and Sheen [13] and the price- and shelf-space-
sensitive function provided in Chen et al. [5].

4. The unit selling price of products sold during the credit period is deposited in an interest-
bearing account at rate Ie. At the end of this period, the credit is settled, and the retailer
starts paying interest charges on items in stock at the rate Ic.

The variation of inventory level Ij(t) in time interval [Zj−1, Zj], in which the joint effect
of demand and deterioration is considered, can be described by the following differential

equation:
dIj(t)

dt
= −D(pj, sj , t), Zj−1 ≤ t ≤ Zj, which contains the boundary condition

Ij(Zj) = 0, j = 1, . . . , n for cycle j. We can then obtain Ij(t) =
αp−β

j sγj
λ

(eλZj − eλt),

Zj−1 ≤ t ≤ Zj and the ordering quantity (for cycle j) qj =

∫ Zj

Zj−1

(αp−β
j sγj )e

λt dt.

The net profit over cycle j consists of the following elements:

(1) Sales revenue:

SRj = pj ·
∫ Zj

Zj−1

(αp−β
j sγj )e

λt dt. (2.1)

(2) Purchasing cost :

PC j = c ·
∫ Zj

Zj−1

(αp−β
j sγj )e

λt dt. (2.2)

(3) Inventory holding cost :

Hj = h ·
∫ Zj

Zj−1

Ij(t) dt = h ·
∫ Zj

Zj−1

αp−β
j sγj
λ

(eλZj − eλt) dt. (2.3)

(4) Ordering cost : A.

(5) Shelf-space maintenance cost :

Mj = m ·
∫ Zj

Zj−1

sj dt. (2.4)
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(6) Interest earned :
For each cycle, we must consider whether the length of the credit period is longer or
shorter than the length of the cycle. For example, two cases must be discussed in Cycle
1. Case 1 is tc ≤ Zj − Zj−1 and Case 2 is tc > Zj − Zj−1. Only one of these two cases
occurs in each cycle of the planning horizon. IE i

j represents the interest earned in the
time interval [Zj−1, Zj] of Cases i, i = 1, or 2, and j = 1, . . . , n.

Case 1: When tc ≤ Zj − Zj−1

IE 1
j = Ie · pj

∫ Zj−1+tc

Zj−1

(Zj−1 + tc − t)(αp−β
j sγj )e

λt dt; (2.5)

Case 2: When tc > Zj − Zj−1

IE 2
j =Ie · pj

∫ Zj

Zj−1

(Zj − t)(αp−β
j sγj )e

λt dt

+ Ie · pj · [tc − (Zj − Zj−1)]

∫ Zj

Zj−1

(αp−β
j sγj )e

λt dt. (2.6)

(7) Interest charged :
Similarly, two interest-charged cases must be addressed and only one occurs in each cycle
of the planning horizon.

Case 1: When tc ≤ Zj − Zj−1

IC 1
j is the interest charged in the time interval [Zj−1, Zj], j = 1, . . . , n.

IC 1
j = Ic · c

∫ Zj

Zj−1+tc

Ij(t) dt = Ic · c
∫ Zj

Zj−1+tc

αp−β
j sγj
λ

(eλZj − eλt) dt; (2.7)

Case 2: When tc > Zj − Zj−1

No interest is charged in this case (i.e., IC 2
j = 0).

Therefore, the net profit in cycle j using the two different cases can be expressed as follows:

Case 1: When tc ≤ Zj − Zj−1

π1
j (pj, sj) = SRj − PC j −Hj −A−Mj + IE 1

j − IC 1
j ; (2.8)

Case 2: When tc > Zj − Zj−1

π2
j (pj, sj) = SRj − PC j −Hj −A−Mj + IE 2

j − IC 2
j . (2.9)

Total profit in cycle j is

πj(pj, sj) =

{
π1
j (pj, sj) when tc ≤ Zj − Zj−1

π2
j (pj, sj) when tc > Zj − Zj−1

and the accumulated profit over period [0, j] is calculated by using Πj =
∑
g≤j

πg(pg, sg).

The total profit in cycle j, πj(pj, sj), is a two-branch nonlinear function containing two
variables. In the case of tc ≤ Zj − Zj−1, for a given cycle over [Zj−1, Zj], the optimal
retail price pj and shelf-space quantity sj in this cycle can be determined by differentiating
Equation (2.8) according to pj and sj separately, and then setting these to zero. Similarly,
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in the case of tc > Zj − Zj−1, for a given cycle over [Zj−1, Zj], the optimal pj and sj in
this cycle can be determined by differentiating Equation (2.9) according to pj and sj , and
setting these to zero. We used the Hessian matrix to verify that the total profit function
throughout each cycle is jointly concave according to retail price pj and shelf-space quantity
sj. This means that, separately, the second partial derivatives of Equations (2.8) and (2.9)
respective to pj and sj are strictly negative, and

∂2π1
j (pj , sj)

(∂pj)2
∂2π1

j (pj, sj)

(∂sj)2
−

[
∂2π1

j (pj, sj)

∂pj∂sj

]2

or
∂2π2

j (pj, sj)

(∂pj)2
∂2π2

j (pj , sj)

(∂sj)2
−
[
∂2π2

j (pj , sj)

∂pj∂sj

]2

are positive. The purpose of using this proposed model was to investigate the effect of
dynamic decision making on total profit. This paper presents two developed solution pro-
cedures based on dynamic and fixed decision making in next section.

3. SOLUTION PROCEDURE

Regarding a dynamic pricing and shelf-space policy, the retailer wishes to dynamically
determine the optimal retail price, shelf-space quantity, and ordering quantity of each re-

plenishment cycle. Equations
∂π1

j (pj, sj)

∂pj
= 0 and

∂π1
j (pj, sj)

∂sj
= 0 are used to determine

pj and sj when the considered ordering cycle is larger than or equal to the credit period.
The optimal p∗j and s∗j in π1

j (pj, sj) are such that π1
j (p

∗
j , s

∗
j) = max

pj ,sj
{π1

j (pj , sj)}, which is

the best of the local optimal solutions found. Similarly, when the considered replenishment
cycle is smaller than the credit period, we used the same procedure to obtain the optimal

p∗j and s∗j (by using
∂π2

j (pj , sj)

∂pj
= 0 and

∂π2
j (pj, sj)

∂sj
= 0). Therefore, for cycle j, the search

procedure generates the optimal solutions of p∗j and s∗j . The accumulated net profit in cycle
j is Πj = Πj−1 + πj(p

∗
j , s

∗
j ). The optimal retail price, shelf-space quantity, and sequence of

replenishment time epochs can be determined by solving the dynamic programming models.

ΠZi
= max

{
ΠZi−1

+ πZi
(p∗j , s

∗
j) : 0 ≤ Zi−1 < Zi ≤ H

}
. (3.1)

Given boundary conditions Π0 = 0 and Z0 = 0, the recursive procedure proceeds in a forward
manner to determine the maximal total profit over the time horizon; ΠZn is determined at
the last stage of the procedure (i.e., the maximal net profit of the planning horizon). The
optimal sequence of the replenishment time epochs Zj−1, j = 1, 2, . . . , n, and the associated
optimal retail price p∗j , shelf-space quantity s∗j , and ordering quantity q∗j can be determined.

Regarding a fixed pricing and shelf-space policy, if the company adopts fixed-pricing
and shelf-space decisions, then the firm determines the non-adjustable retail price and shelf-
space quantity at the beginning of the planning horizon by maximizing the relative profit
function over [0, H ]

�(p, s) = (pj − c) ·
∫ H

0

(αp−β
j sγj )e

λt dt−m ·
∫ H

0

s dt. (3.2)

The optimal fixed retail price p∗∗ and shelf-space quantity s∗∗ can be determined by
solving Equations (3.3) and (3.4) concurrently:

∂�(p, s)

∂p
= −(eHλ − 1)αp−β−1sγ[p(β − 1)− cβ]

λ
= 0, (3.3)

∂�(p, s)

∂s
=

(eHλ − 1)αγp−βsγ−1(p− c)

λ
−Hm = 0. (3.4)
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Table 1: Numerical results for dynamic decision-making with declining market demand
Dynamic decision-making Fixed decision-making

j Zj−1 p∗j s∗j q∗j Π∗
j Zj−1 p∗∗ s∗∗ q∗∗j Π∗

j

1 0 24.5 5222 581 3222.08 0 24 3803 512 3108.31
2 1 24.5 4725 526 2725.13 1 24 3803 487 2673.69
3 2 28.5 3236 645 4472.98 2 24 3803 903 4254.73∑

10420.19 10036.73

The dynamic programming model can be used to determine the optimal sequence of
replenishment time epochs Zj−1, j = 1, 2, . . . , n

ΠZi
= max

{
ΠZi−1

+ πZi
(p∗∗, s∗∗) : 0 ≤ Zi−1 < Zi ≤ H

}
. (3.5)

4. NUMERICAL EXAMPLES

To depict the solution procedure, we considered the following example: H = 4, A = 200,
h = 2, c = 8, Ie = 0.1, Ip = 0.15, tc = 1.5, andm = 1. We first considered a case of declining
market demand: D(pj, sj, t) = (1000p−1.5

j s0.5j )e−0.05t. In practice, the parameters α, β, γ,
and λ can be determined by conducting regression analysis using historical transaction data.
Historical transaction data in this paper refer to the sales (representing demands), price, and
shelf-space allocation information collected by observing the product during a period. The
observed data can then be modeled by conducting regression analysis for estimating sales
and demands by using a given amount of allocated shelf space and the retail price. Because
of the powerful information technologies (e.g., POS system, ERP system, data mart, and
warehouse) currently used in businesses, collecting relevant transaction data is easy.

Regarding dynamic decision making, the computed results are shown in Table 1 (left-
hand side). The number of replenishments in the case of dynamic pricing and shelf space is
n = 3, and the associated replenishment time epochs Zj−1, j = 1, 2, 3, optimal retail price p∗j ,
shelf-space quantity s∗j , ordering quantity q∗j , and accumulated net profit Πj are all obtained.
Figure 1 is a graphic representation of the concavity of π1 in the dynamic decision-making
case. The figure shows that the algorithm can be used to derive the optimal solution.

The number of replenishments in the case of fixed pricing and shelf space is n = 3,
and the associated replenishment time epochs Zj−1, j = 1, 2, 3, optimal retail price p∗∗,
shelf-space quantity s∗∗, ordering quantity q∗∗j , and accumulated net profit Πj are shown in
Table 1 (right-hand side). Figure 2 presents a graphic representation of the concavity of � in
a fixed decision-making case. A comparison of the results of the dynamic decisions and the
fixed decisions shows that dynamic decision making is superior to fixed decision making. A
3.82% increase in total profit in the declining market demand case was predicted when fixed
decision making was performed and dynamic pricing and shelf space were implemented.

We also compared the dynamic decision model with the following two models: (a) a
model in which retail price is dynamic and shelf space is fixed, and (b) a model in which
retail price is fixed and shelf space is dynamic. Table 2 shows that the total profit obtained
using the dynamic-price and fixed-shelf-space policy was $10,212.26. Compared with the
$10,036.73 obtained using the fixed price and shelf-space policy, a 2.03% increase in total
profit was predicted in the declining market demand case when the dynamic-price and fixed-
shelf-space policy was implemented. Table 2 also shows that the total profit obtained using
the dynamic-shelf-space and fixed-price policy was $10,258.58. A 1.58% increase of total
profit was predicted in the declining market demand case when the dynamic-shelf-space and
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Figure 1: Graphical representation of πi

Table 2: Dynamic price and fixed shelf-space v.s. dynamic shelf-space and fixed price
Dynamic price and fixed shelf-space Dynamic shelf-space and fixed price

j Zj−1 p∗j s∗j q∗j Π∗
j Zj−1 p∗∗ s∗∗ q∗∗j Π∗

j

1 0 24.5 3803 496 3109.81 0 24 5220 599 3220.30
2 1 24.5 3803 471 2675.13 1 24 4724 542 2723.52
3 2 28.5 3803 699 4427.32 2 24 3157 823 4314.76∑

10212.26 10258.58

fixed-price policy was implemented.

Several numerical analyses were conducted to gain management insight into the struc-
tures of the proposed policies. The results presented in Tables 3 to 5 are as follows:

1. When the inventory holding cost h increases, the optimal shelf-space quantity s∗j , the
optimal ordering quantity q∗j , and the total network profit decline, but the optimal retail
price p∗j increases. When the inventory holding cost increases, the retailer reduces the
ordering quantity and shelf space to reduce inventory costs.

2. When the credit period tc increases, the optimal shelf-space quantity s∗j , the optimal
ordering quantity q∗j , and total network profit rise, but the optimal retail price p∗j declines.
When the inventory holding cost increases, the retailer raises the ordering quantity to
obtain additional benefits in the credit period. In turn, the inventory requires additional
shelf space to stock the products.

3. When shelf-space maintenance cost m increases, the optimal shelf-space quantity s∗j ,
the optimal ordering quantity q∗j , and the total network profit decline. When the shelf-
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Figure 2: Graphical representation of �

Table 3: Effects of h
h = 1 h = 2

j Zj−1 p∗j s∗j q∗j Π∗
j Zj−1 p∗j s∗j q∗j Π∗

j

1 0 23.2 5527 651 3526.85 0 24.5 5222 581 3222.08
2 1 23.2 5001 589 3000.90 1 24.5 4725 526 2725.13
3 2 25.7 3588 792 5175.90 2 28.5 3236 645 4472.98∑

10420.19

space maintenance cost decreases, the retailer increases the shelf-space quantity to meet
demand, and the ordering quantity also increases.

For increasing market demand, we set D(pj, sj, t) = (1000p−1.5
j s0.5j )e0.05t. The numerical

results for dynamic decision-making and fixed decision-making are summarized in Table 6.
It also shows that dynamic decision-making is superior to fixed decision-making. It predicts
a 1.42% increase in total profit in the increasing market demand case if the dynamic pricing
and shelf-space is implemented.

5. CONCLUSION

We developed a finite time horizon inventory model used for considering price, shelf-space,
and time-dependent market demand under trade credit. Decisions regarding retail price,
shelf space, and ordering quantity are arbitrarily adjusted upward or downward to respond
to changes in market demand throughout the planning horizon. The objective of this study
was to determine the periodic retail price, shelf-space quantity, and ordering quantity that
maximize total profit. The demand function considered in this paper is an exponentially
decreasing function of price that exponentially increases according to shelf space, and varies

Table 4: Effects of tc
tc = 1.2 tc = 1.5

j Zj−1 p∗j s∗j q∗j Π∗
j Zj−1 p∗j s∗j q∗j Π∗

j

1 0 25.2 4807 535 2806.52 0 24.5 5222 581 3222.08
2 1 25.2 4349 471 2349.11 1 24.5 4725 526 2725.13
3 2 29.4 3017 594 4043.54 2 28.5 3236 645 4472.98∑

10420.19
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Table 5: Effects of m
m = 0.8 m = 1

j Zj−1 p∗j s∗j q∗j Π∗
j Zj−1 p∗j s∗j q∗j Π∗

j

1 0 24.5 8159 726 4527.60 0 24.5 5222 581 3222.08
2 1 24.5 7383 657 3906.41 1 24.5 4725 526 2725.13
3 2 28.5 5057 806 6091.23 2 28.5 3236 645 4472.98∑

10420.19

Table 6: Numerical results for fixed decision-making with increasing market demand
Dynamic decision-making Fixed decision-making

j Zj−1 p∗j s∗j q∗j Π∗
j Zj−1 p∗∗ s∗∗ q∗∗j Π∗

j

1 0 24.58 5747 638 3747.53 0 24 5674 657 3744.83
2 1 24.58 6352 705 4352.01 1 24 5674 691 4330.26
3 2 24.58 7020 779 5020.05 2 24 5674 726 4945.71
4 3 24.58 7758 861 5758.36 3 24 5674 763 5592.71∑

18877.95 18613.51

exponentially over time. Directly determining the closed solution to the demand form
is impossible because of its complexity. We solved the form by using an extreme value
search method. The provided numerical examples illustrate the procedures performed in
the solution approach and show that dynamic decision making is superior to fixed decision
making regarding profit maximization.

This paper serves as a key starting point for dynamic decision-making and multivariable-
demand research directions. Our model does not consider shortages, which is useful for
products with high shortage costs (e.g., fashion items, such as clothes and jeans). If cus-
tomers cannot find the clothes they want in stores, then they leave and the sale is lost.
Retailers of this type of product attempt to avoid out-of-stock situations as much as possi-
ble. In addition, our model can be applied to products that do not deteriorate (e.g., toys
and magazines). Products such as canned foods and detergents can also be regarded as
non-deteriorating items. Therefore, further research on this topic could relax certain as-
sumptions to match real-world scenarios, such as deteriorating items or shortages. Thus,
the model can be modified and applied to other types of products.
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