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Abstract This paper considers the tail asymptotics for a cumulative process {B(t); t ≥ 0} sampled at a
heavy-tailed random time T . The main contribution of this paper is to establish several sufficient conditions
for the asymptotic equality P(B(T ) > bx) ∼ P(M(T ) > bx) ∼ P(T > x) as x → ∞, where M(t) =
sup0≤u≤t B(u) and b is a certain positive constant. The main results of this paper can be used to obtain the
subexponential asymptotics for various queueing models in Markovian environments. As an example, using
the main results, we derive subexponential asymptotic formulas for the loss probability of a single-server
finite-buffer queue with an on/off arrival process in a Markovian environment.
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1. Introduction

The main purpose of this paper is to provide mathematical tools for obtaining the heavy-
tailed asymptotic behavior of queueing models in Markovian environments. Many re-
searchers have studied the heavy-tailed asymptotics of the random sum of random variables
(r.v.s), and several interesting results have been reported in the literature. However, those
results cannot be applied directly to queueing models in Markovian environments, such as
queues with batch Markovian arrival processes (BMAPs) [30] and general semi-Markovian
arrival processes. Therefore in this paper, we construct a framework to study the heavy-
tailed asymptotics for such queueing models.

Let {B(t); t ≥ 0} denote a (possibly delayed) cumulative process on R := (−∞,∞),
where |B(0)| <∞ with probability one (w.p.1) (see, e.g., [46, Section 2.11]). By definition,
there exist regenerative points 0 ≤ τ0 < τ1 < τ2 < · · · such that {B(t+ τn)− B(τn); t ≥ 0}
(n = 0, 1, . . . ) is stochastically equivalent to {B(t + τ0)− B(τ0); t ≥ 0} and is independent
of {B(u); 0 ≤ u < τn}. Let

ΔBn =

{
B(τ0), n = 0,
B(τn)− B(τn−1), n = 1, 2, . . . ,

Δτn =

{
τ0, n = 0,
τn − τn−1, n = 1, 2, . . . ,

(1.1)

ΔB∗
n =

⎧⎨⎩
sup

0≤t≤τ0

max(B(t), 0), n = 0,

sup
τn−1≤t≤τn

B(t)− B(τn−1), n = 1, 2, . . . .

Clearly, ΔB∗
n ≥ ΔBn for n = 0, 1, . . . . Further {Δτn;n = 1, 2, . . . } (resp. {ΔBn;n =

1, 2, . . . } and {ΔB∗
n;n = 1, 2, . . . }) is a sequence of independent and identically distributed

(i.i.d.) r.v.s, which is independent of Δτ0 (resp. ΔB0 and ΔB∗
0).
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258 H. Masuyama

Throughout this paper, we assume that

P(0 ≤ Δτn <∞) = P(0 ≤ ΔB∗
n <∞) = 1 (n = 0, 1),

E[|ΔB1|] <∞, 0 < E[Δτ1] <∞, b := E[ΔB1]
/
E[Δτ1] > 0. (1.2)

Under these basic conditions, we study the heavy-tailed asymptotics of B(T ), where T is a
nonnegative r.v. representing the sampling time of {B(t)}. More specifically, we establish
sufficient conditions for a simple asymptotic formula:

P(B(T ) > bx)
x∼ P(M(T ) > bx)

x∼ P(T > x), (1.3)

where M(t) = sup0≤u≤tB(u) for t ≥ 0, and where for any functions f and g, f(x)
x∼ g(x)

represents limx→∞ f(x)/g(x) = 1 (if the limit holds).
We now give a brief discussion of the conditions for (1.3) to hold. Note that if {B(t)}

has no deviation, i.e., B(t) = bt for all t ≥ 0, then P(B(T ) > bx) = P(T > x). In general,
however, B(t) − bt has a deviation from zero, which is caused by the distributions of ΔBn

and Δτn (n = 0, 1). Thus P(B(T ) > bx) may be decomposed in an intuitive way:

P(B(T ) > bx) ≈ P(T > x) +
(
remainder term associated with ΔBn and Δτn). (1.4)

If the remainder term of (1.4) is negligible compared with P(T > x) as x → ∞, then (1.3)
holds. Asmussen et al. [4] show that if T is independent of {B(t)}, then an important
necessary condition for (1.3) is that

√
T is heavy-tailed, i.e., P(T > x) = e−o(

√
x), where for

any functions f and g, f(x) = o(g(x)) represents limx→∞ f(x)/g(x) = 0 (if the limit holds).
On the other hand, if the remainder term of (1.4) is not negligible, then it is likely that the
asymptotic behavior of P(B(T ) > bx) is complicated. Indeed, Asmussen et al. [4] and Foss
and Korshunov [15] consider such cases, and they present some asymptotic formulas with
implicit functions for two special cumulative processes: the Poisson counting process [4] and
the sum of nonnegative r.v.s [15]. Although it is challenging to generalize those results, we
leave it for future work. In this paper, we focus on the case where (1.3) holds.

As mentioned at the beginning, this study is motivated by the heavy-tailed asymptotics
for queueing models in Markovian environments. A typical example of the application of
this study is as follows. Consider a stationary BMAP/GI/1 queue. Suppose that B(t) is
the total number of stationary BMAP arrivals in the interval (0, t], which is a cumulative
process. Further suppose that T is the service time of one customer and is independent of
{B(t)}. In this setting, b is the arrival rate and bE[T ] is the traffic intensity. Note here (see,
e.g., Proposition 3.1 in Masuyama et al. [34]) that the subexponential asymptotics of the
stationary queue length L is connected to that of B(T ) as follows:

P(L > x)
x∼ 1

1− bE[T ]

∫ ∞

x

P(B(T ) > y)dy.

Therefore, if the subexponential asymptotics of P(B(T ) > x) is given, we can obtain an
asymptotic formula for the stationary queue length L. Especially, when (1.3) holds, we
have the following simple and explicit formula:

P(L > x)
x∼ bE[T ]

1− bE[T ]
· P(Te > x/b),

where Te denotes the equilibrium r.v. of T , i.e., P(Te ≤ x) = (1/E[T ])
∫ x
0
P(T > y)dy for

x ≥ 0.
Next we review related work. For this purpose, we introduce two classes of distributions

(for details, see Appendix A.1).
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Tail Asymptotics for Cumulative Processes 259

Definition 1.1 A nonnegative r.v. X and its distribution function (d.f.) FX belong to the
pth-order long-tailed class Lp (p ≥ 1) if X1/p ∈ L, i.e., P(X1/p > x) > 0 for all x ≥ 0 and
P(X1/p > x + y)

x∼ P(X1/p > x) for some (thus all) y > 0. Further if X ∈ L1/θ (resp.
FX ∈ L1/θ) for any 0 < θ ≤ 1, we write X ∈ L∞ (resp. FX ∈ L∞) and call X (resp. FX)
infinite-order long-tailed.

Definition 1.2 A nonnegative r.v. X and its d.f. FX belong to the consistent variation
class C if FX(x) > 0 for all x ≥ 0 and

lim
v↓1

lim inf
x→∞

FX(vx)

FX(x)
= 1 or equivalently, lim

v↑1
lim sup
x→∞

FX(vx)

FX(x)
= 1,

where FX(x) = 1 − FX(x) for all x ∈ R. Note that every distribution with a consistently
varying tail is infinite-order long-tailed (i.e., C ⊂ L∞; see Lemma A.4).

The related work is classified into two cases: (i) T is independent of {B(t)}; and (ii) T
may depend on {B(t)}. The former is called independent-sampling case, and the latter is
called dependent-sampling case. The dependent-sampling case includes a case where T is a
stopping time with respect to {B(t)}.

To the best of our knowledge, there are a few results for the dependent-sampling case.
Robert and Segers [39] consider a special case where

B(t) =

	t
∑
n=1

Xn with the Xn’s being i.i.d. nonnegative r.v.s. (1.5)

Note here that the summation over the empty set is defined as zero, e.g.,
∑l

n=k · = 0 for
k > l. Thus if (1.5) holds, then

Δτ0 = 0, ΔB0 = ΔB∗
0 = 0, Δτn = 1, ΔBn = ΔB∗

n = Xn (n = 1, 2, . . . ). (1.6)

For this special case, Robert and Segers [39] present the following:

Proposition 1.1 (Theorem 4.1 in Robert and Segers [39]) Suppose that X,X1, X2, . . .
are i.i.d. nonnegative r.v.s. Further suppose that (i) T satisfies

lim
x→∞

P(T > x+ ya(x))

P(T > x)
= e−y, y ∈ R, (1.7)

for some function a(x) (x ≥ 0) such that x2/3 = o(a(x)); and (ii) E[eγX ] < ∞ for some
γ > 0. Under these conditions, we have

P(X1 + · · ·+X	T 
 > E[X ]x)
x∼ P(T > x). (1.8)

Proposition 1.2 (Theorem 3.1 in Robert and Segers [39]) Suppose that X,X1, X2, . . .
are i.i.d. nonnegative r.v.s. Further suppose that (i) T ∈ C; (ii) E[Xγ] <∞ for some γ > 1;
and (iii) xP(X > x) = o(P(T > x)). Under these conditions, (1.8) holds.

Compared with Proposition 1.1, Proposition 1.2 requires a heavier tail of T but relaxes the
condition on X, which is implied by (1.4).

For the independent-sampling case, several results have been reported. However, as far
as we know, only Jelenković et al. [25] consider the general cumulative process {B(t)}:
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Proposition 1.3 (Proposition 3 in Jelenković et al. [25]) Suppose that T is indepen-
dent of {B(t); t ≥ 0}. Further suppose that (i) T ∈ L2 (i.e.,

√
T ∈ L); (ii) E[(Δτ1)

2] < ∞
and ΔBn ≥ 0 (n = 0, 1) w.p.1; and (iii) E[exp{η√ΔB∗

n}] < ∞ (n = 0, 1) for some η > 0.
Under these conditions, (1.3) holds.

According to Jelenković et al. [25]’s result, the condition on ΔB∗
n and thus ΔBn is

insensitive to the tail of T , given that T ∈ L2. On the other hand, (1.4) implies that the
conditions on ΔBn and Δτn for (1.3) to hold are weaker as the tail of T is heavier. In
fact, as with the dependent-sampling case, such a result has been reported by Aleškevičienė
et al. [1].

Proposition 1.4 (Theorem 1.2 in Aleškevičienė et al. [1]) Suppose that X,X1, X2, . . .
are i.i.d. nonnegative r.v.s and T is independent of {Xn;n = 1, 2, . . . }. Further suppose that
(i) T ∈ C; (ii) E[X] < ∞; and (iii) E[T ] < ∞ and P(X > x) = o(P(T > x)). Under these
conditions, (1.8) holds.

Note here that Proposition 1.3 does not allow that the tail distribution of X is heavier than
e−η

√
x; whereas Proposition 1.4 does.

Lin and Shen [29] extend Proposition 1.4 to the case where the Xn’s are asymptotically
quadrant sub-independent and identically distributed (see Theorem 2.1 (I) therein). Robert
and Segers [39] present a theorem result similar to Proposition 1.4 (see Theorem 3.2 therein).
The theorem states that (1.8) requires E[Xr] <∞ for some r > 1, which is more restrictive
than condition (ii) of Proposition 1.4. However, the theorem also presents a sufficient
condition for (1.8) with E[T ] = ∞, which is described in the following:

Proposition 1.5 (Theorem 3.2 in Robert and Segers [39]) Suppose that X,X1, X2, . . .
are i.i.d. nonnegative r.v.s and T is independent of {Xn;n = 1, 2, . . . }. Further suppose that
(i) T ∈ C and E[T ] = ∞; (ii) E[Xr] <∞ for some r > 1; and (iii) for some 1 ≤ q < r,

lim sup
x→∞

E[T · 11(T ≤ x)]

xqP(T > x)
<∞,

where 11(χ) denotes the indicator function of event (or condition) χ. Under these conditions,
(1.8) holds.

In what follows, we summarize the contributions of this paper. For the dependent-
sampling case, we assume that {B(t)} is nondecreasing with t (e.g., {B(t)} is the counting
process of BMAP arrivals). Under this assumption, we present two theorems: Theorems 3.1
and 3.2, which are extensions of Propositions 1.1 and 1.2, respectively, to the general cumu-
lative process. In addition, the two theorems are still more general than the corresponding
propositions even if (1.5) holds, i.e., B(T ) is reduced to the random sum of i.i.d. nonnegative
r.v.s.

As for the independent-sampling case, we do not necessarily assume that {B(t)} is
nondecreasing with t, which means that ΔBn can take negative values. We first present
two theorems: Theorems 3.3 and 3.4. Theorem 3.3 provides a weaker sufficient condition
for (1.3) than that in Proposition 1.3. Theorem 3.4 is an extension of Propositions 1.4 and
1.5 to the general cumulative process. However, unfortunately, when {B(t)} satisfies (1.5),
one of the conditions of Theorem 3.4 is more restrictive than the corresponding ones of
Propositions 1.4 and 1.5. Thus, instead of the general cumulative process, we next consider
a special case where B(t) = B(�t) for all t ≥ 0 and {B(n);n = 0, 1, . . . } is the additive
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Tail Asymptotics for Cumulative Processes 261

component of a discrete-time Markov additive process (see, e.g., [3, Chapter XI, Section 2]),
which implies that B(T ) is the random sum of r.v.s with Markovian correlation. Under
this assumption, we prove Theorems 3.5 and 3.6, which completely include Propositions 1.4
and 1.5 as special cases. Further the two theorems are readily extended to the case where
{B(t)} is the additive component of a continuous-time Markov additive process.

As mentioned above, our results for the independent-sampling case are more general
than those in the literature and thus can be applied to derive new asymptotic formulas
for queueing models in Markovian environments. Indeed, Masuyama [32] derives some
new subexponential asymptotic formulas for the BMAP/GI/1 queue by using the results
of this paper. Masuyama [33] also presents subexponential asymptotic formulas for the
BMAP/GI/1 queue with retrials by combining the results of [32] with the subexponential
tail equivalence of the queue length distributions of BMAP/GI/1 queues with and without
retrials. In addition, unlike the previous studies, our results for the independent-sampling
case can be applied to queues with negative customers (see, e.g., [5]) because the results do
not necessarily require the monotonicity of {B(t)}.

To demonstrate the utility of our results for the dependent-sampling case as well as the
independent-sampling case, we discuss their application to the subexponential asymptotics
of the loss probability of a discrete-time single-server queue with a finite buffer fed by
an on/off arrival process in a Markovian environment. In the on/off arrival process, the
lengths of on-periods (resp. off-periods) are i.i.d. with a general distribution, and arrivals
in each on-period follow a discrete-time BMAP started with some initial distribution at
the beginning of the on-period. We call the arrival process on/off batch Markovian arrival
process (ON/OFF-BMAP), which is a generalization of the batch-on/off process [17] and is
closely related to a platoon arrival process (PAP) [2, 8] (see also Remarks 4.1 and 4.2). For
analytical convenience, we assume that service times are all equal to the unit of time. The
queueing model is denoted by (ON/OFF-BMAP)/D/1/K in Kendall’s notation. For this
queue, we derive subexponential asymptotic formulas for the loss probability by combining
our results with the existing one on a finite GI/GI/1 queue [21].

The rest of this paper is organized as follows. Section 2 introduce some definitions.
Section 3 presents the main results of this paper, and Section 4 discusses their application
to the (ON/OFF-BMAP)/D/1/K queue. Appendix A is devoted to technical lemmas. The
proofs of all the lemmas and the main results are given in Appendices B and C.

2. Basic Definitions

In this section, we provide the definitions of the subexponential distribution and some
related classes of distributions. For later use, we first introduce the following notations. Let
C (resp. c) denote a special symbol representing a sufficiently large (resp. small) positive
constant, which takes an appropriate value according to the context. Thus C (resp. c)
can take different values in different places. For example, C in a place may be equal to
C + 1, 2C and C2, etc. in other places. For any x ∈ R, let x+ = max(x, 0). For any
r.v. U in R, let FU denote the d.f. of U , i.e., FU (x) = P(U ≤ x) for x ∈ R, which is
assumed to be right-continuous. Further let FU = 1 − FU and QU = − logFU . The latter
is called the cumulative hazard function of U . Finally, for any nonnegative functions f and
g, f(x) = O(g(x)), f(x) �x g(x) and f(x) �x g(x) represent

lim sup
x→∞

f(x)/g(x) <∞, lim sup
x→∞

f(x)/g(x) ≤ 1, lim inf
x→∞

f(x)/g(x) ≥ 1,

respectively.

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



262 H. Masuyama

2.1. Subexponential distributions

We begin with the definition of the subexponential class.

Definition 2.1 A nonnegative r.v. X and its d.f. FX belong to the subexponential class S
if P(X > x) > 0 for all x ≥ 0 and P(X1 + X2 > x)

x∼ 2P(X > x), where X1 and X2 are
independent copies of X.

Remark 2.1 The class S was first introduced by Chistyakov [10], and it was shown that
S is a strictly subclass of class L, i.e., S ⊂ L (see [38]).

Next we introduce two subclasses of S. The first one is class S∗, which is a well-known
subclass of S.
Definition 2.2 A nonnegative r.v. X and its d.f. FX belong to class S∗ if E[X] <∞ and

lim
x→∞

∫ x

0

FX(x− y)

FX(x)
FX(y)dy = 2E[X].

Remark 2.2 An important property of S∗ is that F ∈ S∗ implies F, Fe ∈ S, where Fe

denotes the equilibrium distribution (or integrated tail distribution) of F , i.e., Fe(x) =∫ x
0
F (y)dy/

∫∞
0
F (y)dy for x ≥ 0 (see [26, Theorem 3.2]).

The second one is the subexponential concave class SC, which is a subclass of S∗, i.e.,
SC ⊂ S∗ (see [40, Lemma 1]). The class SC plays a key role in establishing large deviation
bounds for a cumulative process. The definition of SC is as follows:

Definition 2.3 A nonnegative r.v. X and its d.f. FX and cumulative hazard function QX

belong to the subexponential concave class SC if the following are satisfied: (i) QX is
eventually concave; (ii) limx→∞QX(x)/ log x = ∞; and (iii) there exist some 0 < α < 1 and
x0 > 0 such that QX(x)/x

α is nonincreasing for all x ≥ x0, i.e.,

QX(x)

QX(u)
≤
(x
u

)α
, x ≥ u ≥ x0. (2.1)

We may use the notation SCα to emphasize the parameter α.

Remark 2.3 Typical examples of the cumulative hazard function in SC are (i) (log x)γxα

and (ii) (log x)β for sufficiently large x, where 0 < α < 1, β > 1 and γ ∈ R.

Remark 2.4 If a nonnegative r.v. X satisfies E[eQ(X)] < ∞ for some cumulative hazard
function Q ∈ SC, then E[Xp] < ∞ for any p ≥ 0 because eQ(x) ≥ xp for sufficiently large
x > 0 (see condition (ii) of Definition 2.3).

Appendix A.2 provides some lemmas and further remarks on SC.
2.2. Dominatedly varying distributions

The definition of the dominated variation class is as follows:

Definition 2.4 A nonnegative r.v. X and its d.f. FX belong to the dominated variation
class D if FX(x) > 0 for all x ≥ 0 and

lim sup
x→∞

FX(vx)

FX(x)
<∞,

for some (thus for all) v ∈ (0, 1).
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Remark 2.5 C ⊂ L ∩ D ⊂ S∗ ⊂ S (see [26, Theorem 3.2] and [11, 13]).

For any d.f. F , let

F ∗(v) = lim inf
x→∞

F (vx)

F (x)
, F ∗(v) = lim sup

x→∞

F (vx)

F (x)
, v > 0,

and let

r+(F ) = − lim
v→∞

logF ∗(v)
log v

, r−(F ) = − lim
v→∞

logF ∗(v)
log v

.

Strictly, r+(F ) and r−(F ) are called the upper and lower Matuszewska indices of the function
1/F (x) on [0,∞) (see, e.g., Section 2.1 in [6]). For simplicity, however, they are sometimes
called the upper and lower Matuszewska indices of d.f. F .

Proposition 2.1 (Proposition 2.2.1 in [6]) If F ∈ D, then for any α1 < r−(F ) and
α2 > r+(F ) there exist positive numbers xi > 0 and Ci > 0 (i = 1, 2) such that

F (x)

F (y)
≤ C1

(
x

y

)−α1

, ∀x ≥ ∀y ≥ x1,

F (x)

F (y)
≥ C2

(
x

y

)−α2

, ∀x ≥ ∀y ≥ x2.

The second inequality implies that x−α = o(F (x)) for all α > r+(F ).

3. Main Results

This section consists of three subsections. In subsection 3.1, we present four sets of condi-
tions under which (1.3) holds for the general cumulative process. Unfortunately, the last set
of conditions is not completely weaker than the corresponding ones in the literature if {B(t)}
satisfies (1.5), i.e., B(T ) is reduced to the random sum of nonnegative r.v.s. Thus in subsec-
tion 3.2, we discuss a special case where B(t) = B(�t) for all t ≥ 0 and {B(n);n = 0, 1, . . . }
is the additive component of a discrete-time Markov additive process. For the special case,
we have two sets of conditions, which are weaker than the known ones even if {B(t)} satis-
fies (1.5). Finally in subsection 3.3, we extend the results presented in subsection 3.2 to a
continuous-time Markov additive process.

3.1. General case

In this subsection, we assume b = 1, i.e., E[ΔB1] = E[Δτ1] without loss of generality. Indeed,
{B(t)/b; t ≥ 0} is a cumulative process with the same regenerative points as those of {B(t)},
and the asymptotic equality (1.3) is rewritten as

P(B(T )/b > x)
x∼ P(M(T )/b > x)

x∼ P(T > x).

In what follows, we first consider the dependent-sampling case and then the independent-
sampling case.

3.1.1. Dependent-sampling case

In the dependent-sampling case, we assume that {B(t); t ≥ 0} is nondecreasing with t. In
this case, M(t) = B(t) for all t ≥ 0 and thus (1.3) is reduced to

P(B(T ) > bx)
x∼ P(T > x).
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Theorem 3.1 Suppose that {B(t); t ≥ 0} is nondecreasing with t. Further suppose that (i)
T ∈ L1/θ for some 0 < θ ≤ 1/3; and (ii) E[exp{Q((−B(0))++Δτ0)}] <∞, E[exp{Q(Δτ1)}] <
∞, E[exp{Q((ΔB0)

+)}] < ∞ and E[exp{Q(ΔB1)}] < ∞ (n = 0, 1) for some Q ∈ SC such
that

x3θ/2 = O(Q(x)). (3.1)

Under these conditions, P(B(T ) > x)
x∼ P(T > x).

Proof: See Appendix C.1. �

Remark 3.1 We prove Theorem 3.1 by using Lemma A.7 (i) and (ii), which require con-
dition (ii) (see Remark A.5). In addition to the nondecreasingness of {B(t)}, we assume
B(0) ≥ 0. It then follows that (−B(0))+ = 0 and (ΔB0)

+ = ΔB0. Therefore condition (ii)
is reduced to E[exp{Q(Δτn)}] < ∞ and E[exp{Q(ΔBn)}] <∞ (n = 0, 1) for some Q ∈ SC
such that x3θ/2 = O(Q(x)).

Theorem 3.1 is a generalization of Proposition 1.1. To compare the two results, we
suppose that {B(t)} satisfies (1.5). We then have (1.6) and B(0) = 0. Therefore conditions
(i) and (ii) of Theorem 3.1 are reduced to the following (see Remark 3.1):

(I) T ∈ L1/θ for some 0 < θ ≤ 1/3; and
(II) E[exp{Q(X)}] <∞ for some Q ∈ SC satisfying (3.1).

Condition (I) is equivalent to T ∈ L3 (see Lemma A.1 (ii)). On the other hand, condition
(i) of Proposition 1.1 implies that T belongs to the maximum domain of attraction of the
Gumbel distribution (see, e.g., Theorem 3.3.27 in [12]). It further follows from (1.7) and
x2/3 = o(a(x)) that

1 ≥ lim
x→∞

P(T > x+ x2/3)

P(T > x)
≥ lim

x→∞
P(T > x+ εa(x))

P(T > x)
= e−ε → 1 as ε→ 0,

which shows that T ∈ L3. Thus condition (I) is weaker than condition (i) of Proposition 1.1.
In addition, condition (II) is satisfied by condition (ii) of Proposition 1.1 due to Q(x) = o(x)
(see Definition 2.3). As a result, the conditions of Theorem 3.1 are weaker than those of
Proposition 1.1.

Theorem 3.2 Suppose that {B(t); t ≥ 0} is nondecreasing with t. Further suppose that (i)
T ∈ C; (ii) E[(Δτ1)

2] < ∞; (iii) P(−B(0) > x) = o(P(T > x)), P(Δτn > x) = o(P(T > x))
and P(ΔBn > x) = o(P(T > x)) (n = 0, 1); (iv) xP(|ΔB1 −Δτ1| > x) = o(P(T > x)); and
(v) either of the following is satisfied:

(a) E[|ΔB1 −Δτ1|r] <∞ for some r > 1; or
(b)
∫∞
y
x−1P(T > x)dx <∞ for some y ∈ (0,∞).

Under these conditions, P(B(T ) > x)
x∼ P(T > x).

Proof: See Appendix C.2. �

Remark 3.2 The asymptotic upper bound P(B(T ) > x) �x P(T > x) is proved under the
conditions that (iii′) P(ΔBn > x) = o(P(T > x)) (n = 0, 1), (iv′) xP(ΔB1 − Δτ1 > x) =
o(P(T > x)) and (v′) either of the following holds:

(a) E[{(ΔB1 −Δτ1)
+}r] <∞ for some r > 1 or

(b)
∫∞
y
x−1P(T > x)dx <∞ for some y ∈ (0,∞);
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whereas the asymptotic lower bound P(B(T ) > x) �x P(T > x) is proved under the
conditions that (iii′′) P(−B(0) > x) = o(P(T > x)) and P(Δτn > x) = o(P(T > x))
(n = 0, 1), (iv′′) xP(Δτ1 −ΔB1 > x) = o(P(T > x)) and (v′′) either of the following holds:

(a) E[{(Δτ1 −ΔB1)
+}r] <∞ for some r > 1 or

(b)
∫∞
y
x−1P(T > x)dx <∞ for some y ∈ (0,∞).

These conditions are integrated into conditions (iii), (iv) and (v). Further in the proof of
the two asymptotic bounds, we use Lemmas A.9, which requires condition (ii).

Theorem 3.2 is a generalization of Proposition 1.2. We compare them, assuming that
{B(t)} satisfies (1.5). Under this assumption, conditions (i)–(v) of Theorem 3.2 are reduced
to the following:

(I) T ∈ C;
(II) xP(X > x) = o(P(T > x)); and
(III) either of the following is satisfied:

(A) E[Xr] <∞ for some r > 1; or
(B)
∫∞
y
x−1P(T > x)dx <∞ for some y ∈ (0,∞).

Clearly, the set of conditions (I), (II) and (III.A) is the same as that of conditions (i),
(ii) and (iii) of Proposition 1.2. Further the set of conditions (I), (II) and (III.B) does not
imply that of conditions (I), (II) and (III.A). In fact, suppose that P(T > x)

x∼ (log x)−2

and P(X > x)
x∼ x−1(log x)−3. We then have T ∈ C and xP(X > x) = o(P(T > x)). It also

holds that E[X] <∞ and
∫∞
y
x−1P(T > x)dx <∞ for some y ∈ (0,∞), which follow from∫ ∞

y

dx

x(log x)m
=

1

(m− 1)(log y)m−1
, y > 1, m �= 1.

Thus conditions (I), (II) and (III.B) are satisfied. However, condition (III.A) does not hold,
i.e., E[Xr] = ∞ for any r > 1 because

P(Xr > x)
x∼ r3

x1/r(log x)3
�x

r3

x(1/r)+(r−1)/(2r)
=

r3

x(r+1)/(2r)
,

where 0 < (r + 1)/(2r) < 1 for r > 1.

Consequently, the conditions of Theorem 3.2 are still weaker than those of Proposition 1.2
in the context of the random sum of nonnegative i.i.d. r.v.s.

3.1.2. Independent-sampling case

Theorem 3.3 Suppose that T is independent of {B(t); t ≥ 0}. Further suppose that (i)
T ∈ L1/θ for some 0 < θ ≤ 1/2; (ii) E[(Δτ1)

2] < ∞ and E[(ΔB1)
2] < ∞; and (iii)

E[exp{Q(ΔB∗
n)}] < ∞ (n = 0, 1) for some Q ∈ SC such that xθ = O(Q(x)). Under these

conditions, P(B(T ) > x)
x∼ P(M(T ) > x)

x∼ P(T > x).

Proof: See Appendix C.3. �

Remark 3.3 We use Lemma A.7 (i) to prove P(M(T ) > x) �x P(T > x). For this purpose,
conditions (ii) and (iii) are assumed. Further the proof of P(B(T ) > x) �x P(T > x)
requires the central limit theorem (CLT) for {B(t)}, which holds under condition (ii) (see,
e.g., [3, Chapter VI, Theorem 3.2]).

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



266 H. Masuyama

Theorem 3.3 is a generalization of Proposition 1.3. Condition (i) of Theorem 3.3 is
equivalent to condition (i) of Proposition 1.3, i.e., T ∈ L2 (see Lemma A.1 (ii)). Condition
(ii) of Theorem 3.3 is weaker than the corresponding condition of Proposition 1.3 because
the positivity of ΔBn and condition (iii) of Proposition 1.3 imply E[(ΔB1)

2] < ∞ (see
Remark 2.4). In addition, if Q(x) = η

√
x for some η > 0, then condition (iii) of Theorem 3.3

is reduced to condition (iii) of Proposition 1.3. As a results, the conditions of Theorem 3.3
are weaker than those of Proposition 1.3.

Theorem 3.4 Suppose that T is independent of {B(t); t ≥ 0}. Further suppose that (i)
T ∈ C; (ii) E[supτ0≤t≤τ1 |B(t) − B(τ0)|] < ∞ and E[(Δτ1)

2] < ∞; (iii) P(ΔB∗
n > x) =

o(P(T > x)) (n = 0, 1); (iv) xP(ΔB1 − Δτ1 > x) = o(P(T > x)); and (v) either of the
following is satisfied:

(a) E[{(ΔB1 −Δτ1)
+}r] <∞ for some r > 1; or

(b)
∫∞
y
x−1P(T > x)dx <∞ for some y ∈ (0,∞).

Under these conditions, P(B(T ) > x)
x∼ P(M(T ) > x)

x∼ P(T > x).

Proof: See Appendix C.4. �

Remark 3.4 We prove the asymptotic upper bound P(M(T ) > x) �x P(T > x) of The-
orem 3.4 in a similar way to that of Theorem 3.2. To do this, we require condition (i),
E[(Δτ1)

2] <∞ and conditions (iii)–(v). On the other hand, we prove the asymptotic lower
bound P(B(T ) > x) �x P(T > x) of Theorem 3.4 by using the strong law of large num-
bers (SLLN) for {B(t)}, i.e., limt→∞B(t)/t = b w.p.1, which requires E[supτ0≤t≤τ1 |B(t) −
B(τ0)|] <∞ in condition (ii) (see [3, Chapter VI, Theorem 3.1]).

We make a comparison of Theorem 3.4 with Propositions 1.4 and 1.5. Suppose that
{B(t)} satisfies (1.5). It then follows that conditions (i)–(v) of Theorem 3.4 are reduced to
the following:

(I) T ∈ C;
(II) xP(X > x) = o(P(T > x)); and
(III) E[Xr] <∞ for some r > 1 or

∫∞
y
x−1P(T > x)dx <∞ for some y ∈ (0,∞).

Theorem 3.4 does not necessarily require either the condition E[T ] <∞ of Proposition 1.4
or condition (ii) of Proposition 1.5. On the other hand, Proposition 1.4 does not necessarily
require condition (II) (which is obvious). Further we can confirm that condition (II) is not
necessary for Proposition 1.5, as follows.

Suppose that P(T > x)
x∼ x−α for some 0 < α < 1. In this case, E[T ] = ∞ and T ∈ C (see

Appendix A.3), which shows that condition (i) of Proposition 1.5 is satisfied. In addition,
E[T · 11(T ≤ x)] = O(xP(T > x)) (see Remark below Theorem 3.2 in [39]). Therefore
condition (iii) of Proposition 1.5 holds for q = 1. We now assume that P(X > x) = (x+1)−β

for some 1 < β < α + 1. We then have E[Xr] < ∞ for all r < β, and thus condition (ii) of
Proposition 1.5 is satisfied. As a result, all the conditions of Proposition 1.5 hold, whereas
condition (II) does not hold.

The above discussion shows that Theorem 3.4 is not a complete generalization of Propo-
sitions 1.4 and 1.5.
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3.2. Special case: discrete-time Markov additive process

In this subsection, we extend Propositions 1.4 and 1.5 to the random sum of (possibly
negative) r.v.s with Markovian correlation. For this purpose, we introduce a discrete-time
Markov additive process.

Let {Jn;n = 0, 1, . . . } is a discrete-time Markov chain with a finite state space D :=
{0, 1, . . . , d− 1}. Let Xn’s (n = 0, 1, . . . ) denote r.v.s such that for all i, j ∈ D and x ∈ R,

P(X0 ≤ x, J0 = i) = βi(x),

P(Xn+1 ≤ x, Jn+1 = j | Jn = i) = Hi,j(x), n = 0, 1, . . . ,

where
∑

i∈D βi(∞) = 1 and
∑

j∈DHi,j(∞) = 1 for all i ∈ D. Let Sn =
∑n

ν=0Xν for
n = 0, 1, . . . . It then follows that {(Sn, Jn);n = 0, 1, . . . } is a Markov additive process
with initial distribution β(x) = (βi(x))i∈D and Markov additive kernel (called “kernel” for

short) H(x) = (Hi,j(x))i,j∈D (x ∈ R). Further let β̂(ξ) and Ĥ(ξ) denote the characteristic
functions of β(x) and H(x), i.e.,

β̂(ξ) =

∫
x∈R

eiξxdβ(x), Ĥ(ξ) =

∫
x∈R

eiξxdH(x),

respectively, where i =
√−1.

In what follows, we make the following assumption:

Assumption 3.1 (i) Let B(t) = S	t
 =
∑	t


n=0Xn for t ≥ 0;
(ii) the background process {Jn} is irreducible, i.e., H(∞) is an irreducible stochastic ma-

trix; and
(iii) the mean drift of the additive component {Sn} is finite and positive, i.e.,

h := �

∫
x∈R

xdH(x)e ∈ (0,∞), (3.2)

where � = (�i)i∈D is the stationary probability vector of H(∞), and where e is a
column vector of ones with an appropriate dimension.

It is easy to see that {B(t); t ≥ 0} is a cumulative process because {(B(n), Jn);n =
0, 1, . . . } is a discrete-time Markov additive process. Let 0 ≤ τ0 < τ1 < · · · denote hitting
times of {Jn} to state zero, which are regenerative points of the cumulative process {B(t)}.
Clearly, Δτ1 ≥ 1 w.p.1. Further from (1.1), we have τ0 = Δτ0 and thus P(Δτ0 = 0) =
P(J0 = 0) = β0(∞).

Let ψ̂0(z, ξ) = E[zΔτ0eiξΔB0] and ψ̂1(z, ξ) = E[zΔτ1eiξΔB1]. We then have

ψ̂0(z, ξ) = β̂0(ξ) + β̂+(ξ)
(
I − zĤ+(ξ)

)−1

zĥ+(ξ), (3.3)

ψ̂1(z, ξ) = zĤ0,0(ξ) + zη̂+(ξ)
(
I − zĤ+(ξ)

)−1

zĥ+(ξ), (3.4)

where I denotes the identity matrix with an appropriate dimension and

β̂(ξ) =
( {0} D \ {0}
β̂0(ξ) β̂+(ξ)

)
, Ĥ(ξ) =

( {0} D \ {0}
{0} Ĥ0,0(ξ) η̂+(ξ)

D \ {0} ĥ+(ξ) Ĥ+(ξ)

)
.
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The first term of (3.3) corresponds to the event where J0 = 0 and thus Δτ0 = 0. The first
term of (3.4) corresponds to the event where a regenerative cycle lasts only for a unit of
time, i.e., the background process {Jn} moves from state zero to state zero in one transition.
As for the second terms of (3.3) and (3.4), they correspond to the events where {Jn} moves
from state zero to a state in D \ {0} and then eventually returns to state zero.

Fixing ξ = 0 in (3.3) and (3.4) and taking the inverse of them with respect to z, we have

P(Δτ0 = k) = 11(k = 0)β̂0(0) + 11(k ≥ 1)β̂+(0)
(
Ĥ+(0)

)k−1

ĥ+(0),

P(Δτ1 = k) = 11(k = 1)Ĥ0,0(0) + 11(k ≥ 2)η̂+(0)
(
Ĥ+(0)

)k−2

ĥ+(0), (3.5)

for k = 0, 1, 2, . . . . Therefore Δτ0 and Δτ1 follow discrete phase-type distributions [28].
Further we have the following result by combining the renewal reward theory (see, e.g.,
[46, Chapter 2, Theorem 2]) and the discrete-time version of the ergodic theorem (see, e.g.,
[7, Chapter 3, Theorem 4.1]):

Proposition 3.1 Under Assumption 3.1,

b :=
E[ΔB1]

E[Δτ1]
= �

∫
x∈R

xdH(x)e = h ∈ (0,∞).

In what follows, we present two theorems that supersede Propositions 1.4 and 1.5. Before
doing this, we introduce three lemmas for the proofs of the theorems.

Lemma 3.1 Suppose that Assumptions 3.1 holds. Further let β(x) =
∫∞
x

dβ(y) and H(x) =∫∞
x

dH(y) for x ∈ R and suppose that there exist some c̃ ∈ [0,∞) and some nonnegative
r.v. Y ∈ S such that

lim sup
x→∞

β(x)

P(Y > x)
≤ c̃β̃, lim sup

x→∞

H(x)

P(Y > x)
≤ c̃H̃ ,

where β̃ = (β̃i)i∈D is a finite nonnegative vector and H̃ = (H̃i,j)i,j∈D is a finite nonnegative
matrix. We then have

lim sup
x→∞

P(ΔBn > x)

P(Y > x)
≤ c̃C, n = 0, 1.

Proof: See Appendix C.5. �

Lemma 3.2 If the assumptions of Lemma 3.1 are satisfied, then

lim sup
x→∞

P(ΔB1 > x | Δτ1 = k)

P(Y > x)
≤ c̃Ck, ∀k = 1, 2, . . . ,

where C is independent of k.

Proof: See Appendix C.6. �

Lemma 3.3 If the assumptions of Lemma 3.1 are satisfied, then for all t ≥ 0 and m =
0, 1, . . . ,

lim sup
x→∞

P (
∑m

i=1ΔBi > x |N(t) = m)

P(Y > x)
≤ c̃Ct, (3.6)

where N(t) = max{k ≥ 0;
∑k

i=1Δτi ≤ t} for t ∈ R.
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Proof: See Appendix C.7. �

The following theorems present two sets of conditions for (1.3). Note here that under
Assumption 3.1, the asymptotic equality (1.3) is reduced to P(S	T 
 > hx)

x∼ P(M	T 
 >
hx)

x∼ P(T > x), where Mn = max0≤k≤n Sk.

Theorem 3.5 Suppose that Assumption 3.1 holds and T is independent of the Markov
additive process {(Sn, Jn)}. Further suppose that T ∈ C, E[T ] <∞ and∫

|y|>x

dβ(y) = o(P(T > x)),

∫
|y|>x

dH(y) = o(P(T > x)). (3.7)

Under these conditions, P(S	T 
 > hx)
x∼ P(M	T 
 > hx)

x∼ P(T > x).

Proof: See Appendix C.8. �

Theorem 3.6 Suppose that Assumption 3.1 holds and T is independent of the Markov
additive process {(Sn, Jn)}. Further suppose that T ∈ C and there exists some nonnegative
r.v. Y ∈ S such that∫

|y|>x

dβ(y) = O(P(Y > x)),

∫
|y|>x

dH(y) = O(P(Y > x)), (3.8)

lim
x→∞

E[T · 11(T ≤ x,N(T ) ≤ x/E[Δτ1])]
P(Y > x)

P(T > x)
= 0. (3.9)

Under these conditions, P(S	T 
 > hx)
x∼ P(M	T 
 > hx)

x∼ P(T > x).

Proof: See Appendix C.9. �

Remark 3.5 Equation (3.9) holds if

lim
x→∞

E[T · 11(T ≤ x)]
P(Y > x)

P(T > x)
= 0.

It is easy to see that Theorems 3.5 and 3.6 include Propositions 1.4 and 1.5, respectively,
as special cases.

3.3. Special case: continuous-time Markov additive process

In this subsection, we consider a continuous-time Markov additive process {(B(t), J(t)); t ≥
0} with state space R × D, where {B(t)} is the additive component and {J(t)} is the
background process. Let D(x) = (Di,j(x))i,j∈D (x ∈ R) denote the kernel of {(B(t), J(t))}
such that D(x) ≥ O for all x < 0 and D(x)−D(0) ≥ O for all x ≥ 0, where O denotes the

zero matrix. Further for later use, let D̂(ξ) =
∫
x∈R e

iξxdD(x) and [ · ]i,j denote the (i, j)th
element of the matrix between square brackets.

In what follows, we make the following assumption:

Assumption 3.2 (i) For all t ≥ 0,

E[exp{iξB(t)} · 11(J(t) = j) | J(0) = i] =
[
exp{D̂(ξ)t}

]
i,j
, i, j ∈ D; (3.10)

(ii) D̂(0) = D(∞) is an irreducible infinitesimal generator; and (iii) π
∫
x∈R xdD(x)e ∈

(0,∞), where π = (πi)i∈D denotes the stationary probability vector of D̂(0).

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



270 H. Masuyama

Under Assumption 3.2, {B(t)} is a cumulative process. It thus follows from the renewal
reward theory (see, e.g., [46, Chapter 2, Theorem 2]) and the continuous-time version of the
ergodic theorem (see, e.g., [7, Chapter 8, Theorem 6.2]) that

b :=
E[ΔB1]

E[Δτ1]
= π

∫
x∈R

xdD(x)e ∈ (0,∞).

Further it follows from (3.10) that

E[exp{iξB(T )} · 11(J(T ) = j) | J(0) = i]

=

[∫ ∞

0

exp{D̂(ξ)t}dP(T ≤ t)

]
i,j

=

∞∑
n=0

∫ ∞

0

e−γt (γt)
n

n!
dP(T ≤ t) ·

[{
I + γ−1D̂(ξ)

}n]
i,j

=

∞∑
n=0

pn ·
[
{K̂(ξ)}n

]
i,j
, (3.11)

where

pn =

∫ ∞

0

e−γt (γt)
n

n!
dP(T ≤ t) (n = 0, 1, . . . ), K̂(ξ) = I + γ−1D̂(ξ), γ = max

i∈D
|Di,i(∞)|.

Note here that K̂(ξ) is the characteristic function ofK(x) := 11(x ≥ 0)I+γ−1D(x) (x ∈ R),
which can be considered as the kernel of a discrete-time Markov additive process {(Sn, Jn)}
discussed in the previous subsection. Note also that {pn;n = 0, 1, . . . } is the distribution of
the counting process of Poisson arrivals with rate γ during time interval (0, T ]. It is easy to
see that if T ∈ C, then the counting process satisfies all the conditions of Theorem 3.4 and
thus ∞∑

n=k+1

pn
k∼ P(T > k/γ).

We now define T ′ as a nonnegative integer-valued r.v. such that P(T ′ = n) = pn (n =
0, 1, . . . ) and T ′ is independent of a discrete-time Markov additive process {(Sn, Jn)} with
initial condition S0 = X0 = 0 (i.e.,

∫
{0} dβ(x)e = 1) and kernel H(x) = K(x) (x ∈ R). It

then follows from (3.11) that (B(T ), J(T )) is stochastically equivalent to {(ST ′, JT ′)}. As
a result, using Theorems 3.5 and 3.6, we can readily prove the following corollaries, whose
proofs are omitted.

Corollary 3.1 Suppose that Assumption 3.2 holds and T is independent of the Markov
additive process {(B(t), J(t))}. Further suppose that T ∈ C, E[T ] <∞ and∫

|y|>x

dD(y) = o(P(T > x)).

Under these conditions, P(B(T ) > bx)
x∼ P(M(T ) > bx)

x∼ P(T > x).

Corollary 3.2 Suppose that Assumption 3.2 holds and T is independent of the Markov ad-
ditive process {(B(t), J(t))}. Further suppose that T ∈ C and there exists some nonnegative
r.v. Y ∈ S such that∫

|y|>x

dD(y) = O(P(Y > x)), lim
x→∞

E[T · 11(T ≤ x)]
P(Y > x)

P(T > x)
= 0.
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Under these conditions, P(B(T ) > bx)
x∼ P(M(T ) > bx)

x∼ P(T > x).

4. Application

In this section, we first introduce a new (discrete-time) on/off arrival process, ON/OFF-
BMAP, mentioned in Section 1. We then consider a single-server finite-buffer queue with
an ON/OFF-BMAP and deterministic service times. For this queueing model, we derive
some subexponential asymptotic formulas for the loss probability by using the main results
presented in Section 3.

4.1. ON/OFF batch Markovian arrival process

We describe the definition of ON/OFF-BMAPs in discrete time. The time interval [n, n+1]
(n ∈ Z) is called slot n, where Z = {0,±1,±2 . . . }. The ON/OFF-BMAP is an on/off
arrival process, where on-periods and off-periods are repeated alternately. For simplicity,
slots in on-periods (resp. off-periods) are called on-slots (resp. off-slots).

The lengths of off-periods are i.i.d., and no arrivals occur in any off-slot. On the other
hand, at least one arrival occurs in each on-slot w.p.1 and the number of arrivals during
each on-period follows a BMAP started with some initial distribution at the beginning of the
on-period. Further the lengths of on-periods are i.i.d., but the length of each on-period may
depend on the BMAP in the on-period. In what follows, the BMAP in the mth (m ∈ Z)
on-period is called the mth BMAP.

To describe the ON/OFF-BMAP more precisely, we define some notations. Let Nm,n

(m ∈ Z, n = 0, 1, . . . ) denote the number of arrivals in the nth slot of the mth on-period.
Let Jm,0, Jm,1, Jm,2, . . . (m ∈ Z) denote the background states of the mth BMAP, which
belong to D = {0, 1, . . . , d− 1}. We then assume that

P(Nm,0 = k, Jm,0 = i) = αi(k), i ∈ D, k = 1, 2, . . . , (4.1)

where α(k) = (αi(k))i∈D is a 1 × d nonnegative vector such that α :=
∑∞

k=1α(k) is a
probability vector. We also assume that for n = 1, 2, . . . ,

P(Nm,n = k, Jm,n = j | Jm,n−1 = i) = Λi,j(k), i, j ∈ D, k = 1, 2, . . . , (4.2)

where Λ(k) = (Λi,j(k))i,j∈D is a d× d substochastic matrix such that Λ :=
∑∞

k=1Λ(k) is an
irreducible stochastic matrix.

Let Ionm (m ∈ Z) denote the length of the mth on-period. Let Φm (m ∈ Z) denote

Φm = {Ionm , (Nm,0, Jm,0), (Nm,1, Jm,1), . . . , (Nm,Ionm −1, Jm,Ionm −1)}. (4.3)

We then assume that the Φm’s (m ∈ Z) are i.i.d. Thus the Ionm ’s (m ∈ Z) are i.i.d. r.v.s,
though each Ionm may depend on the mth BMAP, i.e., {(Nm,n, Jm,n);n = 0, 1, . . . }.

For later use, let λ denote the arrival rate during on periods, i.e., the time-average
number of arrivals in an on-slot. It follows from the ergodic theorem (see, e.g., [7, Chapter 3,
Theorem 4.1]) that

λ = φ

∞∑
k=1

kΛ(k)e ≥ 1, (4.4)

where φ = (φi)i∈D denotes the stationary probability vector of Λ.

Remark 4.1 The ON/OFF-BMAP is a generalization of the batch-on/off process intro-
duced by Galmés and Puigjaner [17]. In the batch-on/off process, the numbers of arrivals
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in individual on-slots are i.i.d. and independent of the lengths of on-periods. Based on
the Wiener-Hopf factorization (see, e.g., [3, Chapter VIII, Section 3]), Galmés and Puig-
janer [18, 19] study the response time distribution of a single-server queue with a batch-on/off
process and deterministic service times.

Remark 4.2 The ON/OFF-BMAP is similar to the PAP proposed by Alfa and Neuts [2]
and Breuer and Alfa [8]. The PAP can be considered as a special case of the ON/OFF-
BMAP in the sense that the lengths of on-periods (resp. off-periods) follow a phase-type
distribution. However, the PAP allows that no arrivals occur in an on-slot.

4.2. Loss probability of (ON/OFF-BMAP)/D/1/K queue

We begin with the description of our queueing model. Customers arrive at the system
according to an ON/OFF-BMAP. The system has a single server and a buffer of finite
capacity K − 1 (thus the system capacity is equal to K). The service times of customers
are all equal to the length of one slot. According to Kendall’s notation, our queueing model
is denoted by (ON/OFF-BMAP)/D/1/K.

For analytical convenience, we assume that arrivals in each on-slot occur at the same
time, immediately after the beginning of the on-slot. We also assume that departure points
are located immediately before the ends of slots. Under these assumptions, we observe the
queue length process immediately after the ends of off-periods.

Let L
(K)
m (m ∈ Z) denote the queue length immediately after the end of the mth off-

period. Let Ioffm (m ∈ Z) denote the length of the mth off-period, where the Ioffm ’s are i.i.d.
r.v.s. Further let Am (m ∈ Z) denote the increment in the queue length during the mth
on-period, i.e.,

Am =

Ionm −1∑
n=0

(Nm,n − 1), (4.5)

where the Am’s are i.i.d. r.v.s because the Φm’s in (4.3) are i.i.d. We then have

L
(K)
m+1 = (min(L(K)

m + Am+1, K)− Ioffm+1)
+.

We now define P
(K)
loss as the loss probability, which is the time-average of losses. Note that

in the mth renewal cycle consisting of the mth on- and off-periods, the numbers of arrivals
and losses are equal to Am + Ionm and (L

(K)
m−1 +Am −K)+, respectively. It then follows from

the renewal reward theory (see, e.g., [46, Chapter 2, Theorem 2]) that

P
(K)
loss =

E[(L
(K)
m−1 + Am −K)+]

E[Am + Ionm ]
.

4.3. Subexponential asymptotics of the loss probability

In this subsection, we derive some subexponential asymptotic formulas for the loss proba-
bility P

(K)
loss . To achieve this, we combine our main results with the following proposition:

Proposition 4.1 (Theorem 5 in [21]) Let A, Ion and Ioff denote generic r.v.s for i.i.d.
sequences {Am}, {Ionm } and {Ioffm }, respectively. Suppose 0 < E[A] <∞ and let Ae denote the
equilibrium r.v. of A, i.e., P(Ae ≤ x) = (1/E[A])

∫ x
0
P(A > y)dy for x ≥ 0. If E[A] < E[Ioff ]

and Ae ∈ S, then

P
(K)
loss

K∼ E[(A−K)+]

E[A] + E[Ion]
=

E[A]

E[A] + E[Ion]
P(Ae > K).
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In the rest of this subsection, we set

T = Ionm − 1, B(t) =

	t
∑
n=0

(Nm,n − 1), t ≥ 0, (4.6)

where Nm,n−1 for m ∈ Z and n = 0, 1, . . . due to (4.1) and (4.2). It then follows from (4.5)
and (4.6) that

A
d
= B(T ), (4.7)

where the symbol
d
= denotes equality in distribution.

For simplicity, let Xn = Nm,n − 1 ≥ 0 and Jn = Jm,n for n = 0, 1, . . . . Further let
Sn =
∑n

ν=0Xν for n = 0, 1, . . . . It then follows that B(t) = S	t
 for t ≥ 0 and {(Sn, Jn);n =
0, 1, . . . } is a Markov additive process with state space {0, 1, . . . } × D, initial distribution
α(k) and Markov additive kernel Λ(k + 1) (k = 0, 1, . . . ). Thus the stochastic process
{B(t)} defined in (4.6) is a cumulative process of the same type as that in subsection 3.2.
As with subsection 3.2, let 0 ≤ τ0 < τ1 < · · · denote hitting times of {Jn} to state zero,
which are regenerative points of {B(t)}. From (4.4) and Proposition 3.1, we have

b := E[ΔB1]
/
E[Δτ1] = λ− 1. (4.8)

We now assume the following:

Assumption 4.1 λ > 1 and there exists some nonnegative r.v. Y ∈ S such that

∞∑
l=k+1

α(l) = O(P(Y > k)),

∞∑
l=k+1

Λ(l) = O(P(Y > k)).

In what follows, we present four subexponential asymptotic formulas for the loss proba-
bility P

(K)
loss . The first two formulas are obtained from the results for the dependent-sampling

case, and the others are from those for the independent-sampling case.

Theorem 4.1 Suppose that Assumption 4.1 holds and E[A] < E[Ioff ]. Further suppose that
(i) Ion ∈ L1/θ for some 0 < θ ≤ 1/3; (ii) E[Ion] < ∞ and the equilibrium r.v. Ione of Ion

is subexponential (i.e., Ione ∈ S); and (iii) E[exp{Q(Y )}] < ∞ for some Q ∈ SC such that
x3θ/2 = O(Q(x)). We then have

P
(K)
loss

K∼ (λ− 1)E[Ion]

E[A] + E[Ion]
P(Ione > K/(λ− 1)). (4.9)

In addition, if (iv) each for m ∈ Z, {Ionm ≥ n+1} is independent of Nm,n for all n = 0, 1, . . . ;
and (v) α(k) = φΛ(k) for k = 1, 2, . . . , then

P
(K)
loss

K∼ λ− 1

λ
P(Ione > K/(λ− 1)). (4.10)

Remark 4.3 Condition (v) implies that BMAPs in on-periods are stationary and thus
P(Jm,n = j) = φj (j ∈ D) for all m ∈ Z and n = 0, 1, . . . , Ionm − 1.
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Proof of Theorem 4.1. We first show that the sampling time T and the cumulative process
{B(t)} in (4.6) satisfy the conditions of Theorem 3.1. Condition (i) of Theorem 4.1 yields

P(T > x) = P(Ion > x+ 1)
x∼ P(Ion > x),

and thus T ∈ L1/θ for some 0 < θ ≤ 1/3, i.e., condition (i) of Theorem 3.1 is satisfied.
Note here that {B(t)} in (4.6) satisfies B(0) ≥ 0 and thus condition (ii) is reduced to

E[exp{Q(Δτn)}] < ∞ and E[exp{Q(ΔBn)}] < ∞ (n = 0, 1) for some Q ∈ SC such that
x3θ/2 = O(Q(x)) (see Remark 3.1). Further it follows from Assumption 4.1 and Lemma 3.1
that for n = 0, 1,

P(ΔBn > x) ≤ CP(Y > x), ∀x ≥ 0. (4.11)

Therefore condition (iii) of Theorem 4.1 implies E[exp{Q(ΔBn)}] < ∞ (n = 0, 1) for some
Q ∈ SC such that x3θ/2 = O(Q(x)). Recall that the distribution of Δτn is phase-type and
Q(x) = o(x) for any Q ∈ SC (see Definition 2.3). We then have E[exp{Q(Δτn)}] < ∞
(n = 0, 1) for any Q ∈ SC. As a result, condition (ii) of Theorem 3.1 holds.

Applying Theorem 3.1 to (4.7) and using (4.8), we obtain

P(A > x)
x∼ P(Ion − 1 > x/(λ− 1))

x∼ P(Ion > x/(λ− 1)), (4.12)

from which and E[Ion] <∞ we have E[A] <∞ and

P(Ae > x)
x∼ (λ− 1)E[Ion]

E[A]
P(Ione > x/(λ− 1)). (4.13)

Thus Ae ∈ S due to Ione ∈ S. As a result, (4.13) and Proposition 4.1 yield (4.9).
Finally, we prove (4.10). From (4.5), we have

E[Am + Ionm ] = E

[
Ionm −1∑
n=0

Nm,n

]
. (4.14)

Note here that condition (v) of Theorem 4.1 and (4.4) yield (see Remark 4.3)

E[Nm,n] = φ
∞∑
k=1

kΛ(k)e = λ, ∀m ∈ Z, ∀n = 0, 1, . . . .

This equation and condition (iv) of Theorem 4.1 imply that Wald’s lemma (see, e.g.,
[7, Chapter 1, Theorem 3.2]) is applicable to (4.14). We thus have

E[Am + Ionm ] = E[Nm,0]E[I
on] = λE[Ion], m ∈ Z. (4.15)

Substituting (4.15) into (4.9) yields (4.10). �

Remark 4.4 If Ionm − 1 is a stopping time with respect to {Nm,n;n = 0, 1, . . . }, then con-
dition (iv) of Theorem 4.1 is satisfied.

Theorem 4.2 Suppose that Assumption 4.1 holds and E[A] < E[Ioff ]. Further suppose that
(i) Ion ∈ C; (ii) E[Ion] < ∞; and (iii) xP(Y > x) = o(P(Ion > x)). We then have (4.9). In
addition, if (iv) each for m ∈ Z, {Ionm ≥ n + 1} is independent of Nm,n for all n = 0, 1, . . . ;
and (v) α(k) = φΛ(k) for k = 1, 2, . . . , then (4.10) holds.
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Proof: Suppose that the sampling time T and the cumulative process {B(t)} in (4.6) satisfy
the conditions of Theorem 3.2. Applying Theorem 3.2 to (4.7), we have (4.12) and thus
(4.13). Note here that (4.12) and Ion ∈ C imply A ∈ C ⊂ S∗, which leads to Ae ∈ S (see
Remarks 2.2 and 2.5). Therefore we can prove (4.9) and (4.10) by following the proof of
Theorem 4.1 (and using Theorem 3.2 instead of Theorem 3.1).

In what follows, we confirm that T and {B(t)} in (4.6) satisfy conditions (ii)–(v) of

Theorem 3.2 (condition (i) is obvious due to T
d
= Ion−1 and Ion ∈ C). Since the distribution

of Δτn (n = 0, 1) is phase-type,

E[(Δτn)
p] <∞, ∀p > 0, (4.16)

which implies condition (ii) of Theorem 3.2. Further since T ∈ C ⊂ D, Proposition 2.1
shows that P(T > x) = O(x−γ) for some γ > 0. From this and (4.16), we have

lim sup
x→∞

xP(Δτn > x)

P(T > x)
≤ C lim sup

x→∞
xγ+1P(Δτn > x) = 0. (4.17)

Note here that (4.11) holds due to Assumption 4.1 and Lemma 3.1. It then follows from
condition (iii) of Theorem 4.2 that for n = 0, 1,

xP(ΔBn > x) = O(xP(Y > x)) = o(P(T > x)). (4.18)

Note also that P(−B(0) > x > 0) = 0 due to B(0) ≥ 0. Therefore (4.17) and (4.18) imply
that condition (iii) of Theorem 3.2 is satisfied. In addition,

xP(|ΔB1 −Δτ1| > x) ≤ x[P(ΔB1 > x) + P(Δτ1 > x)] = o(P(T > x)),

which shows that condition (iv) of Theorem 3.2 is satisfied. Finally, condition (v.b) of
Theorem 3.2 holds due to E[T ] <∞ . �

Theorem 4.3 Suppose that Assumption 4.1 holds, E[A] < E[Ioff ] and Ionm is independent of
the mth BMAP for all m ∈ Z. Further suppose that (i) Ion ∈ L1/θ for some 0 < θ ≤ 1/2;
(ii) E[Ion] < ∞ and Ione ∈ S; and (iii) E[exp{Q(Y )}] < ∞ for some Q ∈ SC such that
xθ = O(Q(x)). Under these conditions, (4.9) holds. In addition, if α(k) = φΛ(k) for
k = 1, 2, . . . , then (4.10) holds.

Proof: According to the proofs of Theorems 4.1 and 4.2, it suffices to show that T and
{B(t)} in (4.6) satisfy conditions (i)–(iii) of Theorem 3.3.

Since T
d
= Ion − 1, condition (i) of Theorem 4.3 implies condition (i) of Theorem 3.3.

Further since {B(t)} in (4.6) is nondecreasing with t, we have ΔB∗
n = ΔBn ≥ 0 (n = 0, 1).

It thus follows from (4.11) and condition (iii) of Theorem 4.3 that E[exp{Q(ΔB∗
n)}] < ∞

(n = 0, 1) for some Q ∈ SC such that xθ = O(Q(x)), which implies condition (iii) of
Theorem 3.3. Note here that E[exp{Q(ΔB∗

n)}] < ∞ (n = 0, 1) leads to E[(ΔB1)
2] < ∞

(see Remark 2.4). Note also that E[(Δτ1)
2] < ∞ due to (4.16). Therefore condition (ii) of

Theorem 3.3 are satisfied. �

Theorem 4.4 Suppose that Assumption 4.1 holds, E[A] < E[Ioff ] and Ionm is independent
of the mth BMAP for all m ∈ Z. Further suppose that (i) Ion ∈ C; (ii) E[Ion] < ∞;
and (iii) P(Y > x) = o(P(Ion > x)). Under these conditions, (4.9) holds. In addition, if
α(k) = φΛ(k) for k = 1, 2, . . . , then (4.10) holds.
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Proof: It is easy to see that the conditions of Theorem 3.5 are satisfied. Thus similarly to
the other theorems in this subsection, we can prove (4.9) and (4.10). �

Finally, we mention previous studies related to the results presented in this subsection.
Zwart [47] and Jelenković and Momčilović [24] study the subexponential asymptotics of the
loss probabilities of finite-buffer fluid queues fed by the superposition of independent on/off
sources that generate fluid at constant rates. These studies assume that the lengths of the
on-periods of each on/off source follow a regularly or consistently varying distribution, and
then present asymptotic formulas for the loss probability such that the decay of the loss
probability is connected to the tail of the equilibrium distribution of on-period lengths.

A. Technical Lemmas

This appendix presents technical lemmas, whose proofs are all given in Appendix B.

A.1. Higher-order long-tailed distributions

In this section, we consider the class Lp (p ≥ 1) of higher-order long-tailed distributions. By
definition, L1 = L (see Definition 1.1). Further L2 is equivalent to the class of square-root
insensitive distributions (see Lemma 1 in [25]). We can readily confirm that the following
are examples of the distributions in Lp:

(i) P(X > x)
x∼ exp{−xα}, where 0 < α < 1/p.

(ii) P(X > x)
x∼ exp{−x1/p/(log x)γ}, where γ > 0.

In what follows, we provide five lemmas, which summarize the basic properties of Lp.

Lemma A.1 If X ∈ L1/θ (i.e., Xθ ∈ L) for some 0 < θ ≤ 1, the following are satisfied:

(i) limx→∞ eεx
θ
P(X > x) = ∞ for any ε > 0, i.e., P(X > x) = e−o(xθ).

(ii) X ∈ L1/η for all 1 ≤ 1/η < 1/θ.

Proof: See Appendix B.1. �

Remark A.1 Lemma A.1 (ii) implies that Lp2 ⊂ Lp1 for 1 ≤ p1 < p2.

Lemma A.2 For any 0 < θ ≤ 1, X ∈ L1/θ if and only if P(X > x − ξx1−θ)
x∼ P(X > x)

for all ξ ∈ R.

Proof: See Appendix B.2. �

Lemma A.2 is an extension of Lemma 1 in [25]. The following lemma shows that the
“if” part of Lemma A.2 holds under a weaker condition.

Lemma A.3 For any 0 < θ ≤ 1, X ∈ L1/θ if P(X > x − ξx1−θ)
x∼ P(X > x) for some

ξ ∈ R\{0}.
Proof: See Appendix B.3. �

Remark A.2 The statements of Lemmas A.1–A.3 are presented in a slightly different way
in a technical report [35] (see Lemmas 1–3 therein), where the statements are described in
terms of h-insensitivity (see Chapter 2 in [16] for the definition of h-insensitivity).

Lemma A.4 below shows the inclusion relation between class Lp and the consistent
variation class C.
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Lemma A.4 C ⊂ L∞, i.e., C ⊂ L1/θ for any 0 < θ ≤ 1.

Proof: See Appendix B.4. �

The following lemma is used to prove Theorem 3.3.

Lemma A.5 If X ∈ L1/θ for some 0 < θ ≤ 1, then for any ε > 0 there exists x̆ε > 0 such
that for all x > x̆ε and 0 ≤ u ≤ g(x),

P(X > x− u) ≤ P(X > x)eε(u
θ+1),

where g is a nonnegative function on [0,∞) such that lim supx→∞ g(x)/x < 1.

Proof: See Appendix B.5. �

A.2. Subexponential concave distributions

The subexponential concave class was first introduced by Nagaev [37]. According to Na-
gaev’s definition of SC, condition (iii) of Definition 2.3 is replaced by the following condition:
(iii′) there exist x0 > 0, 0 < α < 1 and 0 < β < 1 such that for all x ≥ x0 and βx ≤ u ≤ x,

QX(x)−QX(u)

QX(x)
≤ α

x− u

x
. (A.1)

Actually, Nagaev’s definition is equivalent to Definition 2.3. Lemma 3.1 (i) in [23] shows
that Nagaev’s definition implies Definition 2.3. The converse follows from Theorem 2 in
[41], though the phrase “Q(x)/f(x) is nondecreasing” should be replaced by “Q(x)/f(x) is
nonincreasing.”

Remark A.3 Suppose that Q ∈ SC is differentiable. It then follows from (A.1) and (2.1)
that

Q′(x) :=
d

dx
Q(x) ≤ αQ(x)

x
≤ Cxα−1, x > x0. (A.2)

Lemma A.6 below establishes the relationship between class SC and the higher-order
long-tailed class.

Lemma A.6 (i) SCα ⊂ L1/β for all 0 < α < β ≤ 1.
(ii) Xα ∈ L if X ∈ SCα for some 0 < α < 1 and

lim
x→∞

QX(x)/x
α = 0. (A.3)

Proof: See Appendix B.6. �

The following lemma plays an important role in the proof of Theorems 3.1 and 3.3.

Lemma A.7 Assume E[(ΔB1)
2] <∞.

(i) If E[(Δτ1)
2] <∞ and E[exp{Q(ΔB∗

n)}] <∞ (n = 0, 1) for some Q ∈ SC, then

P

(
sup
0≤t≤x

{B(t)− bt} > u

)
≤ C
(
e−cu2/x + e−cx + xe−cQ(u)

)
, ∀x ≥ 0, ∀u ≥ 0.
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(ii) Let ΔB∗∗
0 = sup0≤t≤τ0 max(−B(t), 0) and ΔB∗∗

n = supτn−1≤t≤τn(B(τn−1) − B(t)) for
n = 1, 2, . . . . If E[exp{Q(ΔB∗∗

n + bΔτn)}] <∞ (n = 0, 1) for some Q ∈ SC, then

P

(
inf

0≤t≤x
{B(t)− bt} < −u

)
≤ C
(
e−cu2/x + e−cx + xe−cQ(u)

)
, ∀x ≥ 0, ∀u ≥ 0.

In the two above inequalities, C and c are independent of x and u.

Proof: See Appendix B.7. �

Remark A.4 Lemma A.7 (i) is a slight extension of Proposition 1 in [25], where the latter
assumes that ΔB1 ≥ 0 w.p.1.

Remark A.5 Suppose that {B(t)} is nondecreasing with t. It then follows that ΔB∗
0 =

(ΔB0)
+, ΔB∗

1 = ΔB1, ΔB
∗∗
0 = max(−B(0), 0) = (−B(0))+ and ΔB∗∗

1 = 0. Therefore the
condition E[exp{Q(ΔB∗

n)}] <∞ (n = 0, 1) is reduced to

E[exp{Q((ΔB0)
+)}] <∞ and E[exp{Q(ΔB1)}] <∞;

and the condition E[exp{Q(ΔB∗∗
n + bΔτn)}] <∞ (n = 0, 1) is reduced to

E[exp{Q((−B(0))+ + bΔτ0)}] <∞ and E[exp{Q(bΔτ1)}] <∞.

It should be noted that E[exp{Q(ΔB1)}] <∞ and E[exp{Q(bΔτ1)}] <∞ imply E[(ΔB1)
2] <

∞ and E[(Δτ1)
2] <∞, respectively (see Remark 2.4).

A.3. Regular varying distributions

The regular variation class R is defined as follows:

Definition A.1 A nonnegative r.v. X and its d.f. FX belong to class R(−α) (α ≥ 0) if FX

is regularly varying with index −α, i.e.,

lim
x→∞

FX(vx)

FX(x)
= v−α, ∀v > 0.

Further let R = ∪α≥0R(−α).
Remark A.6 If F ∈ R, then F (x) = x−α l̃(x) for some α ≥ 0, where l̃ is a slowly varying
function, i.e.,

lim
x→∞

l̃(vx)

l̃(x)
= 1, ∀v > 0.

See [6] for the details of regularly varying functions.

Remark A.7 It is known that R ⊂ C (see, e.g., [11, 13]). Thus R ⊂ C ⊂ L∞ ⊂ Lp ⊂ L for
any p > 1 (see Remark A.1 and Lemma A.4).

The following lemma is used to prove Theorem 3.2.

Lemma A.8 Suppose that U is a r.v. with E[|U |] < ∞. If P(U > x) = o(P(Y > x)) for
some nonnegative r.v. Y with E[Y ] <∞, then for any μ > E[U ] there exists some r.v. Z in
R such that E[U ] < E[Z] < μ, FZ(x) ≥ FU(x) for all x ∈ R and

FZ(x) = l̃(x)F Y (x) for all sufficiently large x > 0,

where l̃ is some slowly varying function such that limx→∞ l̃(x) = 0.

Proof: See Appendix B.8. �
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A.4. Bounds on deviation probabilities

This subsection presents three lemmas on the deviation probabilities associated with i.i.d.
r.v.s. The first one (Lemma A.9) is used to prove Theorems 3.2 and 3.4, and the other two
are required by the proof of Theorem 3.2.

Lemma A.9 If X,X1, X2, . . . are i.i.d. nonnegative r.v.s with E[X] > 0 and E[X2] < ∞,

then for any δ > 0 there exist finite constants C̃ := C̃(δ) > 0 and c̃ := c̃(δ) > 0 such that

P

(
NX(x)− x

E[X]
> u

)
≤ C̃ exp{−c̃u2/x}, ∀x ≥ 0, 0 ≤ ∀u ≤ δx, (A.4)

where NX(x) = max{k ≥ 0;
∑k

n=1Xn ≤ x} for x ∈ R.

Proof: See Appendix B.9. �

Remark A.8 Lemma A.9 is very similar to, but not exactly the same as Lemma 6 in [25].
The latter states that there exists some δ > 0 such that (A.4) holds.

Lemmas A.10 and A.11 below are extensions of Lemma 2.3 in [44] and Lemma 2.2 in
[29], respectively, to the maxima of partial sums of i.i.d. r.v.s.

Lemma A.10 Suppose that U, U1, U2, . . . are i.i.d. r.v.s in R. If E[U ] = 0 and E[(U+)r] <
∞ for some r > 1, then for any fixed γ > 0 and p > 0 there exist some v := v(r, p) > 0 and

C̃ := C̃(v, γ) such that for all n = 1, 2, . . . ,

P

(
max
1≤k≤n

k∑
i=1

Ui ≥ x

)
≤ nP(U > vx) + C̃x−p, ∀x ≥ γn. (A.5)

Proof: See Appendix B.10. �

Lemma A.11 Suppose that U, U1, U2, . . . are i.i.d. r.v.s in R. If 0 ≤ E[U ] < ∞ and

U+ ∈ C, then for any γ > E[U ] there exists some constant C̃ := C̃(γ) > 0 such that for all
n = 1, 2, . . . ,

P

(
max
1≤k≤n

k∑
i=1

Ui > x

)
≤ C̃nP(U > x), ∀x ≥ γn. (A.6)

Proof: See Appendix B.11. �

A.5. Convolution tail of matrix-valued functions associated with subexponen-
tial distributions

Let F = (Fi,j)
1≤i≤m0

1≤j≤m1
and G = (Gi,j)

1≤i≤m1

1≤j≤m2
denote matrix-valued functions on R. Assume

that Fi,j(x) and Gi,j(x) are nonnegative and nondecreasing for all x ∈ R and that Fi,j(∞) :=
limx→∞ Fi,j(x) < ∞ and Gi,j(∞) := limx→∞Gi,j(x) <∞. We then define F (x) = F (∞)−
F (x) and G(x) = G(∞)−G(x) for x ∈ R.

Let F ∗G denote the convolution of F and G, i.e.,

F ∗G(x) =

∫
y∈R

F (x− y)dG(y) =

∫
y∈R

dF (y)G(x− y), x ∈ R.
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Let F ∗G(x) (x ∈ R) denote

F ∗G(x) = F ∗G(∞)− F ∗G(x) = F (∞)G(∞)− F ∗G(x).

When F is a square matrix-valued function (i.e., m0 = m1), we define F ∗n (n = 1, 2, . . . )
as the n-fold convolution of F itself, i.e.,

F ∗n(x) = F ∗(n−1) ∗ F (x), x ∈ R,

and for convenience, define F ∗0(x) = O for x < 0 and F ∗0(x) = I for x ≥ 0. Further for
the n-fold convolution F ∗n, let F ∗n(x) (x ∈ R) denote

F ∗n(x) = F ∗n(∞)− F ∗n(x) = (F (∞))n − F ∗n(x).

The following lemma is the upper-limit version of Proposition A.3 in [31] and Lemma 6
in [22].

Lemma A.12 Suppose that for some r.v. Y ∈ S,

lim sup
x→∞

F (x)

P(Y > x)
≤ F̃ , lim sup

x→∞

G(x)

P(Y > x)
≤ G̃, (A.7)

where F̃ = (F̃i,j) and G̃ = (G̃i,j) are finite, and where F̃ = G̃ = O is allowed. We then
have

lim sup
x→∞

F ∗G(x)

P(Y > x)
≤ F̃G(∞) + F (∞)G̃. (A.8)

Further if F is a square matrix-valued function, then

lim sup
x→∞

F ∗n(x)
P(Y > x)

≤
n−1∑
ν=0

(F (∞))νF̃ (F (∞))n−ν−1. (A.9)

In addition to the above conditions, assume that
∑∞

n=0(F (∞))n = (I −F (∞))−1 <∞. We
then have

lim sup
x→∞

∞∑
n=0

F ∗n(x)
P(Y > x)

≤ (I − F (∞))−1F̃ (I − F (∞))−1. (A.10)

Proof: See Appendix B.12. �

B. Proofs of Technical Lemmas

B.1. Proof of Lemma A.1

We first prove the statement (i). It follows from Xθ ∈ L that limy→∞ eεyP(Xθ > y) = ∞
for any ε > 0. Thus letting x = y1/θ for y > 0, we have

lim
x→∞

eεx
θ

P(X > x) = lim
x→∞

eεx
θ

P(Xθ > xθ) = lim
y→∞

eεyP(Xθ > y) = ∞.

Next we prove the statement (ii). For all x, y ≥ 0, we have

1 ≥ P(Xη > x+ y)

P(Xη > x)
=

P(Xθ > (x+ y)θ/η)

P(Xθ > xθ/η)
. (B.1)
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It follows from 0 < θ/η < 1 that for all x, y ≥ 0,

(x+ y)θ/η ≤ xθ/η + yθ/η,

from which and Xθ ∈ L we obtain

lim
x→∞

P(Xθ > (x+ y)θ/η)

P(Xθ > xθ/η)
≥ lim

x→∞
P(Xθ > xθ/η + yθ/η)

P(Xθ > xθ/η)
= 1. (B.2)

Combining (B.2) with (B.1) yields P(Xη > x+ y)
x∼ P(Xη > x) for any y > 0, i.e., Xη ∈ L.

B.2. Proof of Lemma A.2

To prove Lemma A.2, we use the following proposition, whose proof is given in Appendix B.14.

Proposition B.1 For any γ > 0 and x > y ≥ 0,

(x+ y)γ ≤ xγ + C
(
1− y

x

)−1

yxγ−1, (B.3)

(x− y)γ ≥ xγ − C
(
1− y

x

)−1

yxγ−1, (B.4)

where C is independent of x and y.

We first prove the “if” part of Lemma A.1. Proposition B.1 implies that (x + y)1/θ ≤
x1/θ + Cyx1/θ−1 for any x > 0 and 0 ≤ y < x/2. Thus for any y > 0,

1 ≥ lim
x→∞

P(Xθ > x+ y)

P(Xθ > x)
≥ lim

x→∞
P(X > x1/θ + Cy · (x1/θ)1−θ)

P(X > x1/θ)

= lim
w→∞

P(X > w + Cy · w1−θ)

P(X > w)
= 1,

which shows that Xθ ∈ L.
Next we prove the “only if” part. We fix ξ such that xθ > 2|ξ|. It then follows from

Proposition B.1 that

(x− ξx1−θ)θ ≥ xθ − C

(
1− ξ

xθ

)−1

ξ ≥ xθ − 2Cξ, ξ ≥ 0,

(x− ξx1−θ)θ ≤ xθ + C

(
1− −ξ

xθ

)−1

(−ξ) ≤ xθ + 2C(−ξ), ξ < 0.

Thus for ξ ≥ 0,

1 ≤ lim
x→∞

P(X > x− ξx1−θ)

P(X > x)
≤ lim

x→∞
P(Xθ > xθ − Cξ)

P(Xθ > xθ)
= 1,

where the last equality follows from Xθ ∈ L. Similarly, for ξ < 0,

1 ≥ lim
x→∞

P(X > x− ξx1−θ)

P(X > x)
≥ lim

x→∞
P(Xθ > xθ + C(−ξ))

P(Xθ > xθ)
= 1.

As a result, P(X > x− ξx1−θ)
x∼ P(X > x) for any ξ ∈ R.
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B.3. Proof of Lemma A.3

It follows from Proposition B.1 that there exists some C̃ > 0 such that for all x > 2σ > 0,

(x− σ)1/θ ≥ x1/θ − σC̃ · (x1/θ)1−θ, (B.5)

(x+ σ)1/θ ≤ x1/θ + σC̃ · (x1/θ)1−θ. (B.6)

We fix σ = |ξ|/C̃, where ξ ∈ R \ {0}. Using (B.5), we then have

1 ≤ lim
x→∞

P(Xθ > x− σ)

P(Xθ > x)
≤ lim

x→∞
P(X > x1/θ − σC̃ · (x1/θ)1−θ)

P(X > x1/θ)

= lim
x→∞

P(X > x− |ξ|x1−θ)

P(X > x)
. (B.7)

Similarly from (B.6), we have

1 ≥ lim
x→∞

P(Xθ > x+ σ)

P(Xθ > x)
≥ lim

x→∞
P(X > x+ |ξ|x1−θ)

P(X > x)
. (B.8)

We now suppose that P(X > x−ξx1−θ)
x∼ P(X > x) for some ξ ∈ R\{0}, which implies

P(X > x− |ξ|x1−θ)
x∼ P(X > x) or P(X > x+ |ξ|x1−θ)

x∼ P(X > x).

It thus follows from (B.7) and (B.8) that P(Xθ > x− σ)
x∼ P(Xθ > x) or P(Xθ > x+ σ)

x∼
P(Xθ > x), which shows Xθ ∈ L, i.e., X ∈ L1/θ.

B.4. Proof of Lemma A.4

Suppose X ∈ C. It then follows from Definition 1.2 that for any v > 1 there exists some
c(v) > 0 such that limv↓1 c(v) = 1 and

lim inf
x→∞

P(X > vx)

P(X > x)
= c(v).

Since x + 1 ≤ vx for any fixed v > 1 and all sufficiently large x > 0, we have for any
0 < θ ≤ 1,

lim inf
x→∞

P(Xθ > x+ 1)

P(Xθ > x)
≥ lim inf

x→∞
P(X > (vx)1/θ)

P(X > x1/θ)
= c(v1/θ) → 1 as v ↓ 1.

On the other hand, it is clear that P(Xθ > x + 1) �x P(Xθ > x). Therefore we obtain
P(Xθ > x+ 1)

x∼ P(Xθ > x), i.e., Xθ ∈ L.
B.5. Proof of Lemma A.5

The case of u = 0 is obvious. Therefore we focus on the case of u > 0. For any x ≥ u, we
have

P(X > x− u)

P(X > x)
=

P(Xθ > (x− u)θ)

P(Xθ > xθ)
≤ P(Xθ > xθ − uθ)

P(Xθ > xθ)
, (B.9)

where we use (x − u)θ ≥ xθ − uθ for 0 ≤ u ≤ x. Let y denote a nonnegative number such
that y = xθ − uθ. We then have

P(Xθ > xθ − uθ)

P(Xθ > xθ)
=

P(Xθ > y)

P(Xθ > y + uθ)
=

�uθ�−1∏
i=0

P

(
Xθ > y + i

uθ

�uθ�
)

P

(
Xθ > y + (i+ 1)

uθ

�uθ�
) . (B.10)
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It follows from Xθ ∈ L that for any ε > 0 there exists some y̆ε > 0 such that for all y > y̆ε,

P(Xθ > y)

P(Xθ > y + γ)
≤ P(Xθ > y)

P(Xθ > y + 1)
≤ eε, 0 ≤ ∀γ ≤ 1.

Thus since 0 < uθ/�uθ� ≤ 1, we have

�uθ�−1∏
i=0

P

(
Xθ > y + i

uθ

�uθ�
)

P

(
Xθ > y + (i+ 1)

uθ

�uθ�
) ≤ eε�u

θ� ≤ eε(u
θ+1), y > y̆ε,

from which, (B.9) and (B.10) it follows that

P(X > x− u)

P(X > x)
≤ eε(u

θ+1) for all x, u ≥ 0 such that xθ − uθ > y̆ε. (B.11)

Note here that for all 0 < u ≤ g(x),

lim inf
x→∞

(xθ − uθ) ≥ lim inf
x→∞
[
xθ − {g(x)}θ] = lim inf

x→∞
xθ

[
1−
(
g(x)

x

)θ]
= ∞,

where the last equality is due to lim supx→∞ g(x)/x < 1. As a result, there exists some
x̆ε > 0 such that for all x > x̆ε and 0 < u ≤ g(x)

xθ − uθ > y̆ε,

and thus (B.11) holds.

B.6. Proof of Lemma A.6

For any 0 < β ≤ 1, it follows from (A.1) that for all sufficiently large x > 0,

1 ≤ P(X > x− x1−β)

P(X > x)
= exp{QX(x)−QX(x− x1−β)} ≤ exp{αQX(x)/x

β}. (B.12)

Further according to condition (iii) of Definition 2.3, there exists some x0 > 0 such that

QX(x) ≤ Cxα, ∀x ≥ x0.

Thus for any β ∈ (α, 1], we have

1 ≤ P(X > x− x1−β)

P(X > x)
≤ exp{Cxα−β} → 1 as x→ ∞,

which implies Xβ ∈ L due to Lemma A.3. In addition, if (A.3) holds, then substituting
(A.3) into (B.12) with β = α yields P(X > x− x1−α)

x∼ P(X > x), i.e., Xα ∈ L.
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B.7. Proof of Lemma A.7

To prove Lemma A.7, we consider another (possibly delayed) cumulative process {B̆(t); t ≥
0} on R, which satisfies |B̆(0)| <∞ w.p.1 and has the same regenerative points as {B(t); t ≥
0}, i.e., {B̆(t+ τn)− B̆(τn); t ≥ 0} (n = 0, 1, . . . ) is stochastically equivalent to {B̆(t+ τ0)−
B̆(τ0); t ≥ 0} and is independent of {B̆(u); 0 ≤ u < τn}. Let

ΔB̆n =

{
B̆(τ0), n = 0,

B̆(τn)− B̆(τn−1), n = 1, 2, . . . ,

ΔB̆∗
n =

⎧⎨⎩
sup

0≤t≤τ0

max(B̆(t), 0), n = 0,

sup
τn−1≤t≤τn

B̆(t)− B̆(τn−1), n = 1, 2, . . . .

The ΔB̆n’s (resp. ΔB̆
∗
n’s) (n = 1, 2, . . . ) are i.i.d. and independent of ΔB̆0 (resp. ΔB̆

∗
0). We

assume that

P(0 ≤ B̆∗
n <∞) = 1 (n = 0, 1), E[|ΔB̆1|] <∞, b̆ := E[ΔB̆1]

/
E[Δτ1] �= 0.

Note that b̆ can be negative.

The following lemma is an extension of Proposition 1 in [25]. Using the lemma, we can
readily prove Lemma A.7.

Lemma B.1 Let ΔΘn = ΔB̆∗
n − min(b̆, 0)Δτn ≥ 0 for n = 0, 1, . . . . If E[(ΔB̆1)

2] < ∞,
E[(Δτ1)

2] <∞ and E[exp{Q(ΔΘn)}] <∞ (n = 0, 1) for some Q ∈ SC, then for all x, u ≥ 0,

P

(
sup
0≤t≤x

{B̆(t)− b̆t} > u

)
≤ C
(
e−cu2/x + e−cx + xe−cQ(u)

)
, (B.13)

where C and c are independent of x and u.

Note that if B̆(t) = B(t), then b̆ = b > 0, ΔΘn = ΔB∗
n and

P

(
sup
0≤t≤x

{B̆(t)− b̆t} > u

)
= P

(
sup
0≤t≤x

{B(t)− bt} > u

)
.

On the other hand, suppose that B̆(t) = −B(t). We then have b̆ = −b < 0 and

ΔΘ0 = sup
0≤t≤τ0

max(−B(t), 0) + bΔτ0 =: ΔB∗∗
0 + bΔτ0 ≥ bΔτ0,

ΔΘn = sup
τn−1≤t≤τn

(B(τn−1)− B(t)) + bΔτn =: ΔB∗∗
n + bΔτn ≥ bΔτn, n = 1, 2, . . . .

Thus E[exp{Q(ΔΘ1)}] <∞ implies E[(Δτ1)
2] <∞ (see Remark 2.4). We also have

P

(
sup
0≤t≤x

{B̆(t)− b̆t} > u

)
= P

(
inf

0≤t≤x
{B(t)− bt} < −u

)
.

As a result, Lemma A.7 follows from Lemma B.1. As for the proof of Lemma B.1, see
Appendix B.13.
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Figure 1: Tail distribution of Z(ε, x0)

B.8. Proof of Lemma A.8

It follows from that Lemma 4.4 in [14] that there exists some nonincreasing slowly varying
function l0 such that l0(0) = 1, limx→∞ l0(x) = 0 and FU(x) = o(l0(x)F Y (x)). Thus for any
ε > 0 and x0 ≥ 0, there exists some x2 := x2(ε, x0) > x0 such that

FU(x) < εl0(x)F Y (x) ≤ FU(0), ∀x ≥ x2. (B.14)

Let x1 := x1(ε) denote

x1 = inf
{
x ∈ [x0, x2];FU(x) ≤ εl0(x2)F Y (x2)

}
,

from which and (B.14) we obtain FU(x) ≤ εl0(x2)F Y (x2) for all x1 < x ≤ x2. Further since
FU is right-continuous,

FU(x) ≤ εl0(x2)F Y (x2), x1 ≤ ∀x ≤ x2.

We now define Z(ε, x0) as a r.v. in R such that (see Figure 1)

FZ(ε,x0)(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
FU(x), x < 0,
FU(0), 0 ≤ x < x0,
FU(x), x0 ≤ x < x1,
εl0(x2)F Y (x2), x1 ≤ x < x2,
εl0(x)F Y (x), x ≥ x2.

(B.15)

Clearly, FZ(ε,x0)(x) ≥ FU(x) for all x ∈ R. Further it follows from (B.15) that

0 ≤ E[Z(ε, x0)]− E[U ] =: S1(ε, x0) + S2(ε, x0) + S3(ε, x0), (B.16)

where

S1(ε, x0) =

∫ x0

0

(FU(0)− FU(x))dx, (B.17)

S2(ε, x0) =

∫ x2

x1

(
εl0(x2)F Y (x2)− FU(x)

)
dx, (B.18)

S3(ε, x0) =

∫ ∞

x2

(
εl0(x)F Y (x)− FU(x)

)
dx. (B.19)
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From (B.16), (B.17) and
∫∞
0
FU(x)dx = E[U+] ≤ E[|U |] <∞, we have

lim
x0→∞

3∑
j=1

Sj(ε, x0) ≥ lim
x0→∞

S1(ε, x0) = ∞. (B.20)

From (B.18) and (B.19), we also have

S2(ε, x0) + S3(ε, x0) ≤
∫ ∞

x1

(
εl0(x)F Y (x)− FU(x)

)
dx ≤
∫ ∞

x1

εF Y (x)dx,

where the second inequality follows from l0(x) ≤ 1 for x ≥ 0. Therefore since E[Y ] <∞,

lim
ε↓0

(S2(ε, x0) + S3(ε, x0)) = 0,

which leads to

lim
x0↓0

lim
ε↓0

3∑
j=1

Sj(ε, x0) = lim
x0↓0

lim
ε↓0

S1(ε, x0) = 0. (B.21)

According to (B.16), (B.20) and (B.21), we can fix E[Z(ε, x0)]−E[U ] ∈ (0, y) for any y > 0.
As a result, the statement of Lemma A.8 holds for Z = Z(ε, x0).

B.9. Proof of Lemma A.9

Let X̃n’s (n = 1, 2, . . . ) are independent copies of X̃ := X/E[X ]. We then have

{NX(x) > u+ x/E[X]}

⊆
⎧⎨⎩

	u+x/E[X]
∑
n=1

Xn ≤ x

⎫⎬⎭ =

⎧⎨⎩
	u+x/E[X]
∑

n=1

(1− X̃n) ≥ �u+ x/E[X] − x/E[X ]

⎫⎬⎭
⊆
⎧⎨⎩

	u+x/E[X]
∑
n=1

(1− X̃n) ≥ u− 1

⎫⎬⎭ ,
which leads to

P

(
NX(x)− x

E[X]
> u

)
≤ P

⎛⎝	u+x/E[X]
∑
n=1

(1− X̃n) ≥ u− 1

⎞⎠ . (B.22)

Using Markov’s inequality (see, e.g., [45]), we have for any s > 0,

P

⎛⎝	u+x/E[X]
∑
n=1

(1− X̃n) ≥ u− 1

⎞⎠ ≤ e−s(u−1)
(
E[es(1−

˜X)]
)	u+x/E[X]


≤ e−s(u−1)
(
E[es(1−

˜X)]
)u+x/E[X]

= es(1+x/E[X])
(
E[e−s ˜X ]

)u+x/E[X]

, (B.23)

where the second inequality follows from E[es(1− ˜X)] ≥ exp{s(1−E[X̃ ])} = 1 due to E[X̃] = 1
and Jensen’s inequality (see, e.g., [45]). Further for any s > 0,

E[e−s ˜X ] ≤ 1− sE[X̃] + s2E[X̃2] = 1− s+ s2E[X̃2], (B.24)

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



Tail Asymptotics for Cumulative Processes 287

because e−x ≤ 1 − x + x2 for all x ≥ 0 and X̃ ≥ 0 w.p.1. Substituting (B.24) into (B.23),
we obtain

P

⎛⎝	u+x/E[X]
∑
n=1

(1− X̃n) ≥ u− 1

⎞⎠ ≤ es(1+x/E[X])
(
1− s+ s2E[X̃2]

)u+x/E[X]

≤ es(1+x/E[X])e(−s+s2E[ ˜X2])(u+x/E[X])

≤ es exp
{
−su+ s2 · E[X̃2](δ + 1/E[X]) · x

}
=: es exp

{
−su+ s2K̃(δ)x

}
, (B.25)

where we use 1 + x ≤ ex (x ∈ R) and u ≤ δx in the second and third inequalities.

Finally, letting s = (u/x){2K̃(δ)}−1 in (B.25) and using u/x ≤ δ, we obtain

P

⎛⎝	u+x/E[X]
∑
n=1

(1− X̃n) ≥ u− 1

⎞⎠ ≤ exp

{
u

x

1

2K̃(δ)

}
· exp
{
− 1

4K̃(δ)

u2

x

}

≤ exp

{
δ

2K̃(δ)

}
· exp
{
− 1

4K̃(δ)

u2

x

}
. (B.26)

Note here that K̃(δ) = E[X̃2](δ + 1/E[X]) is finite and positive for any fixed δ > 0. As a
result, substituting (B.26) into (B.22) yields (A.4).

B.10. Proof of Lemma A.10

For all n = 1, 2, . . . and k = 1, 2, . . . , n,{
max
1≤k≤n

k∑
i=1

Ui ≥ x

}
=
⋃

1≤k≤n

{
k∑

i=1

Ui ≥ x

}
, x > 0,{

k∑
i=1

Ui ≥ x

}
⊆
⋃

1≤i≤k

{Ui ≥ x/k} ⊆
⋃

1≤i≤k

{Ui ≥ x/n} , x > 0.

Thus for any fixed positive integer n0 and all n = 1, 2, . . . , n0, we have{
max
1≤k≤n

k∑
i=1

Ui ≥ x

}
⊆
⋃

1≤i≤n

{Ui ≥ x/n} ⊆
⋃

1≤i≤n

{Ui ≥ x/n0} , x > 0,

which leads to

P

(
max
1≤k≤n

k∑
i=1

Ui ≥ x

)
≤ nP(U ≥ x/n0), n = 1, 2, . . . , n0, x > 0.

Therefore it suffices to prove that (A.5) holds for all sufficiently large n.

Let Ũi = min(Ui, vx) for i = 1, 2, . . . , where 0 < v < 1/n0 is a constant. Since E[U ] = 0,
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we have E[Ũ1] ≤ 0. Thus for all x > 0,

P

(
max
1≤k≤n

k∑
i=1

Ui ≥ x

)
≤ P

(
max
1≤i≤n

Ui > vx

)
+ P

(
max
1≤k≤n

k∑
i=1

Ui ≥ x, max
1≤i≤n

Ui ≤ vx

)

≤ nP(U > vx) + P

(
max
1≤k≤n

k∑
i=1

Ũi ≥ x

)

≤ nP(U > vx) + P

(
max
1≤k≤n

k∑
i=1

Wi ≥ x

)
, (B.27)

where Wi = Ũi − E[Ũ1] for i = 1, 2, . . . . In what follows, we estimate the second term on
the right hand side of (B.27).

Since {∑k
i=1Wi}; k = 1, 2, . . . } is martingale, {exp{s∑k

i=1Wi}; k = 1, 2, . . . } is sub-
martingale for any s > 0 (see, e.g., [45, Section 14.6, Lemma (b)]). It thus follows from
Doob’s submartingale inequality (see, e.g., [45, Section 14.6, Theorem (a)]) that for any
s > 0,

P

(
max
1≤k≤n

k∑
i=1

Wi ≥ x

)
= P

(
max
1≤k≤n

exp

{
s

k∑
i=1

Wi

}
≥ esx

)

≤ e−sxE

[
exp

{
s

n∑
i=1

Wi

}]
= e−sx

(
E[es

˜U1 ]
)n
e−snE[˜U1]. (B.28)

We first estimate e−sx(E[es
˜U1 ])n on the right hand side of (B.28). Let 1 < q < min(r, 2)

and

s =
1

vx
log

(
vq−1xq

nE[(U+)q]
+ 1

)
. (B.29)

Following the estimation of the right hand side of (2.4) in [44], we can prove that there exist

some positive constant C̃1 := C̃1(v, γ) and some positive integer n1 such that

e−sx
(
E[es

˜U1]
)n

≤ C̃1x
−(q−1)/(2v), ∀x ≥ γn, ∀n ≥ n1.

Fix n0 = n1 and v := v(r, p) such that 0 < v < 1/n0 and (q − 1)/(2v) > p. We then have

e−sx
(
E[es

˜U1]
)n

≤ C̃1x
−p, ∀x ≥ γn, ∀n ≥ n0. (B.30)

Next we estimate e−snE[˜U1] on the right hand side of (B.28). From (B.29), E[Ũ1] ≤ 0,
x ≥ γn and n ≥ 1, we have

−snE[Ũ1] ≤ 1

vγ
log

(
vq−1xq

E[(U+)q]
+ 1

)
(−E[Ũ1]). (B.31)

Note here that

E[Ũ1] = E[U · 11(U ≤ vx)] + vxP(U > vx),

E[U · 11(U ≤ vx)] + E[U · 11(U > vx)] = E[U ] = 0
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It thus follows from P(U+ > x) = o(x−r) (due to E[(U+)r] <∞) that for all x > 0,

−E[Ũ1] ≤ −E[U · 11(U ≤ vx)] = E[U · 11(U > vx)] = E[U+ · 11(U+ > vx)]

= vxP(U+ > vx) +

∫ ∞

vx

P(U+ > y)dy = o(x−r+1).

This equation and (B.31) imply that for all x ≥ γn and n = 1, 2, . . . ,

e−snE[˜U1] ≤ C̃2 <∞, (B.32)

where

C̃2 := C̃2(v, γ) = sup
x≥γ

exp

{
1

vγ
log

(
vq−1xq

E[(U+)q]
+ 1

)
Cx−r+1

}
.

Substituting (B.30) and (B.32) into (B.28) and letting C̃ := C̃(v, γ) = C̃1(v, γ)C̃2(v, γ)
yield

P

(
max
1≤k≤n

k∑
i=1

Wi ≥ x

)
≤ C̃x−p, ∀x ≥ γn, ∀n ≥ n0.

This inequality and (B.27) show that (A.5) holds for all n ≥ n0.

B.11. Proof of Lemma A.11

Let Vi’s (i = 1, 2, . . . ) denote independent copies of V := U−E[U ]−ε, where ε > 0. Clearly,
V ≤ U and E[V ] = −ε < 0. Further since U+ ∈ C, we have V + ∈ C ⊂ S∗ (see Remark 2.5).
It thus follows from the theorem in [27] that for all x ≥ (E[U ] + ε)n and n = 1, 2, . . . ,

P

(
max
1≤k≤n

k∑
i=1

Ui ≥ x

)
≤ P

(
max
1≤k≤n

k∑
i=1

Vi ≥ x− (E[U ] + ε)n

)

≤ C

ε

∫ x−E[U ]n

x−(E[U ]+ε)n

P(V > y)dy

≤ CnP(V > x− (E[U ] + ε)n)

≤ CnP(U > x− (E[U ] + ε)n). (B.33)

It also follows from U+ ∈ C ⊂ D that for all x ≥ (1+ ε)(E[U ] + ε)n, n = 1, 2, . . . and ε > 0,

P(U > x− (E[U ] + ε)n) ≤ P(U > εx/(1 + ε)) ≤ ĈP(U > x), (B.34)

where Ĉ := Ĉ(γ) ∈ (0,∞) is given by

Ĉ = sup
x≥γ

P(U > εx/(1 + ε))

P(U > x)
with γ := γ(ε) = (1 + ε)(E[U ] + ε).

According to (B.33) and (B.34), there exists some C̃ := C̃(γ) ∈ (0,∞) such that

P

(
max
1≤k≤n

k∑
i=1

Ui ≥ x

)
≤ C̃nP(U > x), x ≥ γn, n = 1, 2, . . . .
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B.12. Proof of Lemma A.12

It follows from (A.7) that for any ε > 0 there exists some x0 := x0(ε) > 0 such that for all
x ≥ x0,

F i,j(x) ≤ (F̃i,j + ε)P(Y > x), 1 ≤ i ≤ m0, 1 ≤ j ≤ m1,

Gi,j(x) ≤ (G̃i,j + ε)P(Y > x), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2.

Without loss of generality, we assume that limε↓0 x0(ε) = ∞.

We now define P = (Pi,j) and Q = (Qi,j) as m0 × m1 and m1 × m2 matrix-valued
functions on R such that P i,j(x) := Pi,j(∞) − Pi,j(x) and Qi,j(x) := Qi,j(∞) − Qi,j(x) are
given by

P i,j(x) =

{
max
(
F i,j(x), (F̃i,j + ε)P(Y > x0)

)
, x < x0,

(F̃i,j + ε)P(Y > x), x ≥ x0,

Qi,j(x) =

{
max
(
Gi,j(x), (G̃i,j + ε)P(Y > x0)

)
, x < x0,

(G̃i,j + ε)P(Y > x), x ≥ x0,
.

Clearly, F i,j(x) ≤ P i,j(x) and Gi,j(x) ≤ Qi,j(x) for all x ∈ R. Further,

lim
x→∞

P i,j(x)

P(Y > x)
= F̃i,j + ε =: P̃i,j, lim

x→∞
Qi,j(x)

P(Y > x)
= G̃i,j + ε =: Q̃i,j.

Therefore using Proposition A.3 in [31] yields

lim sup
x→∞

F ∗G(x)

P(Y > x)
≤ lim

x→∞
P ∗Q(x)

P(Y > x)
= P̃Q(∞) + P (∞)Q̃, (B.35)

where P̃ = (P̃i,j) and Q̃ = (Q̃i,j). Note here that

lim
ε↓0

(
P̃Q(∞) + P (∞)Q̃

)
= F̃G(∞) + F (∞)G̃.

Combining this with (B.35), we have the first statement (A.8). The second statement (A.9)
can be proved by induction using the first statement.

Finally we prove the third statement (A.10). Since
∑∞

n=0(F (∞))n = (I − F (∞))−1,

∞∑
n=0

(P (∞))n = (I −P (∞))−1 for any sufficiently small ε > 0.

It thus follows from F ∗n(x) ≤ P ∗n(x) (x ∈ R, n = 0, 1, . . . ) and Lemma 6 in [22] that

lim sup
x→∞

∞∑
n=0

F ∗n(x)
P(Y > x)

≤ lim
x→∞

∞∑
n=0

P ∗n(x)
P(Y > x)

= (I − P (∞))−1P̃ (I − P (∞))−1. (B.36)

Letting ε ↓ 0 in (B.36) and using the dominated convergence theorem, we obtain the third
statement (A.10).

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



Tail Asymptotics for Cumulative Processes 291

B.13. Proof of Lemma B.1

It follows from condition (iii) of Definition 2.3 that there exists some x∗ > 0 such that

Q(x/3) ≥ Q(x)/3α ≥ Q(x)/3, ∀x ≥ x∗. (B.37)

Let η denote any fixed positive number such that ηx2∗ ≥ 1. We then discuss three cases: (a)
0 ≤ x < ηx2∗, (b) x > ηu2 and (c) ηx2∗ ≤ x ≤ ηu2 separately. In case (a), (B.13) holds for
C ≥ e(ηx∗)2 because Ce−ηx > Ce−(ηx∗)2 ≥ 1. In case (b), (B.13) also holds for C ≥ e because
Ce−ηu2/x > Ce−1 ≥ 1. Therefore in what follows, we consider case (c).

For all t ≥ 0, we have

B̆(t)− b̆t ≤ ΔB̆∗
0 +ΔB̆∗

N(t−τ0)+1 −min(b̆, 0)(Δτ0 +ΔτN(t−τ0)+1) +

N(t−τ0)∑
i=1

(ΔB̆i − b̆Δτi)

= ΔΘ0 +ΔΘN(t−τ0)+1 +

N(t−τ0)∑
i=1

(ΔB̆i − b̆Δτi),

where N(t) = max{n ≥ 0;
∑n

i=1Δτi ≤ t} for t ∈ R. Thus we obtain

P

(
sup
0≤t≤x

{B̆(t)− b̆t} > u

)
≤ P
(
ΔΘ0 >

u

3

)
+ P
(
ΔΘ1 >

u

3

)
+ P

(
max

1≤n≤N(x−τ0)

n∑
i=1

(ΔB̆i − b̆Δτi) >
u

3

)

≤ P
(
ΔΘ0 >

u

3

)
+ P
(
ΔΘ1 >

u

3

)
+ P

(
max

1≤n≤N(x)

n∑
i=1

(ΔB̆i − b̆Δτi) >
u

3

)
, (B.38)

where we use the inequality P(X(1) + X(2) + X(3) > u) ≤ ∑3
m=1 P(X

(m) > u/3) for any
triple of r.v.s X(m)’s (m = 1, 2, 3). Note here that P (ΔΘn > x) ≤ Ce−Q(x) for all x ≥ 0 due
to E[exp{Q(ΔΘn)}] <∞ (n = 0, 1). It then follows from ηx2∗ ≥ 1 that for all x and u such
that ηx2∗ ≤ x ≤ ηu2,

P
(
ΔΘn >

u

3

)
≤ Ce−Q(u/3) ≤ Cηx2∗e

−Q(u/3) ≤ Cxe−Q(u/3), n = 0, 1,

from which and (B.38) we have

P

(
sup
0≤t≤x

{B̆(t)− b̆t} > u

)
≤ Cxe−Q(u/3) + P

(
max

1≤n≤N(x)

n∑
i=1

(ΔB̆i − b̆Δτi) >
u

3

)
. (B.39)

We now fix δ > 0 arbitrarily and then have

P

(
max

1≤n≤N(x)

n∑
i=1

(ΔB̆i − b̆Δτi) >
u

3

)

≤ P

(
N(x)− x

E[Δτ1]
> δx

)
+ P

(
max

1≤n≤(δ+1/E[Δτ1])x

n∑
i=1

(ΔB̆i − b̆Δτi) >
u

3

)
. (B.40)

Applying Lemma A.9 (which requires E[(Δτ1)
2] < ∞) to the first term on the right hand

side of (B.40), we have

P

(
N(x)− x

E[Δτ1]
> δx

)
≤ Ce−cx, x ≥ 0. (B.41)
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Note that ΔΘ1 ≥ 0 and ΔΘ1 ≥ ΔB̆1 − b̆Δτ1, which lead to ΔΘ1 ≥ (ΔB̆1 − b̆Δτ1)
+. Thus

E[exp{Q(ΔΘ1)}] <∞ yields

E[exp{Q((ΔB̆1 − b̆Δτ1)
+)}] <∞.

Further it follows from E[(Δτ1)
2] < ∞, E[(ΔB̆1)

2] < ∞ and Hölder’s inequality (see, e.g.,
[45]) that ∣∣∣E[ΔB̆1Δτ1]

∣∣∣ ≤√E[(ΔB̆1)2]
√
E[(Δτ1)2] <∞,

which implies E[(ΔB̆1 − b̆Δτ1)
2] <∞.

We now need the following result:

Proposition B.2 (Lemma 5 in [25]) Suppose that U, U1, U2, . . . are i.i.d. r.v.s in R. If
E[U2] <∞ and E[eQ(U+)] <∞ for some Q ∈ SC, then for all x, u ≥ 0,

P

(
max
1≤n≤x

{
n∑

i=1

Ui − nE[U ]

}
> u

)
≤ C
(
e−cu2/x + xe−(1/2)Q(u)

)
,

where C and c are independent of x and u.

Remark B.1 Although E[U2] < ∞ is not explicitly assumed in Lemma 5 in [25], this
condition is required to prove the lemma (see p. 110 therein).

Applying Proposition B.2 to the second term on the right hand side of (B.40) and using
E[ΔB̆1 − b̆Δτ1] = 0, we obtain

P

(
max

1≤n≤(δ+1/E[Δτ1])x

n∑
i=1

(ΔB̆i − b̆Δτi) >
u

3

)
≤ C
(
e−cu2/x + xe−(1/2)Q(u/3)

)
. (B.42)

Substituting (B.41) and (B.42) into (B.40) yields

P

(
max

1≤n≤N(x)

n∑
i=1

(ΔB̆i − b̆Δτi) >
u

3

)
≤ C
(
e−cx + e−cu2/x + xe−(1/2)Q(u/3)

)
,

from which and (B.39), we have

P

(
sup
0≤t≤x

{B̆(t)− b̆t} > u

)
≤ C
(
e−cx + e−cu2/x + xe−(1/2)Q(u/3)

)
. (B.43)

Recall that in case (c), we have u ≥ x∗ and thus Q(u/3) ≥ (1/3)Q(u) due to (B.37). Finally,
(B.43) yields (B.13).

B.14. Proof of Proposition B.1

We first prove (B.3). The Taylor expansion of (x+ y)γ is given by

(x+ y)γ =

∞∑
n=0

γ(γ − 1) · · · (γ − n+ 1)

n!
ynxγ−n, x > y ≥ 0,

from which we have

(x+ y)γ ≤ xγ +

∞∑
n=1

|γ(γ − 1) · · · (γ − n+ 1)|
n!

(y
x

)n−1

yxγ−1, x > y ≥ 0. (B.44)
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Note here that

|γ(γ − 1) · · · (γ − n+ 1)| = γ(γ − 1) · · · (γ − �γ) ·
n−1−	γ
∏

i=1

(i+ �γ − γ)

≤ γ(γ − 1) · · · (γ − �γ) · n!.
Thus since y/x < 1,

∞∑
n=1

|γ(γ − 1) · · · (γ − n+ 1)|
n!

(y
x

)n−1

≤ γ(γ − 1) · · · (γ − �γ) ·
∞∑
n=1

(y
x

)n−1

= γ(γ − 1) · · · (γ − �γ) ·
(
1− y

x

)−1

. (B.45)

Substituting (B.45) into (B.44) yields (B.3).
In the same way as the proof of (B.3), we have

(x− y)γ ≥ xγ −
∞∑
n=1

|γ(γ − 1) · · · (γ − n+ 1)|
n!

(y
x

)n−1

yxγ−1,

from which and (B.45) we obtain (B.4).

C. Proofs of Main Results

C.1. Proof of Theorem 3.1

Since {B(t)} is nondecreasing with t, we have for x ≥ 1,

P(B(T ) > x) ≤ P(T > x− x2/3) + P(B(T ) > x, T ≤ x− x2/3)

≤ P(T > x− x2/3) + P(B(x− x2/3) > x),

P(B(T ) > x) ≥ P(B(T ) > x, T > x+ x2/3)

= P(T > x+ x2/3)− P(B(T ) ≤ x, T > x+ x2/3)

≥ P(T > x+ x2/3)− P(B(x+ x2/3) ≤ x).

Note here that condition (i) is equivalent to T ∈ L3 (see Lemma A.1 (ii)). It thus follows
from Lemma A.2 that

P(T > x+ x2/3)
x∼ P(T > x− x2/3)

x∼ P(T > x).

Therefore it suffices to show that

P(B(x− x2/3) > x) = o(P(T > x− x2/3)),

P(B(x+ x2/3) ≤ x) = o(P(T > x+ x2/3)).

For x ≥ 1, we have

P(B(x− x2/3) > x) = P
(
B(x− x2/3)− (x− x2/3) > x2/3

)
≤ P

(
sup

0≤t≤x−x2/3

(B(t)− t) > x2/3

)

≤ P

(
sup
0≤t≤x

(B(t)− t) > x2/3
)
, (C.1)

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



294 H. Masuyama

and

P(B(x+ x2/3) ≤ x) ≤ P(B(x+ x2/3) < x+ (1/2)x2/3)

= P
(
B(x+ x2/3)− (x+ x2/3) < −(1/2)x2/3

)
≤ P

(
inf

0≤t≤x+x2/3
(B(t)− t) < −(1/2)x2/3

)
≤ P

(
inf

0≤t≤2x
(B(t)− t) < −(1/2)x2/3

)
. (C.2)

Applying Lemma A.7 (i) to the right hand side of (C.1), we obtain

P(B(x− x2/3) > x) ≤ C
(
e−cx1/3

+ e−cx + xe−cQ(x2/3)
)
, x ≥ 1. (C.3)

Since T θ ∈ L, we have P(T > x) = e−o(xθ) (see Lemma A.1 (i)) and thus for any 0 < θ ≤ 1/3,

lim sup
x→∞

e−cx1/3

P(T > x− x2/3)
= lim sup

x→∞
e−cx1/3+o(xθ) = 0,

lim sup
x→∞

e−cx

P(T > x− x2/3)
= lim sup

x→∞
e−cx+o(xθ) = 0.

Further it follows from (3.1) and P(T > x) = e−o(xθ) that

lim sup
x→∞

xe−cQ(x2/3)

P(T > x− x2/3)
≤ lim sup

x→∞
e−cxθ+log x+o(xθ) = 0.

As a result, we have P(B(x− x2/3) > x) = o(P(T > x− x2/3)).
Next we estimate P(B(x+ x2/3) ≤ x). Applying Lemma A.7 (ii) to the right hand side

of (C.2) yields

P(B(x+ x2/3) ≤ x) ≤ C
(
e−cx1/3

+ e−cx + xe−cQ((1/2)x2/3)
)
.

Therefore similarly to the estimation of (C.3), we can readily show P(B(x + x2/3) ≤ x) =
o(P(T > x+ x2/3)). �

C.2. Proof of Theorem 3.2

We fix ε ∈ (0, 1) arbitrarily. Since {B(t)} is nondecreasing with t, we have for x > 0,

P(B(T ) > x) ≤ P(T > (1− ε)x) + P(B(T ) > x, T ≤ (1− ε)x)

≤ P(T > (1− ε)x) + P(B((1− ε)x) > x),

P(B(T ) > x) ≥ P(B(T ) > x, T > (1 + ε)x)

= P(T > (1 + ε)x)− P(B(T ) ≤ x, T > (1 + ε)x)

≥ P(T > (1 + ε)x)− P(B((1 + ε)x) ≤ x).

Since T ∈ C (see Definition 1.2),

lim
ε↓0

lim inf
x→∞

P(T > (1 + ε)x)

P(T > x)
= 1, (C.4)

lim
ε↓0

lim sup
x→∞

P(T > (1− ε)x)

P(T > x)
= 1. (C.5)
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Therefore it suffices to show that

P(B((1− ε)x) > x) = o(P(T > x)), (C.6)

P(B((1 + ε)x) ≤ x) = o(P(T > x)). (C.7)

For x > 0, we have

P(B((1− ε)x) > x) = P(B((1− ε)x)− (1− ε)x > εx)

≤ P

(
sup

0≤t≤(1−ε)x

(B(t)− t) > εx

)

≤ P

(
sup

0≤t≤(1+ε)x

(B(t)− t) > εx

)
, (C.8)

P(B((1 + ε)x) ≤ x) = P(B((1 + ε)x)− (1 + ε)x ≤ −εx)
≤ P(B((1 + ε)x)− (1 + ε)x < −εx/2)

≤ P

(
sup

0≤t≤(1+ε)x

(t−B(t)) > εx/2

)
. (C.9)

Note here that

N(t−τ0)∑
i=1

Δτi ≤ t ≤
N(t−τ0)+1∑

i=0

Δτi,

N(t−τ0)∑
i=1

ΔBi ≤ B(t)− B(0) ≤
N(t−τ0)+1∑

i=0

ΔBi − B(0),

where N(t) = max{n ≥ 0;
∑n

i=1Δτi ≤ t} for t ∈ R. We thus have

B(t)− t ≤ ΔB0 +ΔBN(t−τ0)+1 +

N(t−τ0)∑
i=1

(ΔBi −Δτi), (C.10)

t−B(t) ≤ Δτ0 +ΔτN(t−τ0)+1 +

N(t−τ0)∑
i=1

(Δτi −ΔBi)− B(0). (C.11)

Therefore similarly to (B.38), it follows from (C.8) and (C.10) that

P(B((1− ε)x) > x) ≤ P(ΔB0 > εx/3) + P(ΔB1 > εx/3)

+ P

(
max

1≤k≤N((1+ε)x)

k∑
i=1

(ΔBi −Δτi) >
ε

3
x

)
, x > 0, (C.12)

and it follows from (C.9) and (C.11) that

P(B((1 + ε)x) ≤ x) ≤ P(−B(0) > εx/8) + P(Δτ0 > εx/8) + P(Δτ1 > εx/8)

+ P

(
max

1≤k≤N((1+ε)x)

k∑
i=1

(Δτi −ΔBi) >
ε

8
x

)
, x > 0. (C.13)
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Since T ∈ C ⊂ D, condition (iii) yields

lim
x→∞

P(−B(0) > εx/8)

P(T > x)
≤ lim sup

x→∞

P(−B(0) > εx/8)

P(T > εx/8)
lim sup
x→∞

P(T > εx/8)

P(T > x)
= 0,

which shows that P(−B(0) > εx/8) = o(P(T > x)). In addition, P(Δτn > εx/8) = o(P(T >
x)) and P(ΔBn > εx/3) = o(P(T > x)) (n = 0, 1).

As for the last terms in (C.12) and (C.13), we have for any δ > 0,

P

(
max

1≤k≤N((1+ε)x)

k∑
i=1

(ΔBi −Δτi) >
ε

3
x

)

≤ P

(
N((1 + ε)x)− (1 + ε)x

E[Δτ1]
> δx

)
+ P

(
N((1 + ε)x)− (1 + ε)x

E[Δτ1]
≤ δx, max

1≤k≤N((1+ε)x)

k∑
i=1

(ΔBi −Δτi) >
ε

3
x

)

≤ P

(
N((1 + ε)x)− (1 + ε)x

E[Δτ1]
> δx

)
+ P

(
max

1≤k≤{δ+(1+ε)/E[Δτ1]}x

k∑
i=1

(ΔBi −Δτi) >
ε

3
x

)
, x > 0, (C.14)

and

P

(
max

1≤k≤N((1+ε)x)

k∑
i=1

(Δτi −ΔBi) >
ε

8
x

)

≤ P

(
N((1 + ε)x)− (1 + ε)x

E[Δτ1]
> δx

)
+ P

(
max

1≤k≤{δ+(1+ε)/E[Δτ1]}x

k∑
i=1

(Δτi −ΔBi) >
ε

8
x

)
, x > 0. (C.15)

According to Lemma A.9, the first terms in (C.14) and (C.15) are bounded from above by
Ce−cx = o(P(T > x)). Let

γ =
ε

8
· 1

δ + (1 + ε)/E[Δτ1]
. (C.16)

We then have εx/(8γ) = {δ + (1 + ε)/E[Δτ1]}x and thus for x > 0,

P

(
max

1≤k≤{δ+(1+ε)/E[Δτ1]}x

k∑
i=1

(ΔBi −Δτi) >
ε

3
x

)
≤ P

(
max

1≤k≤εx/(8γ)

k∑
i=1

(ΔBi −Δτi) >
ε

8
x

)
.

As a result, to prove (C.6) and (C.7), it suffices to show that

P

(
max

1≤k≤εx/(8γ)

k∑
i=1

(ΔBi −Δτi) >
ε

8
x

)
= o(P(T > x)), (C.17)

P

(
max

1≤k≤εx/(8γ)

k∑
i=1

(Δτi −ΔBi) >
ε

8
x

)
= o(P(T > x)). (C.18)

In what follows, we prove (C.17) under condition (v.a) and condition (v.b), separately. We
omit the proof of (C.18), which is almost the same as that of (C.17).
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C.2.1. Condition (v.a)

Suppose condition (v.a) holds. It then follows from Lemma A.10 that for any fixed p > 0,

P

(
max

1≤k≤εx/(8γ)

k∑
i=1

(ΔBi −Δτi) >
ε

8
x

)
≤ CxP(ΔB1 −Δτ1 > vx) + Cx−p

for all sufficiently large x > 0,

where v := v(r, p) is some finite positive constant. Further from T ∈ C ⊂ D and condition
(iv), we have

lim
x→∞

xP(ΔB1 −Δτ1 > vx)

P(T > x)
≤ lim sup

x→∞

xP(ΔB1 −Δτ1 > vx)

P(T > vx)
lim sup
x→∞

P(T > vx)

P(T > x)
= 0.

We now fix p > r+, where r+ denotes the upper Matuszewska index of the d.f. of
ΔB1−Δτ1 (see subsection 2.2). It then follows from Proposition 2.1 and condition (iv) that
x−p = o(P(ΔB1 −Δτ1 > x)) and thus x−p = o(P(T > x)). Therefore (C.17) holds.

C.2.2. Condition (v.b)

Suppose that condition (v.b) holds and define Y as a nonnegative r.v. such that

P(Y > x) = min(1, cP(T > x)/x), x > 0.

It then follows from T ∈ C and conditions (iv) and (v.b) that

Y ∈ C, E[Y ] <∞, P(ΔB1 −Δτ1 > x) = o(P(T > x)/x) = o(P(Y > x)).

Therefore Lemma A.8 implies that there exists a r.v. Z in R such that 0 < E[Z] < γ,

P(Z > x) ≥ P(ΔB1 −Δτ1 > x) for all x ∈ R and, (C.19)

P(Z > x) = l̃(x)P(Y > x) for all sufficiently large x > 0, (C.20)

where γ is given in (C.16) and l̃ is some slowly varying function such that limx→∞ l̃(x) = 0.
The inequality (C.19) enables us to assume that Z and ΔB1 − Δτ1 are on the same

probability space and Z ≥ ΔB1 −Δτ1, without loss of generality (see, e.g., Theorem 1.2.4
in [36]). We thus have

P

(
max

1≤k≤εx/(8γ)

k∑
i=1

(ΔBi −Δτi) >
ε

8
x

)
≤ P

(
max

1≤k≤εx/(8γ)

k∑
i=1

Zi >
ε

8
x

)
, (C.21)

where Zi’s (i = 1, 2, . . . ) are independent copies of Z. Note here that Z ∈ C due to Y ∈ C
and (C.20). Therefore applying Lemma A.11 to the right hand side of (C.21) yields

P

(
max

1≤k≤εx/(8γ)

k∑
i=1

ΔBi −Δτi >
ε

8
x

)
≤ CxP(Z > εx/8) for all sufficiently large x > 0.

In addition, it follows from condition (iv) and the definitions of Y and Z that P(Z > x) =
o(P(T > x)/x). Using this and T ∈ C ⊂ D, we have

lim
x→∞

xP(Z > εx/8)

P(T > x)
≤ lim sup

x→∞

xP(Z > εx/8)

P(T > εx/8)
lim sup
x→∞

P(T > εx/8)

P(T > x)
= 0.

As a result, we obtain (C.17).
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C.3. Proof of Theorem 3.3

The asymptotic lower bound P(B(T ) > x) �x P(T > x) can be proved in the same way
as the proof of Theorem 3 in [25]. Thus we here prove only the asymptotic upper bound
P(M(T ) > x) �x P(T > x).

We fix δ (0 < δ < 1) arbitrarily and also fix x such that 0 < δx ≤ x − ξ
√
x and ξ ≥ 1,

which leads to
√
x ≥ ξ/(1− δ) > 1. We then have

P(M(T ) > x) = P(M(T ) > x, T > x− ξ
√
x)

+ P(M(T ) > x, δx < T ≤ x− ξ
√
x) + P(M(T ) > x, T ≤ δx)

≤ P(T > x− ξ
√
x)

+ P(M(T ) > x, δx < T ≤ x− ξ
√
x) + P(M(δx) > x). (C.22)

Since P(T > x − ξ
√
x)

x∼ P(T > x) (due to condition (i); see Lemmas A.1 and A.2), it
suffices to show that the second and third terms in (C.22) are o(P(T > x)).

Note first that sup0≤t≤δx B(t)− δx ≤ sup0≤t≤δx(B(t)− t) and thus

P(M(δx) > x) ≤ P

(
sup

0≤t≤δx
(B(t)− t) > (1− δ)x

)
. (C.23)

Applying Lemma A.7 (i) to (C.23) yields

P(M(δx) > x) ≤ C
(
e−cx + xe−cQ((1−δ)x)

)
= o(P(T > x)) + Cxe−cQ((1−δ)x).

Further since xθ = O(Q(x)) and P(T > x) = e−o(xθ) (due to T ∈ L1/θ; see Lemma A.1 (i)),

lim sup
x→∞

xe−cQ((1−δ)x)

P(T > x)
≤ lim sup

x→∞
exp
{−cxθ/C + log x+ o(xθ)

}
= 0. (C.24)

Consequently, we have P(M(δx) > x) = o(P(T > x)).
Next we consider the second term on the right hand side of (C.22). Note that

P(M(T ) > x, δx < T ≤ x− ξ
√
x)

=

∫ x−ξ
√
x

δx

P(M(u) > x)dP(T ≤ u)

≤
∫ x−ξ

√
x

δx

P

(
sup
0≤t≤u

(B(t)− t) > x− u

)
dP(T ≤ u). (C.25)

Applying Lemma A.7 (i) to the right hand side of (C.25) and using δx ≤ u ≤ x, we obtain

P(M(T ) > x, δx < T ≤ x− ξ
√
x)

≤
∫ x−ξ

√
x

δx

C
(
e−c(x−u)2/u + e−cu + ue−cQ(x−u)

)
dP(T ≤ u)

≤ Ce−cδx + C

∫ x−ξ
√
x

δx

(
e−c(x−u)2/x + xe−cQ(x−u)

)
dP(T ≤ u)

= o(P(T > x)) + Cf1(x) + Cf2(x),

where

f1(x) =

∫ x−ξ
√
x

δx

e−c(x−u)2/xdP(T ≤ u), (C.26)

f2(x) =

∫ x−ξ
√
x

δx

xe−cQ(x−u)dP(T ≤ u). (C.27)
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In what follows, we prove f1(x) = o(P(T > x)) and f2(x) = o(P(T > x)).
Note that e−c(x−u)2/x is differentiable with respect to u. Thus integrating the right hand

side of (C.26) by parts (see, e.g., Theorems 6.1.7 and 6.2.2 in [9]) and letting y = (x−u)/√x
yield

f1(x) ≤ e−c(1−δ)2x +

∫ x−ξ
√
x

δx

P(T > u)du(e
−c(x−u)2/x)

= e−c(1−δ)2x +

∫ x−ξ
√
x

δx

P(T > u)
2c(x− u)

x
e−c(x−u)2/xdu

= o(P(T > x)) +

∫ (1−δ)
√
x

ξ

P(T > x− y
√
x)2cye−cy2dy

≤ o(P(T > x)) +

∫ (1−δ)
√
x

ξ

P(
√
T >

√
x− y)2cye−cy2dy, (C.28)

where the last inequality holds because (x − y
√
x)1/2 ≥ √

x − y for 0 ≤ y ≤ √
x. It thus

follows from
√
T ∈ L and Lemma A.5 that for any ε > 0,

lim
ξ→∞

lim sup
x→∞

∫ (1−δ)
√
x

ξ

P(
√
T >

√
x− y)

P(T > x)
2cye−cy2dy

= lim
ξ→∞

lim sup
x→∞

∫ (1−δ)
√
x

ξ

P(
√
T >

√
x− y)

P(
√
T >

√
x)

2cye−cy2dy

≤ eε lim
ξ→∞

lim sup
x→∞

∫ (1−δ)
√
x

ξ

2cy exp{−cy2 + εy}dy

≤ eε lim
ξ→∞

∫ ∞

ξ

2cy exp{−cy2 + εy}dy = 0. (C.29)

Combining (C.28) with (C.29) yields f1(x) = o(P(T > x)).
We proceed to the proof of f2(x) = o(P(T > x)). Since Q is eventually concave (see

Definition 2.3), Q is continuous for all sufficiently large x > 0. Therefore without loss
of generality, we fix x to be sufficiently large such that Q(x − u) is continuous for all
δx ≤ u ≤ x− ξ

√
x.

For δx ≤ u ≤ x− ξ
√
x, we have

e−cQ(x−u) = e−(c/2)Q(x−u)e−(c/2)Q(x−u) ≤ e−(c/2)Q(ξ
√
x)e−(c/2)Q(x−u).

Substituting this into the right hand side of (C.27) and integrating it by parts yield

f2(x) ≤ xe−cQ(ξ
√
x)

∫ x−ξ
√
x

δx

{−e−cQ(x−u)}dP(T > u)

≤ xe−cQ(ξ
√
x)

[
e−cQ((1−δ)x) +

∫ x−ξ
√
x

δx

P(T > u)du(e
−cQ(x−u))

]

= xe−cQ(ξ
√
x)

[
o(P(T > x)) +

∫ x−ξ
√
x

δx

P(T > u)du(e
−cQ(x−u))

]
,

where the last equality follows from e−cQ((1−δ)x) = o(P(T > x)) due to (C.24). Further using
log x = o(Q(x)) and xθ = O(Q(x)), we have

lim
x→∞

xe−cQ(ξ
√
x) = lim

x→∞
e−cQ(ξ

√
x)+2 log

√
x = lim

x→∞
e−cQ(ξ

√
x)+o(Q(ξ

√
x)) = 0.
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Finally, it follows from T θ ∈ L and Lemma A.5 that for sufficiently small ε > 0,

lim sup
x→∞

∫ x−ξ
√
x

δx

P(T > u)

P(T > x)
du(e

−cQ(x−u))

≤ eε lim sup
x→∞

∫ x−ξ
√
x

δx

eε(x−u)θdu(e
−cQ(x−u))

≤ eε lim sup
x→∞

[
eε(ξ

√
x)θ−cQ(ξ

√
x) +

∫ x−ξ
√
x

δx

εθ(x− u)θ−1eε(x−u)θ−cQ(x−u)du

]

≤ eε lim sup
x→∞

[
eε(ξ

√
x)θ−cQ(ξ

√
x) + εθ

∫ (1−δ)x

ξ
√
x

eεy
θ−cQ(y)dy

]
= 0,

where the last equality is due to xθ = O(Q(x)). As a result, we have f2(x) = o(P(T > x)).

C.4. Proof of Theorem 3.4

For any ε > 0, we have

P(B(T ) > x) ≥
∫ ∞

(1+ε)x

P(B(u) > x)dP(T ≤ u)

≥ inf
u>(1+ε)x

P(B(u) > x)P(T > (1 + ε)x)

= inf
u>(1+ε)x

P

(
B(u)− u

u
>
x− u

u

)
P(T > (1 + ε)x)

≥ inf
u>(1+ε)x

P

(
B(u)− u

u
>

−ε
1 + ε

)
P(T > (1 + ε)x). (C.30)

It follows from the SLLN for {B(t)} (see [3, Chapter VI, Theorem 3.1]) that for any ε > 0,

lim
x→∞

inf
u>(1+ε)x

P

(
B(u)− u

u
>

−ε
1 + ε

)
≥ lim

x→∞
inf

u>(1+ε)x
P

(∣∣∣∣B(u)− u

u

∣∣∣∣ < ε

1 + ε

)
= 1.

Note here that (C.4) holds due to T ∈ C. Thus from (C.30), we have P(B(T ) > x) �x

P(T > x).
In what follows, we prove P(M(T ) > x) �x P(T > x). For any ε ∈ (0, 1),

P(M(T ) > x) ≤ P(T > (1− ε)x) + P(M(T ) > x, T ≤ (1− ε)x).

Since (C.5) holds, it suffices to show P(M(T ) > x, T ≤ (1− ε)x) = o(P(T > x)).
It follows from M(u)− u ≤ sup0≤t≤u(B(t)− t) (u ≥ 0) that for x > 0,

P(M(T ) > x, T ≤ (1− ε)x) ≤
∫ (1−ε)x

0

P

(
sup
0≤t≤u

{B(t)− t} > x− u

)
dP(T ≤ u)

≤
∫ (1−ε)x

0

P

(
sup
0≤t≤u

{B(t)− t} > εx

)
dP(T ≤ u).

Similarly to (B.38), we estimate the integrand on the right hand side of the above inequality
as follows:

P

(
sup
0≤t≤u

{B(t)− t} > εx

)
≤ P (ΔB∗

0 > εx/3) + P (ΔB∗
1 > εx/3) + P

(
max

1≤k≤N(u)

k∑
i=1

(ΔBi −Δτi) >
εx

3

)
.
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From conditions (i) and (iii), we have P (ΔB∗
n > εx/3) = o(P(T > x)) (n = 0, 1). Therefore

it remains to show that∫ (1−ε)x

0

P

(
max

1≤k≤N(u)

k∑
i=1

(ΔBi −Δτi) >
εx

3

)
dP(T ≤ u) = o(P(T > x)). (C.31)

Fix a positive number γ such that

ε

3γ
>

1− ε

E[Δτ1]
. (C.32)

We then decompose the left hand side of (C.31) into R1(x) +R2(x) in the following way:

R1(x) =

∫ (1−ε)x

0

dP(T ≤ u)P

(
max

1≤k≤N(u)

k∑
i=1

(ΔBi −Δτi) >
εx

3
, N(u) >

εx

3γ

)
,

R2(x) =

∫ (1−ε)x

0

dP(T ≤ u)P

(
max

1≤k≤N(u)

k∑
i=1

(ΔBi −Δτi) >
εx

3
, N(u) ≤ εx

3γ

)
. (C.33)

For x > 0, we have

R1(x) ≤
∫ (1−ε)x

0

P

(
N(u) >

εx

3γ

)
dP(T ≤ u) ≤ P

(
N((1 − ε)x) >

εx

3γ

)
. (C.34)

Note here that ε/(3γ)− (1− ε)/E[Δτ1] > 0 due to (C.32). Thus Lemma A.9 yields

P

(
N((1− ε)x) >

εx

3γ

)
= P

(
N((1− ε)x)− (1− ε)x

E[Δτ1]
>

(
ε

3γ
− 1− ε

E[Δτ1]

)
x

)
≤ Ce−cx = o(P(T > x)).

Combining this with (C.34), we have R1(x) = o(P(T > x)).

Next we consider R2(x). From (C.33), we have

R2(x) ≤
∫ (1−ε)x

0

dP(T ≤ u)P

(
max

1≤k≤εx/(3γ)

k∑
i=1

(ΔBi −Δτi) >
εx

3

)
.

Following the proof of (C.17), we can show that

P

(
max

1≤k≤εx/(3γ)

k∑
i=1

(ΔBi −Δτi) >
εx

3

)
= o(P(T > x)),

which leads to R2(x) = o(P(T > x)) (see subsection C.2.1 and C.2.2 in the proof of Theo-
rem 3.2).

Remark C.1 Except for the estimation of R2(x), conditions (i)–(iii) and the independence
between {B(t)} and T are sufficient for the proof of Theorem 3.4. Conditions (iv) and (v)
are required by the estimation of R2(x).
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C.5. Proof of Lemma 3.1

We first partition β̃ and H̃ as

β̃ =
( {0} D \ {0}
β̃0 β̃+

)
, H̃ =

( {0} D \ {0}
{0} H̃0,0 η̃+

D \ {0} h̃+ H̃+

)
.

We then fix z = 1 in (3.3) and (3.4) and take the inverse of them with respect to ξ. Thus

P(ΔB0 ≤ x) = β0(x) + β+ ∗
∞∑
n=0

H∗n
+ ∗ h+(x), (C.35)

P(ΔB1 ≤ x) = H0,0(x) + η+ ∗
∞∑
n=0

H∗n
+ ∗ h+(x), (C.36)

where the symbol ∗ denotes the operator of convolution and the superscript ∗n represents
the nth-fold convolution (see Appendix A.5), and where

β(x) =
( {0} D \ {0}
β0(x) β+(x)

)
, H(x) =

( {0} D \ {0}
{0} H0,0(x) η+(x)
D \ {0} h+(x) H+(x)

)
.

Applying Lemma A.12 to (C.35) and (C.36), we obtain

lim sup
x→∞

P(ΔB0 > x)

P(Y > x)
≤ c̃β̃0 + c̃β̃+(I −H+(∞))−1h+(∞)

+ β+(∞)(I −H+(∞))−1(c̃H̃+)(I −H+(∞))−1h+(∞)

+ β+(∞)(I −H+(∞))−1(c̃h̃+)

= c̃
[
β̃e + β+(∞)(I −H+(∞))−1(H̃+e+ h̃+)

]
≤ c̃C,

lim sup
x→∞

P(ΔB1 > x)

P(Y > x)
≤ c̃
[
(H̃0,0 + η̃+e) + η+(∞)(I −H+(∞))−1(H̃+e+ h̃+)

]
= c̃(1/�0)

[
�0(H̃0,0 + η̃+e) +�+(H̃+e + h̃+)

]
= c̃(1/�0)�H̃e ≤ c̃C,

where we use (I −H+(∞))−1h+(∞) = e (which is due to h+(∞) + H+(∞)e = e); and
also use �+ := (�i)i∈D\{0} = �0η+(∞)(I − H+(∞))−1 and �0 = 1/E[Δτ1] (see, e.g.,
[7, Chapter 3, Theorems 2.1 and 3.2]).

C.6. Proof of Lemma 3.2

Let ψ1(k, ξ) (k = 1, 2, . . . ) denote

ψ1(k, ξ) = E[11(Δτ1 = k)eiξΔB1] =
1

k!
lim
z→0

∂k

∂zk
ψ̂1(z, ξ).

It then follows from (3.4) that for k = 1, 2, . . . ,

ψ1(k, ξ) = 11(k = 1)Ĥ0,0(ξ) + 11(k ≥ 2)η̂+(ξ) · (Ĥ+(ξ))
k−2 · ĥ+(ξ). (C.37)
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Taking the inverse of (C.37) with respect to ξ and applying Lemma A.12 to the resulting
equation, we obtain

lim sup
x→∞

P(Δτ1 = k,ΔB1 > x)

P(Y > x)

≤ c̃11(k = 1)H̃0,0 + c̃11(k ≥ 2)
{
η̃+(H+(∞))k−2h+(∞)

}
+ c̃11(k ≥ 2)

{
η+(∞) ·

k−3∑
ν=0

(H+(∞))νH̃+(H+(∞))k−ν−3 · h+(∞)

}
+ c̃11(k ≥ 2)

{
η+(∞)(H+(∞))k−2h̃+

}
, ∀k = 1, 2, . . . . (C.38)

Note here that βi(∞) = 0 (resp. Hi,j(∞) = 0) implies β̃i = 0 (resp. H̃i,j = 0) and thus

β̃ ≤ Cβ(∞) = Cβ̂(0) and H̃ ≤ CH(∞) = CĤ(0). Therefore from (C.38) and (3.5), we
have for all k = 1, 2, . . . ,

lim sup
x→∞

P(Δτ1 = k,ΔB1 > x)

P(Y > x)

≤ c̃C

[
11(k = 1)kĤ0,0(0) + 11(k ≥ 2)k

{
η̂+(0)

(
Ĥ+(0)

)k−2

ĥ+(0)

}]
= c̃CkP(Δτ1 = k),

where C is independent of k.

C.7. Proof of Lemma 3.3

Since P(
∑0

i=1ΔBi > 0 | N(t) = 0) = P({∅}) = 0, (3.6) holds for all t ≥ 0 if m = 0.

In what follows, we consider the case of m ≥ 1. Under Assumption 3.1, Δτ1 ≥ 1 and
N(t) = N(�t) ≤ �t for all t ≥ 0. Therefore we fix t = n ∈ {1, 2, . . . } without loss of
generality.

Note that {N(n) = m} is equivalent to {∑m
i=1Δτi ≤ n,

∑m+1
i=1 Δτi > n} and that Δτm+1

is independent of Δτi and ΔBi (i = 1, 2, . . . , m). We then have

P

(
N(n) = m,

m∑
i=1

ΔBi > x

)
= P

(
m∑
i=1

Δτi ≤ n,

m+1∑
i=1

Δτi > n,

m∑
i=1

ΔBi > x

)

=
n∑

k=1

P

(
m∑
i=1

Δτi = k,
m∑
i=1

ΔBi > x

)
× P(Δτm+1 > n− k). (C.39)

Note also that ΔBi is independent of Δτj ’s (j �= i). We thus have

P

(
m∑
i=1

Δτi = k,
m∑
i=1

ΔBi > x

)

=
∑

k1+···+km=k

m∏
i=1

P(Δτi = ki) · P
(

m∑
i=1

ΔBi > x

∣∣∣∣∣Δτi = ki, i = 1, 2, . . . , m

)

=
∑

k1+···+km=k

m∏
i=1

P(Δτi = ki) · P
(

m∑
i=1

(ΔBi | {Δτi = ki}) > x

)
, (C.40)
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where ΔBi | {Δτi = ki} denotes the conditional random variable ΔBi given Δτi = ki.
Further it follows from Lemmas 3.2 and A.12 that for (k1, . . . , km) such that

∑m
i=1 ki = k,

lim sup
x→∞

P (
∑m

i=1(ΔBi | {Δτi = ki}) > x)

P(Y > x)
≤ c̃C · (k1 + · · ·+ km) = c̃Ck.

Combining this with (C.40) yields

lim sup
x→∞

P (
∑m

i=1Δτi = k,
∑m

i=1ΔBi > x)

P(Y > x)

≤ c̃Ck
∑

k1+···+km=k

m∏
i=1

P(Δτi = ki) = c̃Ck · P
(

m∑
i=1

Δτi = k

)
. (C.41)

From (C.39) and (C.41), we obtain for all n = 0, 1, . . . and m = 0, 1, . . . , n,

lim sup
x→∞

P (N(n) = m,
∑m

i=1ΔBi > x)

P(Y > x)
≤ c̃C

n∑
k=1

kP

(
m∑
i=1

Δτi = k

)
P(Δτm+1 > n− k)

≤ c̃Cn
n∑

k=1

P

(
m∑
i=1

Δτi = k

)
P(Δτm+1 > n− k)

= c̃CnP

(
m∑
i=1

Δτi ≤ n,
m+1∑
i=1

Δτi > n

)
= c̃CnP(N(n) = m).

C.8. Proof of Theorem 3.5

As shown later, the conditions of Theorem 3.5 imply conditions (i), (ii) and (iii) of Theo-
rem 3.4. Thus according to Remark C.1, we can follow the proof of Theorem 3.4, except for
the estimation of R2(x) in (C.33). In addition, we can prove that R2(x) = o(P(T > x)) as
follows.

From (C.33), we have

R2(x) ≤
∫ (1−ε)x

0

∑
n≤εx/(3γ)

P(N(u) = n)P

(
n∑

i=1

ΔBi >
εx

3

∣∣∣∣∣N(u) = n

)
dP(T ≤ u). (C.42)

Note here that condition (iii) of Theorem 3.4 implies P(ΔB1 > x) = o(P(T > x)). Thus by
using Lemma 3.3 with Y = T ∈ C and c̃ = 0, we obtain

P

(
n∑

i=1

ΔBi >
εx

3

∣∣∣∣∣N(u) = n

)
= u · o(P(T > x)).

Substituting this into (C.42) yields

R2(x) ≤
∫ (1−ε)x

0

∑
n≤εx/(3γ)

P(N(u) = n)udP(T ≤ u) · o(P(T > x))

≤ E[T ] · o(P(T > x)),

which implies that R2(x) = o(P(T > x)) due to E[T ] <∞.
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In what follows, we confirm that conditions (ii) and (iii) of Theorem 3.4 are satisfied
(condition (i) is obvious). For simplicity, we assume h = b = 1, which does not lose
generality.

We first introduce a cumulative process {B#(t); t ≥ 0} such that B#(t) =
∑	t


n=0 |Xn|
for t ≥ 0. Clearly, {B#(t)} and {B(t)} have the common regenerative points τn’s. Further
{(B#(n), Jn);n = 0, 1, . . . } is a Markov additive process with initial distribution β#(x) and
kernel H#(x) (x ∈ R), where β#(x) =

∫
|y|≤x

dβ(y) and H#(x) =
∫
|y|≤x

dH(y).

Let ΔB#
n (n = 0, 1, . . . ) denote

ΔB#
n =

{
B#(τ0), n = 0,
B#(τn)− B#(τn−1), n = 1, 2, . . . .

We then have

ΔB#
0 ≥ sup

0≤t≤τ0

|B(t)| ≥ ΔB∗
0 ≥ ΔB0,

ΔB#
n ≥ sup

τn−1≤t≤τn

|B(t)− B(τn−1)| ≥ ΔB∗
n ≥ ΔBn, n = 1, 2, . . . .

Thus, similarly to the proof of Proposition 3.1, we readily obtain

E

[
sup

τ0≤t≤τ1

|B(t)− B(τ0)|
]
≤ E[ΔB#

1 ] = �

∫
x∈R

|x|dH(x)e · E[Δτ1] <∞,

where the last inequality is due to Assumption 3.1 (iii). Recall here that Δτn follows a
phase-type distribution and thus E[(Δτn)

2] < ∞ (n = 0, 1). Therefore condition (ii) of
Theorem 3.4 is satisfied. Further following the proof of Lemma 3.1 with Y = T and c̃ = 0,
we can prove that

P(ΔB∗
n > x) ≤ P(ΔB#

n > x) = o(P(T > x)), n = 0, 1,

which shows that condition (iii) of Theorem 3.4 is satisfied. As a result, the conditions of
Theorem 3.5 imply conditions (i), (ii) and (iii) of Theorem 3.4.

C.9. Proof of Theorem 3.6

Note that (3.8) and (3.9) yield (3.7) and thus the conditions of Theorem 3.6 imply those of
Theorem 3.5, except for E[T ] < ∞. Note also that E[T ] < ∞ is not covered by conditions
(i), (ii) and (iii) of Theorem 3.4. Therefore the conditions of Theorem 3.6 imply conditions
(i), (ii) and (iii) of Theorem 3.4 (see the proof of Theorem 3.5 in subsection C.8). As a
result, it suffices to prove R2(x) = o(P(T > x)) (see Remark C.1).

It follows from (C.42) and Lemma 3.3 that

R2(x) ≤ C

∫ (1−ε)x

0

udP(T ≤ u)
∑

n≤εx/(3γ)

P(N(u) = n) · P(Y > x), (C.43)

where γ is a positive number satisfying (C.32). We now fix γ to be

1− ε

E[Δτ1]
<

ε

3γ
≤ 1

E[Δτ1]
.

As a result, from (C.43), we have

R2(x) ≤ C

∫ (1−ε)x

0

udP(T ≤ u)
∑

n≤x/E[Δτ1]

P(N(u) = n) · P(Y > x)

= CE[T · 11(T ≤ x,N(T ) ≤ x/E[Δτ1])] · P(Y > x) = o(P(T > x)),

where the last equality is due to (3.9).
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