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Abstract An uncertain control model with time-delay is investigated based on the concept of uncertain
process. The value function of the model is infinite-dimensional in the state. Some conditions are presented
to guarantee the model is equivalent to a finite-dimensional one. The latter is solved by the equation of
optimality. Then the solution of an uncertain linear quadratic optimal control problem with time-delay is
obtained. An example is given to show how to solve an uncertain linear quadratic optimal control model
with time-delay. Finally, as an application of the result, an optimal consumption problem with delay in
financial market is dealt with.
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1. Introduction

Since stochastic optimal control theory initiated in 1970’s, it has been an important branch
of modern control theory. The study of stochastic optimal control greatly attracted the
attention of many mathematicians. Some researches on optimal control of Brownian motion
or stochastic differential equations and applications in finance can be found in some books:
Fleming and Rishel [4], Harrison [5] and so on.

Moreover, the phenomenon of time-delay in stochastic optimal control is ubiquitous. It
widely exists in physical, chemical, manufacturing, environmental, biological, and global
economic and business systems. A set of infinite-dimensional differential equations could
model the dynamic systems which do not only depend on the current state but also on
the states during the last d time units, where d denotes a fixed delay. Stochastic optimal
control problems with time-delay were discussed in Larssen and Risebro [7], Yong and
Zhou [13], Bauer and Rieder [1] and so on. Dynamic programming principle can be used
to the stochastic control problems with delay. The method of dynamic programming in
optimization over Ito’s process was also found in Dixit and Pindyck [3].

In the real world, however, everyday we need to face many indeterminacy but ran-
domness, such as “high speed”, “about 90km” and “roughly 65kg”. This fact motivates
researchers to invent a new mathematical tool. Liu [8] found uncertainty theory through
introducing an uncertain measure based on normality, self-duality, countable subadditiv-
ity, and product measure axioms. Liu [10] presented uncertain differential equations based
on the concepts of uncertain variable, uncertain process and canonical process. Nowadays
uncertainty theory which was refined by Liu [11] has been a branch of mathematics for
modeling human uncertainty.

Based on the uncertainty theory, Zhu [14] dealt with an uncertain optimal control model
by using dynamic programming and presented an equation of optimality for the model.
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This equation of optimality is very essential for uncertain optimal control problems. It has
been applied in uncertain bang-bang control problems by Xu and Zhu [12]. A multi-stage
uncertain bang-bang control problem was studied by Kang and Zhu [6].

In this paper, we will consider an uncertain optimal control problem with time-delay.
Note that the value function of the problem is infinite-dimensional in the state. Stimulated
by Bauer and Rieder’s work [1] on stochastic control problems with delay, we will introduce a
method under some conditions for transforming the uncertain optimal control problem with
time-delay to a finite-dimensional one which may be solved by the equation of optimality.

The organization of the paper is as follows. In section 2, some basic concepts are re-
viewed. In section 3, an uncertain optimal control model with time-delay is formulated, and
then a result is derived in the model. In section 4, a linear quadratic problem with time-
delay and a numerical example are solved by the result obtained in the previous section. In
section 5, a consumption problem is studied as an application of the results.

2. Preliminary

Some knowledge about uncertain measure and uncertain variable can be found in Liu [8].
In convenience, we give some useful concepts.

Let Γ be a nonempty set, and L be a σ-algebra over Γ. The set function M defined on
the σ-algebra L is called an uncertain measure if it satisfies the three axioms : M{Γ} = 1;
M{Λ} +M{Λc} = 1 for any event Λ ∈ L; M {

∪∞
i=1 Λi} ≤

∑∞
i=1M{Λi} for every countable

sequence of events {Λi} ⊂ L. Then the triplet (Γ,L,M) is called an uncertainty space. An
uncertain variable is a measurable function from an uncertainty space (Γ,L,M) to the set R
of real numbers, and an uncertain vector is a measurable function from an uncertainty space
to Rn. The uncertainty distribution Φ : R → [0, 1] of an uncertain variable ξ is defined by
Φ(x) = M{ξ ≤ x} for any real number x. An uncertain process is a measurable function
from V × (Γ,L,M) to the set of real numbers where V is an index set.
Definition 2.1. (Liu [10]) The uncertain variables ξ1, ξ2, · · · ξm are said to be independent if
M{∩m

i=1(ξi ∈ Bi)} = min1≤i≤mM{ξi ∈ Bi} for any Borel sets B1, B2, · · ·Bm of real numbers.
Definition 2.2. (Liu [8])The expected value of an uncertain variable ξ is defined by

E[ξ] =

∫ +∞

0

M{ξ ≥ r}dr −
∫ 0

−∞
M{ξ ≤ r}dr

provided that at least one of the two integrals is finite.
For any numbers a and b, E[aξ+bη] = aE[ξ]+bE[η] if ξ and η are independent uncertain

variables.
Definition 2.3. (Liu [10]) An uncertain process Ct is said to be a canonical process if (i)
C0 = 0 and almost all sample paths are Lipschitz continuous; (ii) Ct has stationary and
independent increments; (iii) every increment Cs+t−Cs is a normal uncertain variable with
expected value 0 and variance t2, denoted by Cs+t − Cs ∼ N(0, t), whose distribution is

Φ(x) =

(
1 + exp

(
−πx√
3t

))−1

, x ∈ R.

Remark 2.1. Canonical process is different from Wiener process that almost all sample
paths of Wiener process have an infinite variation and are differentiable nowhere, and al-
most all sample paths of canonical process have finite variation and are differentiable almost
everywhere. Furthermore, the squared variation of Wiener process on [0, t] is equal to t both
in mean square and almost surely, while that of canonical process has the same order as t2

for small t.
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An Uncertain Optimal Control Model 245

For the sake of convenience, we review the following note. For a multi-variable and
vector-value function f : Rn → Rm, its Jacobi matrix is defined by

Dxf(x) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

· · · · · · · · · · · ·
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 ∈ Rm×n

for f(x) = (f1, f2, · · · , fm)τ and x = (x1, x2, · · · , xn)τ .
Definition 2.4. (Liu [10]) Let Xt be an uncertain process and Ct be a canonical process.
For any partition of closed interval [a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh is
written as ∆ = max1≤i≤k |ti+1 − ti|. Then the uncertain integral of Xt with respect to Ct is∫ b

a

XtdCt = lim
∆→0

k∑
i=1

Xti · (Cti+1
− Cti)

provided that the limit exists almost surely and is finite.

Definition 2.5. (Liu [10]) Let Ct be a canonical process and let Zt be an uncertain process.
If there exist two uncertain processes µt and σt such that

Zt = Z0 +

∫ t

0

µsds+

∫ t

0

σsdCs

for any t ≥ 0, then we say Zt has an uncertain differential dZt = µtdt+ σtdCt.

Fundamental theorems of uncertain calculus and chain rule were presented by Liu
[10, 11]. If Xt is an uncertain vector, and Ct is a multi-dimensional uncertain canonical
process, fundamental theorems of uncertain calculus and chain rule may be rewritten like
the following theorems.

Theorem 2.1. Let Xt be an n-dimensional uncertain process, and h(t, x) : R×Rn → Rn be
a continuously differentiable vector-value function. Then the uncertain process Yt = h(t,Xt)
is differentiable and has an uncertain differential

dYt = ht(t,Xt)dt+Dxh(t,Xt)dXt, (2.1)

where ht(t, x) is the partial derivative of the function h(t, x) in t, and Dxh(t, x) is the Jacobi
matrix of h(t, x) in x.

Theorem 2.2. Let f : Rn → Rn and g : Rn → Rn be continuously differentiable vector-
value functions. Then the uncertain process f(g(Xt)) has an uncertain differential

df(g(Xt)) = Dgf(g(Xt))Dxg(Xt)dXt. (2.2)

Uncertain differential equation was introduced by Liu [9]. Chen and Liu [2] proved an
existence and uniqueness theorem of solution of uncertain differential equation.

Definition 2.6. (Liu [9])Suppose Ct is a canonical process, and f1 and f2 are some given
functions. Then

dXt = f1(t,Xt)dt+ f2(t,Xt)dCt (2.3)

is called an uncertain differential equation. A solution is an uncertain process Xt that
satisfies (2.3).
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If f1 is a vector-value function, f2 is a matrix-value function, Xt is an uncertain vector,
and Ct is a multi-dimensional uncertain canonical process, then (2.3) is a system of uncertain
differential equations.

Theorem 2.3. Suppose Ct is an l-dimensional canonical process, f : [0,+∞) × Rn → Rn

is a vector-value function , g : [0,+∞)×Rn → Rn×l is a matrix-value functions. Let Xt be
an uncertain process satisfying the uncertain differential equation

dXt = f(t,Xt)dt+ g(t,Xt)dCt. (2.4)

If y = Y (t, x) : [0,+∞)×Rn → Rn is continuously differentiable, then

dY (t,Xt) = [Yt(t,Xt) +DxY (t,Xt)f(t,Xt)]dt+DxY (t,Xt)g(t,Xt)dCt. (2.5)

Proof. By using Theorem 2.1 and Theorem 2.2, we have

dY (t,Xt)= Yt(t,Xt)dt+DxY (t,Xt)dXt

= Yt(t,Xt)dt+DxY (t,Xt)(f(t,Xt)dt+ g(t,Xt)dCt)

= [Yt(t,Xt) +DxY (t,Xt)f(t,Xt)]dt+DxY (t,Xt)g(t,Xt)dCt.

Remark 2.2. Note that probability theory is a branch of mathematics for studying the behav-
ior of random phenomena, but uncertainty theory is a branch of mathematics for modeling
human uncertainty. The main difference is that the product probability measure is the prod-
uct of probability measures of individual events, i.e., Pr{A×B} = Pr{A}×Pr{B}, and the
product uncertain measure is the minimum of uncertain measures of individual events, i.e.,
M{A×B} = M{A} ∧M{B}.

In practice, when the sample points of an indeterminant event are many enough, we may
obtain a probability distribution to describe the event and employ the probability theory
to study it. Otherwise, when we are lack of observed data for an indeterminant event,
judgements of some specialists may be used to describe the event and uncertainty theory
may be employed to deal with it provided that these judgement data could be quantified
by an uncertain measure.

3. Uncertain Optimal Control With Time-delay

Let C = {Ct, t ≥ 0} denote an l-dimensional uncertain canonical process. Assume that an
uncertain process X = {Xt, t ≥ −d} taking values in a closed set A ⊂ Rn, which describes
the state of a system at time t that started at time −d < 0. Here, d describes a constant
delay inherent to the system. Let CA[−d, 0] denote the space of all continuous functions
on [−d, 0] taking values in A. For t ∈ [−d, 0], the process Xt is consistent with a function
φ0 ∈ CA[−d, 0]. For t ≥ 0, Xt+s (s ∈ [−d, 0]) describes the associated segment process of
Xt, denoted by

φt(s) = Xt+s, s ∈ [−d, 0].

In this paper, we consider a system whose dynamics may not only depend on the current
state but also depend on the segment process through the processes

Yt =

∫ 0

−d

eλsf(Xt+s)ds, ζt = f(Xt−d), t ≥ 0
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where f : Rn → Rk is a differentiable function and λ ∈ R is a constant. The system can be
controlled by u = {ut, t ≥ 0} taking values in a closed subset U of Rm.

At every time t ≥ 0, an immediate reward F (t,Xt, Yt, ut) is accrued and the terminal
state of the system earns a reward h(XT , YT ). Then we are looking for a control process u
that maximizes the overall expected reward over the horizon [0, T ]. That is, we consider the
following uncertain optimal control problem with time-delay:

J(0, φ0) = sup
u∈U

E

[∫ T

0

F (s,Xs, Ys, us)ds+ h(XT , YT )

]
subject to
dXs = µ1(s,Xs, Ys, us)ds+ µ2(Xs, Ys)ζsds

+σ(s,Xs, Ys, us)dCs, s ∈ [0, T ]
Xs = φ0(s), −d ≤ s ≤ 0.

(3.1)

In the above model, Xs is the state vector of n dimension, us takes values in a closed subset
U of Rm, F : [0,+∞)×Rn ×Rk ×U → R the objective function, and h : Rn ×Rk → R the
function of terminal reward. In addition, µ1 : [0,+∞)×Rn×Rk×U → Rn is a column-vector
function, µ2 : R

n×Rk → Rn×k a matrix function, σ : [0,+∞)×Rn×Rk×U → Rn×l a matrix
function, and Cs = (Cs1 , Cs2 , · · ·Csl)

τ , where Cs1 , Cs2 , · · ·Csl are independent canonical
process. The function J(0, φ0) is the expected optimal reward obtainable in [0, T ] with
the initial condition that at time 0 we have the state φ0(s) between −d and 0, where
φ0 ∈ CA[−d, 0] is a given function. The final time T > 0 is fixed or free. A feasible control
process means that it takes values in the set U .

For any 0 < t < T , J(t, φt) is the expected optimal reward obtainable in [t, T ] with the
condition that at time t we have the state φt(s) between t− d and t. That is, consider the
following problem (P):

(P )



J(t, φt) = sup
u∈U

E

[∫ T

t

F (s,Xs, Ys, us)ds+ h(XT , YT )

]
subject to
dXs = µ1(s,Xs, Ys, us)ds+ µ2(Xs, Ys)ζsds

+σ(s,Xs, Ys, us)dCs, s ∈ [t, T ]
Xs = φt(s), s ∈ [−d, 0].

(3.2)

Note that the value function J is defined on the infinite-dimensional space [0, T ] ×
CA[−d, 0] so that the equation of optimality in Zhu [14] is not directly applicable. We will
formulate an uncertain control problem (P ) with finite-dimensional state space such that an
optimal control process for (P ) can be constructed from an optimal solution of the problem
(P ). In order to transform the uncertain control problem (P ) we introduce the following

Assumption 1. There exists an operator Z : Rn ×Rk → Rn such that

eλdDxZ(x, y)µ2(x, y)−DyZ(x, y) = 0, ∀(x, y) ∈ Rn ×Rk, (3.3)

where DxZ(x, y) and DyZ(x, y) denote the Jacobi matrices of Z in x and in y, respectively.

This transformation yields a new state process Zt = Z(Xt, Yt). Let S = A×y(CA[−d, 0]).
For ψ ∈ CA[−d, 0], we denote x(ψ) = ψ(0), y(ψ) =

∫ 0

−d
eλsf(ψ(s))ds, ζ(ψ) = f(ψ(−d)).

Then Zt take values in Z(S). In order to derive the dynamics of the transformed process Z
we need the following lemma.
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Lemma 3.1. Let G(t, x, y) : [0,+∞)×Rn×Rk → Rn be continuously differentiable function
and consider a feasible control process ut ∈ U . Then the uncertain process G(t,Xt, Yt)
satisfies

dG(t,Xt, Yt) = {Gt(t,Xt, Yt) +DxG(t,Xt, Yt)(µ1(t,Xt, Yt, ut) + µ2(Xt, Yt)ζt)}dt
+DxG(t,Xt, Yt)σ(t,Xt, Yt, ut)dCt +DyG(t,Xt, Yt)(f(Xt)

−e−λdζt − λYt)dt.

(3.4)

Proof. For a given feasible control process ut with state process Xt, define a process F̃t by

F̃t =

∫ t

0

f(Xs)ds.

Then the process Yt has the representation

Yt =

∫ 0

−d

eλsf(Xt+s)ds =

∫ 0

−d

eλsdF̃t+s = eλsF̃t+s |0−d −
∫ 0

−d

F̃t+sde
λs

= F̃t − e−λdF̃t−d −
∫ 0

−d

λeλsF̃t+sds

=

∫ t

0

(
f(Xs)− e−λdf(Xs−d)− λ

∫ 0

−d

eλrf(Xs+r)dr

)
ds.

Thus
dYt =

(
f(Xt)− e−λdf(Xt−d)− λYt

)
dt =

(
f(Xt)− e−λdζt − λYt

)
dt.

Applying Theorem 2.3 to G(t,Xt, Yt), the equation (3.4) follows.

Now we are able to present the dynamics for Zt = Z(Xt, Yt) by using (3.3) and (3.4):

dZt = dZ(Xt, Yt)

= DxZ(Xt, Yt)(µ1(t,Xt, Yt, ut) + µ2(Xt, Yt)ζt)dt

+DxZ(Xt, Yt)σ(t,Xt, Yt, ut)dCt +DyZ(Xt, Yt)(f(Xt)− e−λdζt − λYt)dt

= DxZ(Xt, Yt)µ1(t,Xt, Yt, ut)dt+DyZ(Xt, Yt)(f(Xt)− λYt)dt

+DxZ(Xt, Yt)σ(t,Xt, Yt, ut)dCt.

Define µ̃ : [0,+∞)×Rn ×Rk × U → Rn by

µ̃(t, x, y, u) = DxZ(x, y)µ1(t, x, y, u) +DyZ(x, y)(f(x)− λy),

and σ̃ : [0,+∞×Rn ×Rk × U → Rn×l by

σ̃(t, x, y, u) = DxZ(x, y)σ(t, x, y, u).

If the functions µ̃ and σ̃ as well as h would depend on (x, y) through Z(x, y) only, then the
problem (P) could be reduced to a finite-dimensional problem.
Assumption 2. There are functions

µ : [0,+∞)×Rn × U → Rn, σ : [0,+∞)×Rn × U → Rn×l,

F : [0,+∞)×Rn × U → R, h : Rn → R

such that for all t ∈ [0, T ], u ∈ U, (x, y) ∈ Rn ×Rk, we have

µ(t, Z(x, y), u) = µ̃(t, x, y, u), σ(t, Z(x, y), u) = σ̃(t, x, y, u),

F (t, Z(x, y), u) = F (t, x, y, u), h(Z(x, y)) = h(x, y).
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Now we can introduce a finite-dimensional control problem (P ) associated to (P ) via the
transformation. For φt ∈ CA[−d, 0], define z = Z(x(φt), y(φt)) ∈ Z(S). Then for t ∈ [0, T ],
the problem (P ) can be transformed to the problem (P )

(P )



J(t, z) = sup
ut∈U

E

[∫ T

t

F (s, Zs, us)ds+ h(ZT )

]
subject to
dZs = µ(s, Zs, us)ds+ σ(s, Zs, us)dCs, s ∈ [t, T ]
Zt = z,
us ∈ U, s ∈ [t, T ].

(3.5)

The value function J of the uncertain optimal control problem (P ) has a finite-dimensional
state space. So we can directly use the equation of optimality in Zhu [14] for (P ) and have
the main result of this paper.

Theorem 3.1. Suppose that Assumptions 1 and 2 hold and J t(t, z) is twice differentiable
on [0, T ]×Rn. Then we have −J t(t, z) = sup

u∈U
{F (t, z, ut) +∇zJ(t, z)

τµ(t, z, ut)}

J(T, ZT ) = h(ZT ),
(3.6)

and J(t, z) = J(t, φt), where J t(t, z) is the partial derivative of the function J(t, z) in t, and
∇zJ(t, z) is the gradient of J(t, x) in z.

Proof. The equation (3.6) directly follows from the equation of optimality [12]. For any
ut ∈ U , we have

J(t, z)≥ E

[∫ T

t

F (s, Zs, us)ds+ h(ZT )

]
= E

[∫ T

t

F (s,Xs, Ys, us)ds+ h(XT , YT )

]
.

Thus,

J(t, z) ≥ sup
ut∈U

E

[∫ T

t

F (s,Xs, Ys, us)ds+ h(XT , YT )

]
= J(t, φt).

Similarly we can get J(t, φt) ≥ J(t, z). Therefore, the theorem is proved.

Remark 3.1. The optimal decision and optimal expected value of problem (P) are deter-
mined if the equation (3.6) has solutions.

4. Uncertain Linear Quadratic Problem With Time-delay

In this section, we apply the result obtained in the previous section to study an uncertain LQ
problem with time-delay. Let A1(t), A2(t), A4(t), A5(t), A6(t), A7(t), B(t), H(t), I(t), L(t),
M(t), N(t), R(t) be continuously differentiable functions of t. What’s more, let A3 ̸= 0
and G be constants, and I(t) ≤ 0, R(t) < 0. For ψ ∈ CR[−d, 0], denote x(ψ) = ψ(0),

y(ψ) =
∫ 0

−d
eλsψ(s)ds, ζ(ψ) = ψ(−d). Then an uncertain LQ problem with time-delay is
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stated as

(LQ)



J(t, φt) = sup
u∈U

E

[∫ T

t

{
I(s)(e−λdXs + A3Ys)

2 +R(s)u2s +H(s)(e−λdXs + A3Ys)us

+L(s)(e−λdXs + A3Ys) +M(s)us +N(s)
}
ds+G(e−λdXT + A3YT )

2
]

subject to

dXs = {A1(s)Xs + A2(s)Ys + A3ζs +B(s)us + A4(s)}ds+ {A5(s)Xs

+A6(s)Ys + A7(s)}dCs, s ∈ [t, T ]

Ys =

∫ 0

−d

eλrXs+rdr, ζs = Xs−d, s ∈ [t, T ]

Xs = φt(s), −d ≤ s ≤ 0

us ∈ U, s ∈ [t, T ]

where φ0 ∈ CR[−d, 0] is a given initial function and φt ∈ CR[−d, 0] is the segment of Xt for
t > 0, and U is the set of feasible controls. In addition, we are in state Xt = x at time t.
Theorem 4.1. If A2(t) = eλdA3(A1(t) + eλdA3 + λ) and A6(t) = eλdA3A5(t) hold in the
(LQ) model, then the optimal control u∗t of (LQ) is

u∗t = −(H(t) + e−λdB(t)P (t))z + e−λdB(t)Q(t) +M(t)

2R(t)
, (4.1)

where P (t) satisfies

dP (t)

dt
=
e−2λdB(t)2

2R(t)
P (t)2 +

(
e−λdH(t)B(t)

R(t)
− 2A1(t)− 2A3e

λd

)
P (t)

+
H(t)2

2R(t)
− 2I(t)

P (T )= 2G,

(4.2)

and Q(t) is a solution of the following differential equation

dQ(t)

dt
=

(
e−λdH(t)B(t) + e−2λdB(t)2P (t)

2R(t)
− A1(t)− A3e

λd

)
Q(t)

−e−λdP (t)A4(t)− L(t) +
e−λdM(t)B(t)P (t) +H(t)M(t)

2R(t)

Q(T )= 0.

(4.3)

The optimal value of (LQ) is

J(t, φt) =
1

2
P (t)z2 +Q(t)z +K(t), (4.4)

where z = e−λdx+ A3

∫ 0

−d
eλsXt+sds, and

K(t) =

∫ T

t

{
M(s)2

4R(s)
+
e−2λdB(t)2Q(t)2

4R(s)
+
e−λdB(t)M(s)Q(t)

2R(s)
−N(s)

−e−λdQ(s)A4(s)}ds.
(4.5)
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Proof. The problem (LQ) is a special case of (P). In order to solve (LQ) by employing
Theorem 3.1, we need to check Assumptions 1 and 2 for the (LQ) model. Note that

µ1(t, x, y, u)=A1(t)x+ A2(t)y +B(t)u+ A4(t), µ2(x, y) = A3,

F (t, x, y, u)= I(t)(e−λdx+ A3y)
2 +R(t)u2 +H(t)(e−λdx+ A3y)u

+ L(t)(e−λdx+ A3y) +M(t)u+N(t),

h(x, y)=G(e−λdx+ A3y)
2, σ(t, x, y, u) = A5(t)x+ A6(t)y + A7(t).

We set Z(x, y) = e−λdx + A3y so that Assumption 1 is supported in this (LQ) problem.
Furthermore, we have

µ̃(t, x, y, u)=Zx(x, y)µ1(t, x, y, u) + Zy(x, y)(f(x)− λy)

= e−λd(A1(t)x+ A2(t)y +B(t)u+ A4(t)) + A3(x− λy)

= (A1(t) + eλdA3)Z(x, y) + (e−λdA2(t)− A3A1(t)− eλdA2
3 − λA3)y

+ e−λd(B(t)u+ A4(t)),

F (t, x, y, u)= I(t)Z(x, y)2 +R(t)u2 +H(t)Z(x, y)u+ L(t)Z(x, y) +M(t)u+N(t),

h(x, y)=GZ(x, y)2,

σ̃(t, x, y, u)=Zx(x, y)σ(t, x, y, u)

= e−λd(A5(t)x+ A6(t)y + A7(t))

=A5(t)Z(x, y)− (A3A5(t)− A6(t)e
−λd)y + e−λdA7(t).

Therefore, Assumption 2 hold if only if

A2(t) = eλdA3(A1(t) + eλdA3 + λ), A6(t) = eλdA3A5(t).

The reduced finite-dimensional uncertain control problem becomes

(LQ)



J(t, z) = sup
u∈U

E

[∫ T

t

{
I(s)Z2

s +R(s)u2s +H(s)Zsus + L(s)Zs +M(s)us

+N(s)} ds+GZ2
T ]

subject to
dZs =

{
(A1(s) + eλdA3)Zs + e−λd(B(s)us + A4(s))

}
ds

+{A5(s)Zs + e−λdA7(s)}dCs, s ∈ [t, T ]
Zt = z,
us ∈ U, s ∈ [t, T ]

(4.6)

where z = Z(x(φt), y(φt)). By using Theorem 3.1, we know that J(t, z) satisfies

−J t(t, z) = sup
ut∈U

{F (t, z, ut) + Jz(t, z)µ(t, z, ut)},

that is,

−J t(t, z)= sup
u∈U

{I(t)z2 +R(t)u2t +H(t)zut + L(t)z +M(t)ut +N(t)

+[(A1(t) + eλdA3)z + e−λd(B(t)ut + A4(t))]Jz}.
(4.7)

Let
g(ut)= I(t)z2 +R(t)u2t +H(t)zut + L(t)z +M(t)ut +N(t)

+[(A1(t) + eλdA3)z + e−λd(B(t)ut + A4(t))]Jz.
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Setting
∂g(ut)

∂ut
= 0 yields

2R(t)ut +H(t)z +M(t) + e−λdB(t)Jz = 0.

Hence

u∗t = −H(t)z +M(t) + e−λdB(t)Jz

2R(t)
. (4.8)

By equation (4.7) we have

−J t(t, z) = I(t)z2 +R(t)u∗2t +H(t)zu∗t + L(t)z +M(t)u∗t +N(t)

+[(A1(t) + eλdA3)z + e−λd(B(t)u∗t + A4(t))]Jz.
(4.9)

Since J(T, ZT ) = GZ2
T , we guess

J(t, z) =
1

2
P (t)z2 +Q(t)z +K(t). (4.10)

Thus

J t(t, z) =
1

2

dP (t)

dt
z2 +

dQ(t)

dt
z +

dK(t)

dt
(4.11)

and
Jz(t, z) = P (t)z +Q(t). (4.12)

Substituting (4.8) and (4.12) into (4.9) yields

J t(t, z) =

[
H(t)2

4R(t)
+
e−λdH(t)B(t)P (t)

2R(t)
+
e−2λdB(t)2P (t)2

4R(t)
− P (t)A1(t)

−P (t)A3e
λd − I(t)

]
z2 +

[
e−λdH(t)B(t) + e−2λdB(t)2P (t)

2R(t)
Q(t)

−A3e
λdQ(t)− A1(t)Q(t)− L(t) +

e−λdM(t)B(t)P (t) +H(t)M(t)

2R(t)

−e−λdP (t)A4(t)

]
z +

M(t)2

4R(t)
+
e−2λdB(t)2Q(t)2

4R(t)
+
e−λdB(t)M(t)Q(t)

2R(t)

−N(t)− e−λdQ(t)A4(t).

(4.13)

By equation (4.11) and (4.13) we get

dP (t)

dt
= −2I(t) +

H(t)2

2R(t)
+
e−λdH(t)B(t)P (t)

R(t)
+
e−2λdB(t)2P (t)2

2R(t)

−2P (t)(A1(t) + A3e
λd)

dQ(t)

dt
=

(
e−λdH(t)B(t) + e−2λdB(t)2P (t)

2R(t)
− A1(t)− A3e

λd

)
Q(t)

−e−λdP (t)A4(t) +
e−λdM(t)B(t)P (t) +H(t)M(t)

2R(t)
− L(t),

(4.14)

and
dK(t)

dt
=
M(t)2

4R(t)
+
e−2λdB(t)2Q(t)2

4R(t)
+
e−λdB(t)M(t)Q(t)

2R(t)
−N(t)

−e−λdQ(t)A4(t).

(4.15)
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Since J(T, z) = 1
2
P (T )z2 + Q(T )z + K(T ) = Gz2, we have P (T ) = 2G, Q(T ) = 0, and

K(T ) = 0. By equation(4.14), we obtain (4.2) and (4.3). By equation(4.15), the equation
(4.5) holds. Therefore,

J(t, φt) = J(t, z) =
1

2
P (t)(z)2 +Q(t)z +K(t)

is the optimal value of (LQ), and

u∗t = −(H(t) + e−λdB(t)P (t))z + e−λdB(t)Q(t) +M(t)

2R(t)

is the optimal control, where

z= e−λdx(φt) + A3y(φt) = e−λdφt(0) + A3

∫ 0

−d

eλsφt(s)ds

= e−λdXt + A3

∫ 0

−d

eλsXt+sds = e−λdx+ A3

∫ 0

−d

eλsXt+sds.

An example

We consider the following example of uncertain optimal control model with time-delay

J(0, φ0) = sup
u∈U

E

[∫ 2

0

{
−(e−1Xs + Ys)

2 − u2s
}
ds+ (e−1XT + YT )

2

]
subject to

dXt = {(−e− 5)Xt +Xt−0.2 + ut}dt+ dCt, t ∈ [0, 2]

Xt = φ0(t) = cos πt, −0.2 ≤ t ≤ 0

Yt =

∫ 0

−0.2

e5sXt+sds, t ∈ [0, 2]

ut ∈ R, t ∈ [0, 2].

(4.16)

We have A1(s) = −(e + 5), A2(s) = 0, A3 = 1, A4(s) = 0, B(s) = 1, A5(s) = A6(s) = 0,
A7(s) = 1, I(s) = −1, R(s) = −1, H(s) = L(s) = M(s) = N(s) = 0, G = 1, λ = 5,
d = 0.2. Hence A2(t) = eA3(A1(t) + eA3 + 5) and A6(t) = eA3A5(t) hold in this model. By
Theorem 4.1, the function Q(t) satisfies

dQ(t)

dt
=

(
− 1

2e2
P (t) + 5

)
Q(t), t ∈ [0, 2]

Q(2) = 0.

Thus Q(t) = 0 for t ∈ [0, 2], and then K(t) = 0 for t ∈ [0, 2]. Therefore, the optimal control

u∗t is u∗t =
e−1P (t)zt

2
, where zt = e−1xt + yt, and the optimal value is J(0, φ0) =

1
2
P (0)z20 ,

where z0 = e−1x0 + y0, and P (t) satisfies
dP (t)

dt
= − 1

2e2
P (t)2 + 10P (t) + 2

P (2) = 2,

(4.17)
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and

x0 = X0 = 1, yt = Yt =

∫ 0

−0.2

e5sXt+sds,

y0 = Y0 =

∫ 0

−0.2

e5sXsds =

∫ 0

−0.2

e5s cosπs ds =
π sin(0.2π)− 5 cos(0.2π) + 5e

e(π2 + 25)
.

Since the value of yt is derived from the value of Xs between t − 0.2 and t, the analytical
expression of yt can not be obtained and so is that of u∗t .

Now we consider the numerical solutions of the model. Let Π1 = s0, s1, · · · s20 be an
average partition of [−0.2, 0] (i.e., −0.2 = s0 < s1 < · · · < s20 = 0), and △s = 0.01. Thus,

yt = Yt =
20∑
i=0

e5siXt+si△s.

Let Π2 = t0, t1, · · · t200 be an average partition of [0, 2] (i.e., 0 = t0 < t1 < · · · < t200 = 2),
and △t = 0.01. Thus,

△Xt = (−(e+ 5)Xt +Xt−0.2 + u∗t )△t+△Ct.

Since △Ct is a normal uncertain variable with expected value 0 and variance △t2, the

distribution function of △Ct is Φ(x) =
(
1 + exp

(
− πx√

3△t

))−1

, x ∈ R. We may get a sample

point c̃t of △Ct from c̃t = Φ−1(rand(0, 1)) that c̃t =
√
3△t
−π

ln
(

1
rand(0,1)

− 1
)
. Thus, xt, yt and

ut may be given by the following iterative equations

ytj =
20∑
i=0

e5sixtj+si△s, utj =
e−1

2
P (tj)(e

−1xtj + ytj),

xtj+1
= xtj +△Xt

= xtj + (−(e+ 5)xtj + xtj−0.2 + utj)△t+
√
3△t
−π

ln

(
1

rand(0, 1)
− 1

)
for j = 0, 1, 2, · · · , 200, and xsi = cos πsi for i = 0, 1, · · · , 20, where the numerical solution
P (tj) of (4.17) is provided by

P (tj−1) = P (tj)−
(
− 1

2e2
P (tj)

2 + 10P (tj) + 2

)
∆t

for j = 200, 199, · · · , 2, 1 with P (t200) = 2.
Therefore, the optimal value of the example is J(0, φ0) = −0.024429, and the optimal

controls and corresponding states are obtained in the Table 1 for part data.

5. A Consumption Problem

Consider a consumption problem in financial market. Let the wealth of an inventor be
an uncertain process following an uncertain differential system with delay. The inventor
consumes part of his wealth based on a consumption process ωt. Thus his current wealth
Xt may be described by{

dXt = (Xt + aeλd(aeλd + λ+ 1)Yt + aζt − ωt)dt+ (Xt + aeλdYt)dCt, t ≥ 0

Xt = φ(t), −d ≤ t ≤ 0,
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Table 1: Numerical solutions
t 0 0.1 0.2 0.3 0.4 0.5 0.6

x 1.000000 0.472623 0.268005 0.163757 0.103532 0.042242 0.010214

y 0.126709 0.103694 0.063890 0.035297 0.020538 0.012068 0.005922

u −0.018170 −0.010197 −0.005969 −0.003510 −0.002154 −0.001014 −0.000356

t 0.7 0.8 0.9 1.0 1.1 1.2 1.3

x −0.008133 −0.028942 −0.002142 −0.014657 −0.002138 −0.046814 −0.030036

y 0.001701 −0.001587 0.000481 0.000381 −0.000242 −0.001997 −0.004128

u 0.000047 0.000449 0.000011 0.000184 0.000038 0.000704 0.000554

t 1.4 1.5 1.6 1.7 1.8 1.9 2.0

x −0.023194 −0.022888 −0.050667 −0.013823 −0.003976 −0.012452 −0.040871

y −0.004421 −0.003591 −0.003553 −0.003156 −0.002194 −0.001305 −0.002409

u 0.000466 0.000416 0.000682 0.000160 −0.000047 −0.000621 −0.006417

where a > 0. Choose the utility function as e−βt 1
α
ωα
t where α ∈ (0, 1) and β is a discount

factor with (aeλd + 1)α < β < aeλdα + 1. Therefore an optimal consumption problem for
uncertain system with delay may be considered:

J(0, φ) = max
ω

E

[∫ +∞

0

e−βs 1

α
ωα
s ds

]
subject to
dXt = (Xt + aeλd(aeλd + λ+ 1)Yt + aζt − ωt)dt+ (Xt + aeλdYt)dCt, t ≥ 0

Xt = φ(t), −d ≤ t ≤ 0.

Let Z(x, y) = x + aeλdy. Then Assumption 1 holds. Based on the Assumption 2, above
problem with delay can be transformed into the following problem without delay

J(0, Z0) = max
ω

E

[∫ +∞

0

e−βs 1

α
ωα
s ds

]
subject to
dZt = ((aeλd + 1)Zt − ωt)dt+ ZtdCt, t ≥ 0

Z0 = φ(0) + aeλd
∫ 0

−d
eλsφ(s)ds.

By the similar technique to one in [14], we can obtain the optimal consumption

ωt =
β − (aeλd + 1)α

1− α
zt

where zt = xt + aeλdyt.

6. Conclusion

In this paper, an uncertain optimal control problem with time-delay was investigated. By
using two assumptions, the problem was transformed to an uncertain optimal control prob-
lem without time-delay which may be solved by the equation of optimality presented in the
literature. As a special case, an LQ model was considered. The optimal control of the LQ
model is a feedback of state of the uncertain linear system. Due to the time-delay of the
system, the state is hardly expressed as an analytical form of time. For an example, the
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numerical solution of an LQ model was given to show the useableness of the result obtained
in the paper. An optimal consumption problem with delay in financial market was presented
to show all assumptions are easily satisfied under some practice.
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