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Abstract  This paper presents minisum and minimax location problems for helicopter emergency medical
service (HEMS) systems. Given demand points (origins) and hospitals (destinations), the locations of
rendezvous points and helicopter stations are selected to minimize the total demand-weighted transport
time (minisum objective) and the maximum transport time (minimax objective) to a hospital. Rendezvous
points are required for a helicopter to meet with an ambulance. In minimizing these objectives, each
demand is allocated to either an already-available ground ambulance or a newly-introduced helicopter. We
provide 0-1 integer formulations of the minisum and minimax problems, and develop a variable reduction
procedure that reduces the size of the problem. Some optimal solutions of the proposed models tested for an
idealized square city are analyzed. We also apply the models to the case study of Japan using geographical
and population data, and the locations of the actual emergency medical centers. The proposed variable
reduction procedure is shown to be effective for both examples. Results show that the proposed problems
tend to focus on low-accessibility locations and that accessibility to a hospital is greatly improved.

Keywords: Facility location theory, emergency medical service, helicopter transporta-
tion system, minisum location model, minimax location model

1. Introduction

Recently, the introduction of helicopter transportation has received much attention in vari-
ous countries. In Japan the number of ambulance calls has increased from 3.7 million calls
in 1998 to 5.1 million calls in 2008 [18]. This increases the average response time of ground
ambulances and the average arrival time at hospitals. Helicopters are much faster than
ground ambulances, and thus can provide better service for patients in need of critical care
or living in places with limited accessibility to hospitals. However, many parts of Japan are
mountainous or densely populated areas in which landing is difficult. Therefore, construct-
ing landing points is critical to the successful introduction of helicopter emergency medical
services (HEMS).

The design of HEMS is complex because helicopters cannot always land directly at
demand locations, so combined transportation with ambulances is often required. HEMS
is typically operated as follows. First, emergency medical staff goes to the accident site by
ground ambulance. When a patient is in critical condition and a helicopter would provide
faster transportation to a hospital, the ambulance crew requests helicopter dispatch. Then
they transport the patient to a location where a helicopter can land and depart (a rendezvous
point). At the same time, a helicopter deployed at a station goes to the rendezvous point,
picks up the patient, and transports the patient to a hospital. Therefore, the longer of
these two travel times affects the total transportation time to the hospital. Because of this
complicated structure, the design of effective HEMS systems requires much more complex
decisions than a system with only ground ambulances.
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To support such decision-making, this paper develops mathematical programming mod-
els of EMS helicopter deployment by focusing on locations of rendezvous points and heli-
copter stations. In many planning situations ground ambulances are already available, so
improving service for low-accessibility locations is the primary goal when introducing he-
licopter emergency systems. Focusing on this aspect, we introduce emergency helicopters
into an area where the service level of existing ground ambulance for each demand location
is already given.

This paper considers two problems. First, given demand points (origins) and hospitals
(destinations), the locations of rendezvous points and helicopter stations are selected from
candidate locations so as to minimize the total demand-weighted transport time (minisum
objective) to improve efficiency of the whole system in the region. Second, both locations are
selected so as to minimize the maximum transport time (minimax objective) to a hospital to
provide EMS for people living in areas of poor accessibility to hospitals by ground ambulance.
In minimizing these objectives, each demand is allocated to either an already-available
ground ambulance or a newly-introduced helicopter. We show in the numerical example
section that optimal solutions for both minisum and minimax tend to provide helicopter
service for those areas with poor accessibility to ground ambulance.

This paper is organized as follows. Section 2 reviews the related literature on optimiza-
tion design models for emergency service systems in which helicopters are used. In Section 3,
we describe the general situation of the proposed system, and examine how helicopter lo-
cations and rendezvous points affect the transport time of each location. In Section 4,
formulations of minisum and minimax problems are given, and a variable reduction proce-
dure that reduces the problem size is also developed. In Section 5, some optimal solutions
obtained for a square city model are analyzed. We also apply our models to the case study
of Japan using geographical and population data, and locations of emergency hospitals des-
ignated as transport destinations. In the final section, we give our conclusions and indicate
future research directions.

2. Literature Review

The design and operation of medical service systems have been actively studied areas in
operations research and management science. In particular, the facility location modeling
approach [12, 14] for medical service systems has attracted many researchers [13], and studies
focusing on ambulance location and deployment problems are abundant [10, 21, 24]. Despite
widespread public concern for HEMS and the complexity of HEMS design, location models
focusing on EMS helicopters are scarce and much less developed than ambulance location
models involving only ground ambulances. In the following, we first review a few studies
dealing with deployment of EMS helicopters, then literature related to the location problems
of rendezvous points.

Schuurman et al. [26] develop a method that identifies where an additional EMS heli-
copter resource should be placed to cover the greatest population among those currently
underserved according to their proximity to existing services in the region. They apply
the model to analyze a real world situation in which two hospitals with helicopter medical
service already exist. Their analysis uses five years of critical care data from the British
Columbia Trauma Registry, along with population and travel time data. They then analyze
how to introduce an additional helicopter over the existing two candidate hospitals.

Branas et al. [7] simultaneously consider locations for a trauma center and aero-medical
stations. They also propose a heuristic algorithm for their problem [8], and apply the model
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to several regions in the United States [9]. The model is implemented and shared in an
interactive web-site that uses web-based geographical information systems [9].

Bastian [2] proposes a multi-criteria decision analysis method using a scenario-based,
stochastic optimization goal-programming model to help U.S. Army planners make strategic
and tactical aeromedical evacuation asset plans, and to improve the current air evacuation
system in Afghanistan. The model employs three objectives: minimizing the number of
helicopters at each medical facility, maximizing the expected demands that can be served,
and minimizing the maximal total vulnerability of evacuation sites to enemy attack. Ful-
ton et al. [19] develop a stochastic optimization model for decision support in the relocation
of medical evacuation assets, including medical evacuation helicopters and ground ambu-
lances, during military stability operations. The model seeks air evacuation sites, hospital-
ization sites, and paths the evacuation assets should take so as to minimize expected travel
time over all casualty scenarios.

Erdemir et al. [15] discuss aeromedical base locations in New Mexico considering that
demands (e.g. automobile accidents) occur not only at nodes (e.g. intersections) but also
on paths (e.g. roads). They use a model [16] for service facilities with requests originating
from both nodes and paths to find optimal locations of helicopter stations to maximize the
number of demands that can be served. Erdemir et al. [17] propose two covering models to
determine the locations of ambulances, helicopters, and rendezvous points. They assume
that a given demand is covered when it receives coverage from direct transportation by heli-
copter, transportation by two ground ambulances, or combined transportation by helicopter
and ambulance. One of their models has a set-covering objective that seeks the minimum
total cost required to locate three types of facilities when covering all demand points. The
other has a maximum-covering objective that seeks to provide the maximum coverage of
demands within a given total cost.

Furuta and Tanaka [20] develop location models for a “doctor-helicopter” system in
which doctors are delivered to patients by helicopter for primary care. Their model aims
to maximize the average survival rate by optimizing locations of helicopters and rendezvous
points.

Location models of EMS helicopters except Erdemir et al. [17] and Furuta and Tanaka
[20] assume that helicopters can land anywhere, and do not consider rendezvous points be-
tween air and ground ambulances. Our model explicitly assumes that helicopters require
a rendezvous point. The objectives employed in [17,20] are based on maximizing the de-
mands covered within a specified transportation time. While this approach is important,
we focus on different approaches. One is the average time taken to respond to demand
calls for evaluating service quality. The other is a minimax approach that consider worst
case performance of the system. This paper focuses on the time to transport a patient to
a hospital, and proposes minisum and minimax location models for designing effective and
equitable deployment of EMS helicopters.

There are some non-helicopter location models that are structurally similar to the pro-
posed models.

Berman et al. [5] propose the transfer point location problem (TPLP), where the optimal
location of a single transfer point needs to be found on a plane under the condition that
the location of a single facility is given. The facility provides the same service to demands
that can go to the facility via a transfer point or directly. Travel time from the transfer
point to the facility is shorter than that from demand nodes to the transfer point or the
facility due to a rapid transportation system. They also consider TPLP on a network taking
into account the continuously varying travel time discount rate between the transfer point
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and the facility, and proposed a solution algorithm for the problems. Berman et al. [6]
propose the multiple transfer points location problem (MTPLP) as a natural extension
of TPLP, where the establishment of multiple transfer points is allowed. Furthermore,
Berman et al. [4] consider generalized models called multiple location of transfer points
(MLTP) and the facility and transfer points location problem (FTPLP), which make the
location of multiple facilities possible. The location of facilities is given in MLTP, but
an optimal location of both facilities and transfer points needs to be found in FTPLP.
They proposed three heuristics to solve the minisum MLTP and FTPLP on a network, and
reported comprehensive computational results using a benchmark data set provided by the
OR-Library [3]. However, they did not suggest exact optimal solutions due to the size of
the problems. Sasaki et al. [25] show another formulation of the minisum MLTP similar
to the p-median problem. Their formulation allows a mathematical programming solver to
obtain exact optimal solutions. They also present a new formulation of FTPLP and an
enumeration-based approach to solve the problems with a single facility.

Researchers have studied and improved many aspects of hub-and-spoke networks com-
monly used by many air carriers to capture widespread demand efficiently since the United
States Airline Deregulation Act was enacted in 1978. A hub-and-spoke network consists
of intermediate airports (hubs), special links between hubs (hub arcs), and links between
non-hub airports and hubs (access arcs). Unit transportation costs on the hub arcs are
lower than those on non-hub arcs due to economies of scale. The hub location problem is
to seek optimal hub locations and allocations of non-hub airports to the hubs. Various hub
location models have been studied so far and the literature is summarized in Alumur and
Kara [1] and Campbell et al. [11].

Both transfer point location problems and hub location problems have two types of trans-
portation speeds. However, the problems do not explicitly consider rendezvous between two
types of movable units. To design effective HEMS, it is required to consider rendezvous
between two mobile units (a helicopter and an ambulance) with different speeds, because
helicopters cannot depart from the rendezvous point until the patient arrives in the ambu-
lance.

3. Helicopter Emergency Medical Service System

Before introducing the mathematical programming models for our systems, we provide spa-
tial characteristics of a system with two movable units with different speeds and a rendezvous
between them. By using a simple city model, we can analyze the effect of location changes
of a facility (a rendezvous point or station) on the average and maximum transportation
time.

We now introduce the HEMS assumed in this paper. Consider the situation where
an ambulance service is already well established, and an HEMS is to be introduced to
upgrade the emergency medical system. We measure the travel time of both ambulance
and helicopter modes as the time taken to transport a patient from the accident site to a
hospital. We assume that the patient at the accident site needs critical care and should,
therefore, be transported to a large hospital as quickly as possible. Hence, the patient should
be transported by the mode with the shortest transportation time. An ambulance at the
demand location requests helicopter dispatch when the patient can be provided with faster
transportation to a hospital; otherwise, the ambulance transports the patient to a hospital.
We assume helicopters can land directly at the hospital. The transportation time for each
mode is discussed later.
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Figure 1: Three types of transportation modes in the helicopter emergency medical system

When an HEMS is introduced, we assume that three modes of transport, an ambulance
mode and two helicopter modes, are available to move patients to a hospital (Figure 1). In
ambulance mode (mode A), a patient is transported directly to a hospital by ambulance
from the demand location. There are two helicopter modes. In mode H1, an ambulance
first moves a patient to a helicopter station, then a helicopter deployed at the station carries
the patient to a hospital. In mode H2, an ambulance and a helicopter meet at a rendezvous
point, then the helicopter carries the patient to a hospital. Patients are assumed to be
transported by the fastest of the three modes.

First, we analyze how locations of rendezvous points and helicopter stations affect each
patient’s travel time to a hospital using an idealized square city model. This analysis
provides a basic framework to evaluate optimal solutions in Section 4. Let us consider a
situation in which there is a single hospital and each demand has three modes to access
the hospital. To determine the travel time for the three modes, consider a square city with
sides of length L (km). We introduce a Cartesian coordinate system (z,y) with its origin at
the square’s center, and allow a demand location to be at an arbitrary point. The hospital,
the rendezvous point, and station locations are denoted by (hy, hy), (74, 7,), and (sg, sy),
respectively. and the helicopter and ambulance speeds are denoted by v and w. We assume
that the travel distance between two points is the Euclidean distance, making it easy to
evaluate spatial accessibility of various points in the targeted area. In mode A, the travel
time by ambulance from a demand point to the destination is

O

w

T\ =

In mode H1, the travel time from a demand point to the destination, when using the station
at (Sg,8y), I8

Ty = \/(550 — 33)2 + (Sy - y)2 + \/(h':c - 5;,;)2 + (hy - Sy)Q‘

w (%

In mode H2, the travel time from a demand point to the destination, when using an ren-
dezvous point at (r,,r,) and a station at (s, s,), is

TH2 = Inax {Tl, TQ} + Tg,
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where
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v

The max operator in the first term means that both the ambulance and the helicopter must
arrive at the rendezvous point before the patient can depart for the hospital. The mode
selected is the one that provides the shortest travel time to the hospital:

T = min {TA, THla THQ} .

To evaluate the HEMS system, we also analyze each patient’s travel time using the
ambulance-only mode or the shorter of the two helicopter modes. The shortest of these
three is the transportation time assumed in this paper. Figure 2 shows a contour plot
and a three-dimensional plot for patient travel time to the hospital in helicopter mode,
min{ 7Ty, T2}, when the station is located at (=30, 30), the rendezvous point is located at
(10, —20), and the helicopter and ambulance speeds are v = 200 km/h and w = 40 km/h,
respectively. The hospital is located at (25,0). The result is a circular area around the
rendezvous point in which travel time to the hospital is constant. Within this area, patients
(e.g., d1 in Figure 2(a)) arrive at the rendezvous point earlier than the helicopter: T} < Tb.
As a result, travel time to the hospital is Ty = 15+ T3, a constant value. A patient located
outside the area, for example d2 in Figure 2(a), arrives at the rendezvous point later than
the helicopter, so the patient’s travel time is Tyo = 17 + T3, with T} increasing with the
distance from the demand location to the rendezvous point. Demands around the station
form a cone-like area in which patients are transported to the hospital by way of this station
(Mode H1 in Figure 1).

-40 -20 0 20 40
(a) (b)

Figure 2: Travel time min{7y;, Th2} using a helicopter

Next, we consider the case in which several rendezvous points exist. Figures 3(a) and 3(b)
illustrate travel time to the hospital by ambulance (T ) and by helicopter (min{7y;, Tha}),
respectively. In Figure 3(b) there are three rendezvous points, (10, —20), (15,20), and
(—10, —30). Figures 4(a) and 4(b) represent the travel time from each demand location to
the hospital when the fastest transportation mode is used. Travel time is clearly affected
by the station and rendezvous point locations.
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Figure 3: Travel time contours for each mode : (a) ambulance mode T ; (b) helicopter mode
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Figure 4: The shortest travel time of all three modes: min{7Tx, Txi, Tuo}

Next, we analyze the total travel time and the maximum travel time to the hospital for
all demands, the two objective functions we use in our models. We assume that demands
are regularly and uniformly distributed in a 20 x 20 grid in a square city.

Figures 5(a) and 5(b) show how the total travel time to the hospital, obtained by sum-
ming each patient’s travel time, is affected by the location of the station. In the figures, two
rendezvous points are located at (0,30) and (—25,10). In Figure 5(a), darker color means
smaller total travel times. The figures show that the most desirable location for a station
is some distance from rendezvous points and the hospital. Because of the high speed of
helicopters, it is not advantageous to locate stations near rendezvous points. When using a
helicopter, each demand is allocated to a rendezvous point or to the station, so the desirable
station location is at a point that effectively addresses all demands. Next we analyze how
rendezvous point location affects the total travel time when the station location is fixed.
Figures 6(a) and 6(b) are the contour plot and the three-dimensional plot of the total travel
time when a station is located at (—30,30). When the rendezvous point is located near the
hospital at (25,0) or the station, the total travel time increases. In such cases, no demands
receive sufficient benefit from using the rendezvous point because each patient has to be
transported by a lower-speed ambulance to the rendezvous point near the hospital or the
station. In fact, the benefit is exactly zero when the rendezvous point is located at (25,0)
or (=30, 30), which is the location of the hospital or the station.

Figures 7(a) and 7(b) show how the maximum travel time to the hospital, the minimax
objective, is influenced by the location of the station. In the figures, two rendezvous points
are fixed at (0,30) and (—25,10). A hospital is located at the right of the city center,
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Figure 5: Total travel time as a function of station location with rendezvous points at

e e
340¢

-40 -20 O 20 40

(a) (b)

Figure 6: Total travel time as a function of rendezvous point location with station at
(=30, 30)

Y
R
P T A e
0 Rendezvous maximum ttz.':':‘.’:.z.:'.'."'~.
f ’ TV
20 point Efﬁ,‘éegf s

Hospital

-40 -20 O 20 40

(a) ()

Figure 7: Maximum travel time as a function of station location with rendezvous points at
(—25,10), (0,30)

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.



Minisum & Minimax Helicopter Location Models 229

40 Station maximum

trave
time [h]

ital

-50

50

(b)

Figure 8: Maximum travel time as a function of rendezvous point location with station at
(=30, 30)

at (25,0). Before the introduction of HEMS, the upper-left and lower-left corners require
the maximum transportation time by ground ambulance. To reduce the minimax objective
value, transportation from these points should be by helicopter. As illustrated in Figure 7,
the maximum transportation time is reduced only when a station is located near the lower-
left corner. A station near the lower-left corner means transportation from there is faster
by mode H1, and transportation from the upper-left point is faster by mode H2, decreasing
maximum transportation time. Next we analyze how rendezvous point location affects the
maximum travel time when the station location is fixed. Figures 8(a) and 8(b) show how
the maximum travel time is affected by the location of a rendezvous point. When a station
is located at (—30,30), the upper-left corner point can obtain a faster transportation by
mode H1. The transportation time of the lower-left corner point should be reduced to
reduce the maximum transportation time. A rendezvous point near the lower-left corner
means transportation is faster from the lower-left point using mode H2, decreasing the
maximum transportation time.

4. Minisum Model and Minimax Model for HEMS
4.1. Formulation

As described in the previous section, travel time to the hospital from a demand point is
greatly affected by the rendezvous point and station locations. Assuming that demands are
distributed discretely over the target region, this section develops the following problems
and their integer programming formulations. Given demand points (origins) and hospitals
(destinations), the locations of rendezvous points and stations are selected so as to minimize
the total demand-weighted transport time (minisum objective) and the maximum transport
time (minimax objective) to a hospital. In minimizing these objectives, each demand is
allocated to either an already-available ground ambulance or a newly-introduced helicopter.

The minisum problem is how to locate p rendezvous points and ¢ stations so as to
minimize the total demand-weighted travel time to the hospital. The proposed minisum
model is an extended version of the classical p-median model [22,23]. The p-median problem
seeks to simultaneously locate p new facilities over a targeted region so as to minimize the
total demand-weighted distance. The p-median model tends to locate facilities near large
demand locations since the impact of reducing distance between demand location and a
facility increases with demand. The proposed minisum model focuses on introducing HEMS
into an area where ground ambulance services already exist. In such situations, transport
time by ground ambulance in a suburban area tends to take longer than that in a central
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area with large population. Thus, a larger reduction in transport time can be attained by
improving the service level of low-accessibility suburban locations than high-accessibility
locations. This is a distinct characteristic of the proposed minisum problem.

Furthermore, we propose a minimax model seeking locations for p rendezvous points
and ¢ stations that minimizes the maximum transportation time to the hospital for all
demands. The minimax model is constructed as an extended version of the classical p-center
model [22,23], in which p facilities are located so as to minimize the maximum distance to
the nearest facility. The proposed minisum model focuses on providing EMS for people
living in an area where there is only poor accessibility to hospitals by ground ambulance.

To formulate the problems, the following notation is introduced:

Parameters

I : set of demand points, indexed by 7

J : set of candidate locations for rendezvous points, indexed by j

K : set of candidate locations for stations, indexed by k

p : number of rendezvous points to be located

g : number of stations to be located

h; : demand at demand point ¢

t& : travel time from demand point i to the hospital by an ambulance (mode A)
thl : travel time from demand point 7 to the hospital via the station k (mode H1)

e

ij&  travel time from demand point ¢ to the hospital by using the combination of rendezvous

point j and station k& (mode H2)

Decision variables

xj @ 0-1 location variable; 1 if an rendezvous point is constructed at node j, 0 otherwise

yr - 0-1 location variable; 1 if a station is constructed at node k, 0 otherwise

u; : 0-1 allocation variable; 1 if demand point 7 is served by an ambulance (mode A), 0
otherwise

vy : 0-1 allocation variable; 1 if demand point i is served by station k& (mode H1), 0
otherwise

wjj : 0-1 allocation variable; 1 if demand point 7 is served by the combination of rendezvous

point j and station & (mode H2), 0 otherwise

The minisum model for HEMS is then formulated as follows.
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Minisum model for HEMS

min Z hi {tfui + Z v + Z Z tg'iwijk} ; (4.1)

el keK jeJ keK

s. t. v < Yk, el ke K, (42)
Zwijkﬁa:j, iEI,jE J, (43)
keK
> wik <y, iclkeK, (4.4)
Jj€J
ui+ZUik+ZZwijk:1, 7:6[, (45)

keK jeJ keK

Y =n, (4.6)
jeJ
S w=yq (4.7)
keK
xj € {07 1}a Jed (48)
yr € {0, 1}, ke K, (4.9)
u; € {0, 1}, 1€ 1, (4.10)
v € {0,1}, ielkeK, (4.11)
wiji € {0, 1}, iel,jeJkekK. (4.12)

The objective function (4.1) is the total demand-weighted transportation time to the hos-
pital. Inequality (4.2) states that demand 7 can only be assigned to mode H1 at station k
if a station is located at k. Inequalities (4.3) and (4.4) combine to mean that demand ¢
can use a rendezvous point j and station k pair (w;jz = 1) when a rendezvous point and
a station are constructed in both locations, and demand 7 is assigned to at most one pair
(7, k). Equation (4.5) means that each demand is allocated to only one transportation mode.
Minimization of the objective function means each demand is allocated to the mode that
provides the shortest transportation time among all possible alternatives. Equations (4.6)
and (4.7) mean that the number of rendezvous points and stations is p and ¢, respectively.
Equations (4.8), (4.9), (4.10), (4.11), and (4.12) are the standard binary constraints.

So far, we have assumed that there is only one hospital as the final destination. We
can easily relax this assumption and can address the case with several hospitals without
modifying the above formulation; if several hospitals exist, we select the hospital with
minimum travel time from all hospitals when calculating the values of £3*, ¢}, and ]2, In
Section 4.2, we deal with a real world example in which several hospitals exist.

Minimax model for HEMS

In a similar manner, we can formulate the minimax problem for an HEMS by introducing
a new variable Z to represent the maximum transportation time between a demand point
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and the hospital.

min 7, (4.13)
s. t. tiui + Z tikvik + Z Z tijkwijk S Z, 1€ I, (414)

keK Jj€J keK

plus  (4.2), (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), (4.10), (4.11), (4.12) above.

The objective function (4.13) represents the maximum transportation time for all demand
locations. Constraint (4.14) stipulates that the maximum transportation time, Z, must be
greater than the time to travel between any demand point and the hospital.

4.2. Variable reduction procedure

The number of variables in the minisum and minimax problems introduced in the previous
section can easily become large because of the three subscripts of w;j;;,. Therefore, it is
desirable to develop a procedure to reduce the size of the problem. We present a variable
reduction procedure that utilizes input data of transportation times in deciding which vari-
ables to eliminate. First, we consider how to reduce variables v;; by comparing the travel
times ¢ and X!, When the transportation time of demand i by an ambulance, ¢, is less
than that of using station k, thi!  as indicated in Figure 9(a), station k cannot be used
because each demand is allocated to the shortest transportation mode. This means that v;
must be 0 in the optimal solution, so we can eliminate v;, in the above formulation. The

set of variables v;;, that can be eliminated in advance is

Vit = How, ke K|} <t}

el

Similarly, w;j, can be eliminated when ¢ < ¢} (Figure 9(b)), that is, when a patient at
demand point ¢ can be transported to the hospital by an ambulance faster than using the
combination of rendezvous point j and station k. In this case, the set of variables w;j; that
can be eliminated in advance is
Wi = | Hwir, €T ke K|t} <tii}.
i€l

This elimination procedure can similarly be continued by comparing the transportation
times for mode H1 and mode H2 (Figure 9(c)). In this case, the set of variables w;j that
can be eliminated in advance is

Wit = U {wijr, j € J |ty < tfﬁ,}
icl, keK

There is another less common situation in which the number of variables can be reduced.
First, consider the case when we can remove some of the variables u;. This occurs when
the transportation time by an ambulance for demand i is larger than the transportation
times of all the possibilities of mode H1 and mode H2. That is, when ¢ > ¢l for all k
and & > tg% for all (j, k) pairs, we can eliminate u;. The set of variables u; that can be
eliminated is

Umipe = {wi, i€ 1| (ty <t} A(th <t), Vj € J, Vk e K}
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Figure 9: Comparing transportation times to the hospital between different modes for elim-
inating variables

Similarly, we can eliminate some of the variables v;, when t;; > ¢;;, for all j. Then, the set
of variables v;;, that can be eliminated can be described as

Ve = {vin, i €1, ke K |t <ty!, Vje J}.
One or more of these eliminations can frequently be made, and dramatically reducing the
problem size.

5. Computational Results
5.1. Analysis of optimal solutions using an idealized square city

This section presents some optimal solutions of the proposed models for an idealized square
city model and discusses some insights obtained during this analysis. Optimal solutions were
obtained with the commercial mathematical programming software IBM ILOG CPLEX 12.2
on a computer with a Intel Core i5 (2.53 GHz) and 4 GB of RAM. We consider a square
target area with 100 km sides (Figure 10). A hospital is located at the center, (z,y) = (0,0).
There are 49 (7 x 7) candidate rendezvous point locations (squares in Figure 10) and 25
(5x5) candidate station locations (diamonds in Figure 10). We use a regularly and uniformly
distributed demand pattern in which each demand (circles in Figure 10) is located at a grid
mesh center. The number of demands is 225 (15 x 15). The number of variables for u;, v;
and w;j, in this problem example are 225, 5,625, and 275,625, respectively. Travel time
is calculated by the Euclidean distance divided by the helicopter and ambulance speed:
200 km/h and 40 km /h.

+ Hospital

& Station candidate

O Rendezvous point candidate

(O demand point

-40 -20 0 20 40

Figure 10: A square target area: |I| = 225, |J| =49, |K| =25

We first obtain exact optimal solutions and show the effect of the variable reduction pro-
cedure. We then examine spatial patterns of rendezvous points and stations for several (p, q)
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Table 1: Computational times (s.) with and without variable reduction procedure (VRP)
| p ¢ | with VRP without VRP

4 1 70.14 131.93
minisum model | 6 2 10.92 37.00
10 3 481.40 1026.10
4 1 134.86 392.08
minimax model | 6 2 67.21 260.46
10 3 228.67 249.29

Table 2: Average and maximum transportation times in the optimal solutions (min)
‘ p q ‘ average maximum

without HEMS 57.27 98.98
4 1 34.90 65.22
minisum model | 6 2 29.90 50.50
10 3 27.03 50.50
4 1 34.95 62.85
minimax model | 6 2 32.69 49.02
10 3 28.39 41.20

pairs. We also analyze how each patient’s transportation time is reduced by introducing an
HEMS.

We applied the variable reduction procedure explained in the previous section. The
number of variables eliminated from each set are |Vil'| = 4,447, |[Wi?| = 214,959, |WEH2| =
139,447 (W2 0 WHP| = 131,415), |Ufpy o] = 0, and [Vii}'] = 0. In total, the number
of variables in wu;, vy, and w;j; were reduced by 0 (0 %), 4,447 (79.1 %), and 222,991
(80.9 %), respectively. Computation time for obtaining optimal solutions by CPLEX with
and without the variable reduction procedure are shown in Table 1. The table indicates
that our procedure is sufficiently effective.

Table 2 lists two types of objective values in the optimal solutions of the minisum
model and the minimax model. The minimax model usually has several optimal solutions.
In that case, we select the one with the smallest total transportation time, the minisum
objective, among the set of optimal solutions of the minimax model. Table 2 gives minisum
objective values in terms of the average transportation time, measured in minutes for ease
of comparison. Figure 11 shows the optimal solutions; squares and diamonds denote the
selected optimal locations of rendezvous points and stations. Colors of demand points show
the travel time to the hospital: black points mean the time is more than 30 minutes, gray
points mean from 15 minutes to 30 minutes, and white means within 15 minutes. Demands
farther from the hospital tend to have larger travel times but patients near rendezvous points
or stations can be transported to the hospital in a relatively short time.

Figure 12 shows the reduction of each demands’ transportation time after introducing
an optimal HEMS. Demands colored white represent ambulance users whose reduction in
the transportation time is 0. Demands colored light gray and dark gray represent helicopter
users with reduction in the transportation time less than 30 minutes and more than 30
minutes, respectively. Figure 12 shows that the transportation time of demand points
having a rendezvous point on the way to the destination is a greatly reduced.
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Figure 11: Optimal solutions and each demand’s transportation time
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Figure 12: Optimal solutions and the reduction of each demand’s transportation time
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Minisum solutions have a larger number of demand points achieving a reduction of 30
minutes or more than minimax solutions, resulting in a smaller total transportation time.
On the other hand, minimax solutions tend to have more rendezvous points in the peripheral
areas of cities in comparison with minisum solutions, which provide a large benefit for people
living in places far from the hospital.

5.2. Case study using actual cities

We apply the minisum and minimax problems to the location of rendezvous points and
stations using actual population data for Japan. The target area comprises three major
prefectures in the Kanto area: Tokyo, Saitama, and Kanagawa (Figure 13). The total pop-
ulation of this area in 2005 was 28,508,070. In this analysis, hospitals having an emergency
medical center are selected as destinations and shown by cross marks in Figure 13. There are
46 such hospitals in the area. We assume that demand points and the candidate locations
for rendezvous points are the 191 cities in the target area, shown by small dots in Figure 13.
The population of each city is shown in gray-scale. For the candidate locations of stations,
we select the 50 cities shown by diamonds in Figure 13. The central part of the area is
densely inhabited and has a large number of emergency hospitals, whereas peripheral areas,
especially in the northern part, are less inhabited and have only a few emergency hospitals.
It is interesting to compare the optimal solutions of the minisum and minimax problems us-
ing actual city data, especially when populations are unevenly distributed. In this case, the
numbers of 0-1 variables w;, vy, and w;;;, are 191, 9,550, and 1,824, 050, respectively. We
apply the variable reduction procedure as illustrated in the previous section. The numbers
of variables eliminated for each set are |Vi| = 9,302, |WA?| = 1,797, 140, |WEZ| = 854,649
(W2 NWEP| = 852,941), [Ufyy | = 0, and [V = 0, respectively. In total, the reduction
procedure reduced variables wu;, vy, and w;jx by 0 (0 %), 9,302 (97.4 %), and 1,798, 848
(98.6 %), respectively.

Figure 14(a) shows an optimal solution of the minisum problem with p = 10 and ¢ = 2.
Filled squares represent selected rendezvous points and filled diamonds represent selected
stations. Cities shown in Figure 14(a) are allocated to helicopters. In the minisum solution,
one station is located near the central area and the other is located some distance away from
the central area. As to the location of rendezvous points, some are located near the central
area while others are located in the northern part of the area. Also, Figure 14(a) indicates
that rendezvous points are selected from cities where the distance to the nearest emergency
hospital is relatively large. The objective function of the minisum problem is the total
demand-weighted transportation time, and thus two types of approach exist for reducing
the value of the objective function. One is reducing the transportation time by a small
amount in an area having a large population. In this case, even though the time reduction
is small, it can have a great effect on the objective value if the population is sufficiently
large. The other approach is to reduce the transportation time by a large amount. In this
case, there can be a large reduction of the objective value, even if the population is small.
We can observe both types of reduction and the latter reduction more than the former one in
Figure 14(a). Because the latter reduction is important in providing EMS to people living in
areas with poor accessibility to a hospital, the minisum model is useful in designing medical
service systems with helicopters.

Figure 14(b) shows an optimal solution of a minimax problem with p = 10 and ¢ = 2.
The locations of rendezvous points and stations in this solution have a very distinct pattern,
different from that of the minisum model. Both stations are located in suburban areas, where
accessibility to hospitals is poor. Also, rendezvous points are located in both the northern
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Figure 13: Target area (Tokyo, Saitama, and Kanagawa)

and western peripheral areas, greatly reducing the travel time to hospitals in these areas by
providing helicopter transportation. One important role for an HEMS is to provide faster
transportation for people living in areas with lower accessibility to hospitals. The minimax
solution exhibits a suitable structure for achieving this goal: people living in areas with high
accessibility to hospitals are served by ambulances while those living in low-accessibility
areas benefit by being served by helicopters.

Table 3: Average and maximum transportation times for three different solutions (min)
‘ average maximum

without HEMS 7.4 56.3
minisum solution for p = 10, ¢ = 2 6.2 32.7
minimax solution for p = 10, ¢ = 2 6.7 19.3

Table 3 lists the average and maximum transportation times for three different solu-
tions (measured in minutes): the solution without HEMS (in which all demands are served
by ambulances), the minisum solution for Figure 14(a) and the minimax solution for Fig-
ure 14(b). The average transportation time is the minisum objective value divided by the
total demand, and the maximum transportation time is the minimax objective value. The
minisum solution reduces the average transportation time by more than one minute, while
the minimax solution reduces it by more than 30 s. In terms of the maximum transportation
time, the minimax solution performs very well: the value is reduced by roughly two-third.
The minisum solution also performs fairly well, reducing the maximum transportation time
roughly by half. The overall picture of the effect of introducing the system is illustrated in
Figure 15, in which we compare histograms of transportation time for the three solutions.

Figure 16 illustrates the transportation time of each demand before and after the intro-
duction of the HEMS, 2 and #¢%, in the minisum and minimax solutions. Points represent
demands and are divided into four classes according to the population size. Demands on
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Figure 14: Obtained solutions for (a) the minisum model and (b) the minimax model
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Figure 15: Histogram of transportation time

the diagonal remain ambulance users after the introduction of the system, so their trans-
portation time does not change. Points located under the diagonal are helicopter users. The
time reduction for these points is measured by the vertical distance from the diagonal. In
the minisum solution, the ambulance transportation time of new helicopter users takes a
wide range of values, while that in the minimax solution mainly takes values greater than 20
minutes. Some of the helicopter users in the minimax solution have values of transportation
time that are close to the maximum (see Figure 16(b)).

Figure 17(a) shows the average transportation time for the minisum solutions for vari-
ous values of p and ¢. Figure 17(b) is the maximum transportation time for the minimax
solutions for various values of p and ¢. In the case of the minisum solution, the transporta-
tion time decreases smoothly and steady with the increase in the numbers of rendezvous
points and stations. This is because the extra rendezvous point or station (1) allows some
ambulance users to be served by helicopters, or (2) reduces the transportation time further
for helicopter users. Both of these lead to a decrease in the average transportation time.
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Figure 17: Optimal objective values for various values of (p, q)

On the other hand, the rate of decrease of the objective value for the minimax solutions
is different from that of the minisum solutions: some solutions do not exhibit a significant
decrease in the objective value. This occurs when there are several demands having almost
the same transportation time as the maximum value, as we have already seen in Figure 16(b).
In this case, to reduce the maximum value significantly, the transportation time for all of
these demands points should be reduced, which is not always possible for just one rendezvous
point or one station. This situation occurs especially when demand points are spatially
dispersed. In this example, because ambulances take more than 25 minutes to travel to a
hospital only for a limited number of patients, the addition of one rendezvous point or one
station reduces the maximum transportation time accordingly. However, many rendezvous
points and stations are required to reduce the maximum transportation time to less than
15 minutes, because many demand points have travel times of more than 15 minutes before
the HEMS is introduced, as can be seen from Figure 15. This can be seen, for example, in
Figure 17(b) at p = 9 and ¢ = 3, where the addition of a few rendezvous points or stations
does not decrease the objective value very much.

6. Summary and Future Work

This paper presented minisum and minimax location models for helicopter emergency med-
ical systems. While helicopters are much faster than ground ambulances, they require
landing and takeoff locations, making transportation decisions complex. Therefore, when
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designing a helicopter transportation system the locations of rendezvous points and sta-
tions are important determinants for the effective operation of the system. We constructed
models assuming that there are three modes for transporting each demand to a hospital:
by ambulance to a hospital (mode A), by ambulance to a station, then by helicopter to a
hospital (mode H1) by ambulance to a rendezvous point, then by helicopter to a hospital
(mode H2).

We first compared transportation times for the three modes at various locations in
an idealized square region. Then, minisum and minimax problems that determine the
locations of both rendezvous points and stations were presented, together with their 0-1
integer programming formulations. A variable reduction procedure for the problems was
also presented. We derived some optimal solutions of the proposed models using a square
city model, and compared desirable patterns of these solutions.

We then applied our models to an area in Japan using actual population data and hospital
locations. The objective function of the minisum problem is the total demand-weighted
transportation time, and we observed two types of reduction in transportation time. One is
the result of having a large population: even when the amount of time reduction is small,
it can greatly affect the objective value when the population is sufficiently large. The other
is the result of reducing the transportation time by a large amount. In this case, even if
the population is small, a great reduction in transportation time can have a large impact
on the objective value. In the solution of the minimax model, stations and rendezvous
points are located mainly in suburban areas of the region, in which the level of accessibility
to hospitals by ambulance is relatively low. The minimax solution greatly reduced the
maximum transportation time. The proposed variable reduction procedure was effective in
this example.

Our proposed models will serve as a basis for evaluating the quality of HEMS as a pub-
lic services that requires efficiency in operating the system and fairness between potential
demands. Many researches employ maximal coverage objectives in dealing with EMS. This
approach is useful when there are clear coverage criteria. However, the maximal covering
approach treats services as binary; demand is either fully covered or not covered at all,
and the uncovered demand is not taken much into consideration. This represents a difficult
sacrifice for some people who are not covered. In many planning situations, existing ground
ambulances are already available, and thus, improving the service levels for low-accessibility
demands is the primary goal when introducing helicopter emergency systems. The pro-
posed minisum and minimax models can provide optimal locations considering with the
low-accessibility demands.

Various topics remain as subjects for future research work. One important one is to
construct models that consider the possibility that the nearest helicopter is in use. Another
goal is to devise sophisticated solution algorithms. Our model has many binary variables,
and efficient algorithms are required to solve such large problems.
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