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Abstract  We consider a stationary multi-class FIFO M/G/1 queue with exponential working vacations,
where a server works at two different processing rates. There are K classes of customers, and the arrival
rates and the distributions of the amount of service requirements of arriving customers depend on both
their customer classes and the server state. When the system becomes empty, the server takes a working
vacation, during which customers are served at processing rate v (v > 0). If the system is empty at the
end of the working vacation, the server takes another working vacation. On the other hand, if a customer is
being served at the end of the working vacation, the server switches its processing rate to one and continues
to serve customers in a preemptive-resume manner, until the system becomes empty. For this queue, we
derive various quantities of interest, including the Laplace-Stieltjes transforms of the actual waiting time
and sojourn time distributions, and the joint transform of the numbers of customers and the amounts
of unfinished work in respective classes. As by-products, we also obtain various results of a stationary
multi-class FIFO M/G/1 queue with Poisson disasters.
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1. Introduction

This paper considers a single-server queue with working vacations. In queues with working
vacations, the server takes a working vacation when the system becomes empty. Contrary
to ordinary vacations models, customers are served at processing rate vy (v > 0), which may
differ from the normal processing rate of one. If a customer is being served at the end of
the working vacation, the server switches its processing rate to one and continues to serve
customers, until the system becomes empty.

The queueing model with working vacations was first introduced in [9], as a model
of an access router in a reconfigurable wavelength division multiplexing (WDM) optical
access network. While each access router has its own wavelength, there are some additional
wavelengths that are shared among several access routers, and those additional wavelengths
are assigned to those access routers cyclically. A working vacation period then corresponds
to the situation that the access router has no additional wavelengths and the following
period with the normal processing rate of one corresponds to the situation that the access
router utilizes the additional wavelengths as well. In [9], an M/M/1 queue with exponential
working vacations is studied. In [5,6,14], the model of [9] is generalized to the M/G/1
queue.

In current communication networks, input traffic is usually a superposition of several
packet streams such as video, audio, and data traffic, which have different arrival rates and
packet length distributions. We thus consider a model with several classes of customers so
that such a feature can be incorporated.
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112 Y. Inoue & T. Takine

Note that queues with working vacations are also applicable to modeling a class of traffic
engineering schemes. For example, we consider the following scenario. The network system
provides a fixed, primary route for each destination. When packet transmissions start on
the primary path, the network system tries to find the lightly-loaded second path, and if
such a path is found after some delay (and the sender node still transmits packets), some
of packet streams served on the primary path will be re-routed to the second path. In this
scenario, the working vacation period corresponds to the interval during which the system is
seeking the second path, and the following normal service period corresponds to the interval
after re-routing. To model this scenario, we set 7 to be one, while the arrival rate in the
normal service period is less than that in the working vacation. We thus generalize the
conventional model with working vacations and assume that the arrival rate in the working
vacation and normal service periods may be different.

Past studies on the M/G/1 queues with working vacations take an approach that the
queue length process is analyzed first and then other performance measures of the model
are derived from the result of the queue length. Furthermore, to make the analysis of the
queue length simple, those studies assume the preemptive-repeat with resampling when
working vacations end, i.e., the server always restarts the ongoing service at the beginning
of normal service periods, where the new service time is resampled according to the service
time distribution. On the other hand, in our model, the server continues the ongoing service
at the beginning of a normal service period in a preemptive-resume manner.

In general, the queue length process in multi-class FIFO queues is not easy to analyze
directly [1,10]. Therefore, we first analyze the stationary amount of work in system and
obtain its LST. Using this result, we derive the joint LST of the attained waiting time [8] and
the remaining service requirement in terms of the LST of work in system. Because the server
has two different processing rates, the analysis of the attained waiting time distribution in
our model is not as simple as in [1,10]. This also makes the joint LST of the attained
waiting time and the remaining service requirement complicated. We classify the attained
waiting time into several cases, so that the formula for the joint LST of the attained waiting
time and the remaining service requirement is given in a comprehensible form.

Note that all waiting customers in the FIFO system arrived during the attained waiting
time [1, 10]. Based on this observation, we obtain the joint transform of the queue lengths
and the amounts of work in system in respective classes, which is the main result of this
paper. We also derive the LSTs of the stationary distributions of waiting time and sojourn
time and the joint transform of the length of a randomly chosen busy cycle and the number
of customers served in the cycle.

Owing to the independent and stationary increment of Poisson arrival processes, the
stationary system behavior conditioned that the server is on working vacation is equivalent
to that in the corresponding queue with disasters. Therefore, as by-products, we also obtain
various formulas for the multi-class FIFO M/G/1 queue with Poisson disasters.

The rest of this paper is organized as follows. In section 2, we describe the mathematical
model. In section 3, the stationary amount of work in system is analyzed. In section 4,
the actual waiting time and sojourn time distributions are analyzed. In section 5, we study
the joint distribution of the numbers of customers and the amounts of work in system in
respective classes. In section 6, we analyze the busy cycle. Finally, some concluding remarks
are provided in section 7.
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FIFO M/G/1 Queue with Working Vacations 113

2. Model

We consider a stationary multi-class FIFO M/G/1 queue with exponential working vaca-
tions. When the system becomes empty, the server takes a working vacation, during which
customers are served at processing rate vy (v > 0). If the system is empty at the end of
the working vacation, the server takes another working vacation. On the other hand, if a
customer is being served at the end of the working vacation, the server switches its process-
ing rate to one and continues to serve customers in a preemptive-resume manner, until the
system becomes empty. In what follows, we call time intervals during which customers are
served at processing rate one normal service periods. We assume that lengths of working
vacations are independent and identically distributed (i.i.d.) according to an exponential
distribution with parameter n (n > 0). Let V denote a random variable representing the
length of a randomly chosen working vacation.

There are K classes of customers, labeled one to K. Let K denote {1,2,..., K}. During
working vacation periods (resp. normal service periods), class k (k € K) customers arrive
according to a Poisson process at rate Awv  (resp. Axp k). Let Awy and Axp denote the total
arrival rates during working vacation periods and during normal service periods, respectively.

Awy = Z AWV ks Anp = Z ANP &

kek kek

where we assume Awy > 0 to avoid trivialities. The amounts of service requirements of
class k (k € K) customers who arrive during working vacation periods (resp. normal service
periods) are assumed to be i.i.d. according to a general distribution function Hywy k() (resp.
Hyp (). For each k (k € K), let Hyvy x (resp. Hyp ) denote a random variable represent-
ing the amount of the service requirement of a randomly chosen class k customer arriving
in working vacation periods (resp. normal service periods). We denote the Laplace-Stieltjes
transforms (LSTs) of Hyvy and Hypy (b € K) by hiyy . (s) and hgp . (s), respectively. Let
Hwv (resp. Hyp) denote a random variable representing the amount of the service require-
ment brought by a customer randomly chosen among those arriving in working vacation
periods (resp. normal service periods). We then define hjyy(s) and hip(s) as the LSTs of
Hwy and Hyp, respectively.

« AWVE . ANP k B
hwy (s) Z Ay by (), hxp(s Z hap o (S)-
ke ke

We define pwvy i and pxpi (B € K) as pwve = AwvpcE[Hwv k] and pnp i = Ane tE[Hyp k),
respectively. Let pwv = Zkelc pwv i and pnp = Zkelc pxp k- In what follows, we assume
pnp < 1. The service discipline is assumed to be FIFO, unless otherwise mentioned, and
services are nonpreemptive.

Remark 1. When n > 0, the system 1is stable if and only if pwv < oo and pnp < 1. To
see this, consider the length C' of an interval between successive starts of working vacations.
Note that the system is stable if and only if E[C] < oco. By definition, C' can be divided
into two parts, one of which is the length of a working vacation period Cywy with mean 1/n
and the other is the length of the following normal service period Cxp. Let ULy, denote the
total amount of work in system at the end of the working vacation period. If pwy < 0o and
pnp < 1, the stability of the system is ensured because E[Cxp] = E[U%]/(1 — pxp) and

~ 1  E[UE 1
4 [wv]<_+PWV/77

E|C] = < < 00,
[] n 1—pxp n 1—pxp
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where the first inequality comes from the fact that in every sample path, ULy, is bounded
above by the total amount of work brought in the working vacation period.

Conversely, if the system is stable, E[Ug] < oo holds, and therefore pwy < oo. Fur-

thermore, in an ordinary M/G/1 queue, the first passage time to the idle state with finite
wnitial workload is finite if and only if the traffic intensity is less than one. Therefore, we
have pwyv < oo and pnp < 1 if the system is stable.
Remark 2. If we ignore customer classes, the above model is reduced to a single-class
M/G/1 with exponential working vacations characterized by arrival rates Awy and Axp,
amounts of service requirements Hwp and Hxp, processing rate v during working vacation
periods, and exponential lengths of working vacation periods with mean 1/7.

3. Total Work in System

In this section, we discuss the total amount of work in system in steady state. Let U denote
the total amount of work in system. We define Uwy (resp. Unp) as the conditional total
amount of work in system given the server being on working vacation (resp. being in a
normal service period). Let u*(s), ulyy(s), and uip(s) denote the LSTs of U, Uwy, and
Unp, respectively. We then have

u*(s) = Pwv - uyyy(s) + Pp - unp(s), (1)

where Pyy (resp. Pyp) denotes the time-average probability of the server being on working
vacation (resp. being in a normal service period).

Let U, denote the total amount of work in system at the end of a working vacation. We
denote the LST of Uy by ujyy (s). Consider a censored workload process by removing
all normal service periods. In the resulting process, the ends of working vacations occur
according to a Poisson process with rate 1. Therefore, owing to PASTA [13], we have

uivve(s) = yy(s),  ElUgy] = E[Uwv]. (2)

We then have the following two lemmas, whose proofs are given in Appendices A and B,
respectively.

Lemma 1. ufp(s) is given by

* 1 - U:NV(S) *

§) = —">-u s), 3
where uyy ., (s) denotes the LST of the amount of work in system in an ordinary M/G/1
queue and it 1s given by

(1 —pnp)s
* f— * 4
U“M/G/l(s) s — Axp + Anphip(s) .

Lemma 2. Pyvy and Pxp are given by

]- - pNP PNP — TZE[UWV] (5)
1 — pnp + NE[Uwv]’ 1 — pxp + nE[Uwv]’

Pyy =

respectively.
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With Lemma 1, u*(s) is given in terms of ujyy (s) and E[Uwv].

1 — ufyy(s)
*(s) = Parv - Ut Pyp - —— WVAZ/
u*(s) = Pwv - uyyy(s) + Pxp SEUwy] urgjaya (), (6)

where Pyy and Pyp are given in (5).

We now characterize ujyy (s). Note here that the conditional total amount Uwy of work
in system is equivalent to that in the corresponding M/G/1 queue with Poisson disasters
[3,15]. Therefore we can readily obtain wuj(s) using the results in [3,15]. Note that a
similar observation with respect to the queue length has been made in [5] for a single-class
M/G/1 queue with exponential working vacations.

Lemma 3. ujyy(s) and E[Uwy] are given by

L= v)s—n/y EUw] = 20 ()

s — Awv/7 + Awv/7) Ry (s) —n/v’ n

Uy (s) =

respectively, where v denotes the conditional steady state probability that the server is busy
giwen that it is on working vacation. Note that v is given by

. (1 — T))\WV
S IS W (®)

where v (r > 0) denotes the unique real root of the following equation.

z = hj\}vv(n/Y + Awv /v — (/\WV/V)Z)a 2] < 1. 9)

The proof of Lemma 3 is given in Appendix C.

Remark 3 (Remark 2.2 in [15]). The solution r of (9) represents the probability that a
randomly chosen busy period starting in a working vacation ends within the working vacation.
To see this, consider an M/G/1 queue with arrival rate Awv, the LST hiy(s) of service
requirements of customers, and the processing rate . The LST 6*(s) of the lengths of busy
periods is then given by 0*(s) = hiyv(s/v + Awv/v — (Awv/7)0%(s)). Comparing this with
(9), we have r = 6*(n) > 0.

Rearranging terms on the right side of ujy (s) in (7) yields

. B 1—v
uyy(s) = 1o (o) Fo(s) (10)
where fi(s) is given by
Five(s) = o) =1 (1)

(v /Awv){n/y + Awv /v — Awv/y)r — s}

Remark 4. Theorem 2 in [3] shows that f{;vv(s) represents the LST of the remaining service
requirement Fywy of a randomly chosen customer present in working vacation periods when
customers are served on a LIFO preemptive resume basis. Note that (7) and (10) imply

1—v 1—v pwv —v

E[FW\/] == . E[UW\/] = v 77

(12)
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Theorem 1. u*(s) is given by

w(5) = i (5) (Pwv P ) u;m/l(s)) 7 (13

where uy; /1 (5), Wy (S), Firv(s), and E[Fwy| are given by (4), (7), (11), and (12), respec-
tively, and Pywv and Pxp are given by

Hvv = 1—PN11>+ZI\\§V—7V7 e = 1—Pfrlvj‘ PVZ\I//—WV 14
respectively.
Proof. 1t follows from (10) and (12) that
1 — ufyy (s 1—v 1 — fiyv(s 1 — fiyv(s
O " T el T e O
Substituting (15) into (6) yields (13). Further (14) follows from (5) and (7). O

Remark 5. Theorem 1 shows that U 1is stochastically decomposed into two independent
nonnegative random variables, i.e., U = Uwvy + Uy, where the LST of non-negative random
variable Uy is given by

1— fyv(s)
w(s) = Pwy + Pyp - ——— VA7 s).
) = P+ P B

4. Waiting Time and Sojourn Time

In this section, we consider the actual waiting time and sojourn time distributions of class
k (k € K) customers in steady state, assuming the FIFO service discipline. Let Wy, (k € K)
denote the waiting time of a randomly chosen class k customer. For each k (k € K), we
define Wyyy i (resp. Wxpy) as the waiting time of a randomly chosen class k customer
arriving in a working vacation period (resp. a normal service period). Let wj(s), wiyy 1 (s),
and wip (s) (k € K) denote the LSTs of Wy, Wiy, and Wxp x, respectively. Similarly,
let Qr (k € K) denote the stationary sojourn time of class k customers. For each k (k € K),
we define Qwv r (resp. @Qnp k) as the sojourn time of a randomly chosen class k customer
arriving in a working vacation period (resp. a normal service period). Let ¢;(s), qiyy 1 (5),
and qxp 4 (s) (k € K) denote the LSTs of Qr, Qwv k, and Qp x, respectively.

For each k (k € K), we define Py (resp. Pip,) as the probability that a randomly
chosen class k customer finds the server being on working vacation (resp. being in a normal
service period) upon arrival. By definition, wj(s) and ¢;(s) (k € K) are given by

* A * *
wi(s) = Py g - Wiy x(8) + P1\/?P,k “wip x(8), (16)
* A * A *
01(5) = Pyv i - Gwvi(8) + Pap g dap (9), (17)
respectively. Because class k customers arrive according to a Poisson process with rate

. . . . . . . A
Awv r during working vacation periods and rate Axp during normal service periods, Py i
and Pgp, satisfy

A
Pavie  AwviePwv

= .
Plp s, Anp k- Prp
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Therefore, using PVAVV,k + Pb[?P,k = 1, we obtain

pA  _ Awv e Pwv _ Awv k(1 — pnp) (18)
WAk AwvePawv + Axe e Pae Awvia(l — pxp) + Ane s (pwy — 71/)7
e Prp ANPE(PWYV — TV
Pl = - ( ) (19)

AwviPawv + A rPrr Awvie(l — pae) + Avps(pwy — v)°

Both W}, and Q (k € K) are considered as the processing time of a certain amount
of work. More specifically, Wy (k € K) corresponds to the stationary processing time of
work in system seen by an arriving customer of class k. On the other hand, @y (k € K)
corresponds to the stationary processing time of the sum of work in system seen by an
arriving customer of class k& and his/her service requirement. To treat Wy and @ in a
unified way, we define Twv(Ux) (resp. Tnp(Ux)) as the processing time of the amount Ux
of work conditioned that the server is on working vacation (resp. in a normal service period)
when its processing starts, where Ux is assumed to be a nonnegative random variable
whose distribution function and LST are given by Ux(z) and u%(s), respectively. Because
the processing rate in Twy(Ux) may change from v to one, we divide Tyy(Ux) into two
parts, T\gg\)/(UX) and T\%{,(UX), where T\gg\),(UX) (resp. T\E\R,(UX)) is defined as the length
of a subinterval in Tywv(Uyx), during which the processing rate is equal to 7 (resp. one).
By definition, Tywy(Uyx) = TS (Ux) 4+ TS (Uy), where T (Ux) > 0 for Uy > 0, and
T\g\%(Ux) > 0. We then define ¢jyy (w, s | Ux) and ¢xp(s | Ux) as

wy(w, s [ Ux)=E [efwT‘(’a\)/(UX)e*STV(Vli’(UX)} . Skp(s| Ux) =E [e )]

respectively.
Lemma 4. ¢{iy (w,s | Ux) and ¢ip(s | Ux) are given by

One(s | Ux) = ux(s),

. wi(s) —ug (0
vt |00 =5 (10 + +n<>/v7 >}

respectively.

Proof. We first consider ¢xp(s | Ux). When the processing of Ux starts in a normal
service period, the processing rate is fixed to one throughout its processing. We then have
Tnp(Ux) = Ux/1, from which ¢§p(s | Ux) = u’(s) follows. On the other hand, when the
processing of Uy starts in a working vacation period, we have

UX = UX
(_70)7 ‘/S >,
(TR (Ux) TR (Ux) = "

(‘N/SaUX _,V"V/S)a ‘N/S S Ta

where Vi denotes the remaining length of the working vacation when the processing starts.
Owing to the memoryless property of the exponential distribution, Vs is exponentially dis-
tributed with parameter 1. We then have

e~ @) | g=w(@/v)

(s | Ux) = / AU ()
0
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n(z/v) ne ~"mdr —wT ,—s(xz—T)
—l—{ } / T €€ , (20)

from which the expression of ¢ (w, s | Ux) follows. O
Using Lemma 4, E[T\SJ\),(UX)], E[T\%)V(UX)], and E[Txp(Ux)] are obtained to be

B [T000)] = (1) iy T o (0,0 | )] = =502, (21)

B [T (00)] = (1) iy 165000, U] = ElO] =7 2500 o)

E[Txe(Ux)] = E[Ux]. (23)

We now turn our attention to the waiting time distribution. Consider the censored
process obtained by removing all normal service periods. In the resulting process, class k
customers arrive according to a Poisson process. Owing to PASTA, the conditional amount
of work in system seen by a randomly chosen class k customer arriving in a working vacation
period has the same distribution as Uwy. Therefore the conditional waiting time distribu-
tions are identical among classes. Similarly, the conditional amount of work in system seen
by class k (k € K) customers arriving in normal service periods has the same distribution
as Uxp. Thus, the conditional waiting time distributions are also identical among classes.

Let W\g\;’z, (resp. W\g\%) denote the length of an interval during which a randomly chosen
customer waits for his/her service in a working vacation period (resp. normal service period),
given that the customer arrived in the working vacation period. By definition, Wy =
W\%}Y\)/ + W\%R, for all k£ (k € K). Also, let Wxp denote the conditional waiting time of a
randomly chosen customer given that the customer arrives in a normal service period. We
then define wijy (w, s) as the joint LST E[exp(—wW\g\?\),) exp(—sW\g&\),)] of W\gg\), and W\g\%,
and wip(s) as the LST of Wyp.

Theorem 2. wiyy(w,s) and wip(s) are given by

Wi (5) — 10k <°"_+77)
i) =iy () + T wils) = i)
o] (v/mi(w +n)/v - s}
respectively.
Proof. By definition, wiiy (w,s) = ¢y (w,s | Uwy) and wip(s) = ¢xp(s | Unp), so that
Theorem 2 immediately follows from Lemma 4. O

Because Wy i = W\g\% + W\%R, and Wyp . = Wyp for all k (k € K),

w{'}vv’k(s) = wiyy (s, 8), wltlp,k(s) = wyp(s), Vkelk.

Thus the LST wi(s) (k € K) of the waiting time distribution of class k customers is obtained
by (16). In particular, the mean waiting time is given by

E[Wk] = P\?/V,k ) (1 — 7)(1 _nUTNV(n/PY)) + E[UWV] + PI\Z?P,k ) E[UNP]7
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where E[Unp| denotes the mean amount of conditional work in system given the system
being in a normal service period and it is obtained from (3) and Lemma 3.

E[Unp] = 29V~ AwvE[H] )‘NPE[HI%IP]‘
U 2(pwv —v) - 2(1 = pxp)

Next we consider the sojourn time distribution. For each k (k € K), let QE,?,)V,C (resp.
Q%,[l,)v’ ) denote the length of time during which a randomly chosen class k customer spends
in a working vacation period (resp. a normal service period), given that the customer arrives
in the working vacation period. By definition, Qw\,k > 0, Q%)Vk >0, and Qwv i = Q&Z,)V’k+
Q%)Vk We define gy . (w, s) (k € K) as the joint LST E[exp(—wQ&,)V’k) exp(—sQ%)V’k)] of

%)Vk and Q%)wk, and qxp ,(s) (k € K) as the LST of Qnp 4.
Theorem 3. ¢y . (w,s) and qp ;. (s) (k € K) are given by

QWv7k(W>3):Uwv T 'hWV,k T

Uy () - WV,k(S)_uWV T vk T

" (/) {(@ + )/ — s} ’

*

QItIP,k(S) = uxp(s) - hNP,k(S)a
respectively.

Proof. By definition, ¢y (w,s) = dwy(w,s | Uwv + Hwyi), and ¢ip,(s) = oxp(s |
Uxp + Hxp ). Theorem 3 then follows from Lemma 4. O

Note that ¢y () = Gy i(5,5) (k € K). Thus the LST g;(s) (k € K) of the sojourn
time distribution of class k customers is obtained by (17). In particular, the mean sojourn
time is given by

E[Qr] = Pv/?/v,k -E[Qwv i) + Pl\/?P,k - E[Qnp.k)s

where

E[Quwvi] = (1—(1— U%v;n/'y)h*wv,k(n/v)) .

E[@Qnpx] = E[Unp| + E[Hxp k).

E[Uwv]| + E[Hwv k],

5. Joint Distribution of Queue Lengths and Work in System

In this section, we consider the joint distribution of the numbers of customers and the
amounts of work in system in respective classes. To do so, we first derive the joint LST
of the attained waiting time and the remaining amount of service requirement of a class k
customer being served. With this result, the joint distributions are derived.

For each k (k € K), let a\(}%’k (resp. U%)V, ) denote the time-average probability that class
k customers, who arrived in working vacation periods, are being served in working vacation
periods (resp. in normal service periods). Also, let 01(\11}))7,C (k € K) denote the time-average

probability that class k£ customers arriving in normal service periods are being served.
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120 Y. Inoue & T. Takine

Lemma 5. J\(,%,k, ‘7&7)\/,w and Jl(qlf))yk (k € K) are given by

") Awv.k (1= By (/7))

o 7 24
UWV,k wv -V /\WV(l — h*wv<7]/’}/)) ( )
Mwv (1= By 1 (1/7))
" WV k WV, k
o0~ P - pwrs — - " : (25)
WV, k WV wv, )\W\/(l - hwv(n/'y))
Nk = Pre - pxp s 20)

respectively.

The proof of Lemma 5 is given in Appendix D.

Remark 6. Let o denote the utilization factor, i.e., the time-average probability that cus-
tomers are being served. Recall that v in (8) represents the conditional probability of the
server being busy given that the server is on working vacation. We then have

(1 — pnp)v + pwy — YV

c=1—-—Pyyv-(1—v)=Pyv-v+ Pxp =
W )= Pav W 1 = pxp + pwy — v

Furthermore, using Lemma 5, we can verify

1 1
ZJ\(Ig)\/,k = Pwv - v, Z(Ué\/)\/,k—’—gl(\l})’,k) = Pxp.
kel kek

We now consider the attained waiting time [8], which is defined as the length of time
spent by a customer being served (if any) in the system. When the system is empty, the
attained waiting time is defined to be zero. Note that under the FIFO service discipline, all
waiting customers in the system arrived during the attained waiting time.

For later use, we divide the attained waiting time into two parts: One is the (sub)interval
in working vacation periods and the other is the (sub)interval in normal service periods. Let
A%?,)Vk (k € K) denote the length of time in the attained waiting time, during which the
server was on working vacation, given that a class k customer is being served. Furthermore,
for each k (k € K), let A&,)Vk (resp. A§%7k) denote the length of time in the attained
waiting time, during which the server worked in a normal service period, given that a class
k customer, who arrived in a working vacation period (resp. a normal service period), is
being served. For a class k (k € K) customer being served, let H, denote the remaining
amount of his/her service requirement. We then define the following joint LSTs:

_ A(’Y) _ [y
a{‘i;v WVk:(wk7 @k) =E |:e Wk AW,k o~k

a class k customer is being served
at processing rate 7y ’

. a class k customer, who arrived
N

—wi A —sp AL A . . . . .
AWV ke TR AwWvike ek Hk | ip a working vacation period, is ,

*ok ok _
awv,NP,k(Wka syop) = E e
being served at processing rate one

—a A
a§*P7k(Sk7@k) :E|:€ SkENP ko a Hy,

a class k customer, who arrived in a
normal service period, is being served |’

See Figures 1-4, where Figure 1 corresponds to aigy w & (Wk, o), Figures 2 and 3 correspond
to aiiy np ok (W, Sky i), and Figure 4 corresponds to alp (s, ax)-

Moreover, for each k (k € K), let H&;{,k (resp. H%{,k) denote the lengths of time during
which a class k customer, who started his/her service in a working vacation period, is served
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remaining service requirement

I |
' waiting
i time i elapsed service time ET H,
1 | 1
A | i .
| b time
|
arrival ! | Ag;%’k \
| DU
() ()
WV\;YV HV\’/YV

Figure 1: Attained waiting time of a class k& customer in a working vacation period

during the working vacation period (resp. the subsequent normal service period). We then
define higy ,(w, s) as the joint LST of H\(,gi,k and Hf,é{,k Using Lemma 4, we obtain

A () (1)
iy i, 5) = B [0k ) = ity (w5 | Hivv.a)

w+n

WA hikzvv,k(s) - h@vv,k (T>
Y ) B e V(P y v

We then have the following theorem, whose proof is provided in Appendix E.

= hikzvv,k <

Theorem 4. aiiy wy i (We, k), G xp gk (Whs Sk k), and aXp (sk, ) are given by

Wr + Wr +
<1/n>uew( = ”) hzw,mk)—hzw,k( = ”)

awy,wv e (Wh, k) = : — (27)
BlQWe - Wik, O/mileesn)/y -l
ook 1 * Wi + 1 ﬁ:}\);V,k (wa ak) - il)\kﬂ);V,k (wkv Sk)
aWV,NP,k<wk75k7ak) = ) ) Uy . — o
E [QWV,k - WWV,k} ko Tk
WY WY Y h@vv,k@‘k) - h{}vv,k(sk)
: , (28)
(v/m{(we +n) /v — s} Sk —
ok X A (an) — hip i (sk)
aNP,k(Sk> ar) = uyp(sk) - 7 ’ (29)

E[HNP,k](Sk - Oék) 7

respectively, where E| %)Vk - W\SJ\),,C] and E[Q&,)Vk - W\S\R,k] are given in (47) and (48),
respectively.

With Theorems 2, 3, and 4, we can verify that aigy wy ,(Wk, ax) and aiyy xp g (Wrs Sk, Q)
are represented in terms of wiyy (w, s) and giyy 4 (w, 5).
Corollary 1. ayy wy i (W, ) and agy; xp (W, Sk, ) are given by

wigy (W, O‘k)h*wv,k(ak) — dwWv i (W, k)

(Wi = 700)E | QWY — WA

9

aé\iv,wv,k (Wky o) =
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remaining service requirement

| waiting -
| time elapsed service time \=7F
I ! | I\
A . | b :
! | t - time
i () O
arrival | . AVA\;V, A LAy ! !
| |
I I | |
. X (1) X
LW L HR D Hwwve
| | | 1
|

working vacation period  normal service period

Figure 2: Attained waiting time of a class k customer who started his/her service in a
working vacation period and will end his/her service in a normal service period

remaining service requirement

I
relapsed -
L AR Hy,
waiting time service time N\
5 ! ! 1 .
\ i ! o time
| ! !
: (y) i (1) [
arrival | AV’\)}V, k : "?WV,I@ | :
I
I | | [
1 1 1 1
LW W Hgye !
' | | 1
|

working vacation period  normal service period

Figure 3: Attained waiting time of a class k customer who arrived in a working vacation
period and started his/her service in a normal service period

remaining service requirement

elapsed

waiting time service time

time

arrival AS%. i
P,

%N Hynp

Figure 4: Attained waiting time of a class k customer who arrived in a normal service period
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ok

awv,NP,k(Wk> Sk, (k)
(Wi (W sk) — Wiy (Whs k) By (k) — (@ 1 (@hs 55) — Gy 1 (Wrs i)

o 1 1 ’
(sk — a)E |:Q§N)Vk: - W\szzk}

respectively.

Let Ly (resp. Lypi) (k € K) denote the number of class k customers in the system,
who arrived during working vacation periods (resp. normal service periods). Also, let Uwv,k
(resp. Uxpx) (kK € K) denote the amount of work in system, which is brought by class k
customers who arrived during working vacation periods (resp. normal service periods). We
then define the joint transform ¥ (zwv, zxp, Swv, Sxp) as

L L _ 7 _ 7
U(zwv, znp, Swv, Sxp) = E [H (Zw‘wék Canp e WAV e SNP”“UNP”“>] ;

kek
where zwy = (Zwv,h ZWV,25 -+ - - 7ZWV,K)7 ZNP = (ZNP,la ZNP,2y - - - 7ZNP,K)> Swv = (Swv,h
SWvV,2, - - - 75WV,K)7 and syp = <5NP,17 SNP,2y « + + 5 SNP,K)-

Theorem 5. )(zwv, 2Np, Swv, SNp) 1S given by

¢(ZWV> ZNP; SWV, SNP)

i (’Y) *ok *
= (1= v)Pwv + > _ 2wvaoyx@ivwve ( D [Awvi — Awvizwv.ilivy i (swva)], swv
ke €K

(1) *kk *
+ E :ZWV,kUwv,kawv,NP,k E P‘WV,i - )‘WV,izWV,ihwv,i(SWV,i)]a

kek iek
3
g [)\NP,z’ - /\NP,iZNP,ihNP,Z‘(SNP,i)} ) 3WV,k>
iek
n ax A A R
+ ANP,kONP kONP & [ NP, — ANP,i?NP NP7i<SNP,i)}75NP,k .
kek i€k

Proof. Note first that the system is empty with probability 1 — o = (1 — v)Pwv (see
Remark 6). Furthermore, when a customer is being served, all waiting customers arrived
during the attained waiting time, as noted at the beginning of this section. Theorem 5
immediately follows from those observations. O]

Remark 7. Let Ly (resp. Lup) denote the total number of customers in the system, who
arrived during working vacation periods (resp. normal service periods). Also, let Uy (Tesp.
Uxp) denote the total amount of work in system, which was brought by customers who arrived
during working vacation periods (resp. normal service periods). As stated in Remark 2, we
can obtain those by considering the single-class system with Awv, hiv(s), Axp, and hip(s).
Therefore Theorem 5 also provides the formula for the joint transform of Lwv, Lnp, Uwv,
and Uxp implicitly, because it corresponds the case of K = 1.

Taking the partial derivatives of (zwv, 2xp, Swv, Sxp), we can obtain the moments of
Lwv k, Lxp g, Uwvg, and Uxp g (k € K). In particular, we have

E[Lwv ] = AwviPwv - E[Qwv i), E[Lxp 4] = Anp i Pyp - E[Qnp i),
_ E[HZv,] 1

ElUwv.k| = Pwvpwv k (E[Uwv] + W% + 5) - % (Ug\y/)\/,k + UE}\?\/,k) :
) B[HZ, ]

E[Uxpx] = Pxppone i (Wm + E[UNP]) .
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6. Busy Cycle

The busy cycle is defined as the interval between ends of successive busy periods. In order
to analyze the busy cycle and related quantities, we first consider the first passage time to
the empty system. More specifically, we define Fyyy (resp. Fyp) as the first passage time
to the empty system given that the server is on working vacation (resp. in a normal service
period) at time 0. We divide Fyyy into two parts: F\g\y\), and F\%i,, where F\g\?\), (resp. F\%%,)
denotes the length of a subinterval during which the server is on working vacation (resp.
in a normal service period). By definition, Fyy = F\S\}Q, + F\g\}i, Furthermore, for each k
(k € K), we define N\(,;,Q,k (resp. N\%{, ) as the number of class k customers arriving in F\SJQ,

(resp. F\g&z, ). Similarly, we define Nxp i (k € K) as the number of class k customers arriving
in Fxp. Let S(t) (t > 0) denote the state of the server at time ¢, i.e., and S(t) = WV if the
server is on working vacation at time ¢, and otherwise S(t) = NP. We define U(t) (t > 0)
as the total amount of unfinished work at time t. We are interested in the following joint
transforms.

Gwv(zwv, 2xp, swv, snp | 7)

(v) (1)
kex

U(0) = 2, 5(0) = WV

)

U(0) = z, S(0) = NP

Y

(p(znp,snp | 2) = E [( zﬁg};k) . emsNeFe

kek

where zwv = (2wv,1, 2wv,2, - - -, 2wv, k) and 2np = (2xp1, 2NP,2; - - -, 2NP,K )
Lemma 6. ({p(2np, snp | @) is given by

CKIP(ZNP, SNP | 33) = e_fBItIP(ZvasNP)-Z" (30)

where Bip(znp, Snp) 18 defined as

Bip(znp, snp) = snp + Anp — Z ZNP,k)\NP,k/ Cp(znps snp | y)dHnp k(y), (31)
kek 0

and it is given by

Bip(zxp, swp) = snp + Avp — Z anp g ANe kI g (B (2p, sxp)) - (32)
kek

The proof of Lemma 6 is given in Appendix F.

Next, we consider the joint transform Gy (zwv, 2np, Swy, Snp | ). Given S(0) = WV,
let Ty denote the time instant when the server ends the current working vacation for the first
time after time 0. Because of the memoryless property, Ty, is exponentially distributed with
parameter 7. We classify the first passage time Fyy to the empty system into two cases,
Fwy < Ty and Fwy > Ty, and we define (v o(2wv, swv | 2) and iy g(2wv, swv, a | 2)
as

U(0) ==,5(0) = WV, Fyy < Ty |,

; NGR =G0
CWV,C<zWV; Swv ‘ JJ) =E Wy A e SwWV gy
kel

Cévv,E(Zwv, swv, a | 1)
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=E

)

()
( é&) LoV L oV | 7(0) = 2, S(0) = WV, Fyyy > Ty
ke

respectively. Note here that (30) implies

(1)
ke
—E [( IJ\TVgFl;k> . e—SNPFNP
kex

= CKIP(ZNP7 SNP | y) = @_B;TP(ZNvaNP)y

U(O) = .T,S(O) = WV,FWV > Tv,U<Tv) = y]

U(0) =y, 5(0) = NP

We then have

Gwv(zwv, 2xp, swv, sne | 7)
= Pop - Gv.o(Zwvs swy | ©) + Paje - Giv n(Zwvs swv, B5p(2xe, swe) | 2),  (33)

where Pgj, and Pg|, are defined as

PC|z = PI‘(FWV < TV | U(O) = LIZ’,S(O)
Pgjp = Pr(Fwy > Ty | U(0) = 2,5(0)

WV),
WV).

Lemma 7. The following equations hold.

) _ e—ﬁ%v,c(zwvvswv)l‘

) (34)

e~ o e—ﬁ\ﬁvv,c(zwv,swv)ﬂc

Poje - Gwv.c(z2wy, swy | 2

Pgje - Gyv 2wy, swyv, a | 1) = - Bwv e(2wv, swv, @), (35)

Bivv.c(zwv,; swy) —
where By o(2wv, swv) and By g(2wv, swv, @) are defined as

* SWv n Awv
B Zwv,Swyv) = —+ -+ —
wvcl ) po e

2WV kA =
-y Awvadwv / Peyy - Gvv.c(2wv, swv | 9)dHwyi(y),  (36)
kel " 0

ﬁévv,E(sz, swv, @) = 1n/v

z )\ > *
+ Z w / PE|y . CWV,E(ZWV’ Swv, & | y)dHWV,k(y)a (37)
kek 0

and they satisfy

swv N Awy ZWVEAWV.E 4 .
Bive(zwy, swy) = — + =+ —— = » == iy 1 (Bivv.c(zwv, swy)), (38)
7 7 7 ek
B (2w, Swv, @) = n Z 2wy k:)\WV k héVV,k(a/) — Iy i (Bivv.c(Zwv, swy))
WVLE ’ ’ gl Biwvv.c(zwv, swy) — a

kek
: ﬁéVV,E(ZWVa swv,@). (39)
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The proof of Lemma 7 is given in Appendix G.
It follows from (33), (34), and (35) that (v (2wv, 2np, Swv, Snp | ) is given by
Givv (2w, 2xp, swy, sap | @) = e Pvvclwvswy)r
e~ Pip(zNp.sNp)T _ e_ﬁ\*;v\/'yc(zWV7SWV)a’,

* - By Zwv, Swv, Byp(2np, Sxp)).
6%\7V,C<ZWV7 SWV) - 61§p(ZNP, SNP) WV’E< ’ ’ NP( ) ))

With (36) and (37), we define Swv ¢ and Swyr as

Bwv,c = Byv.c(1,0), Bwv.e = Bwvr(1,0,0),

where 1 denotes a vector whose elements are all equal to one.
Lemma 8. fwv c and fwyv e are given by

N
Bwv.c = Bwv.e = 117#,
— UV

and Pcj, and Pgj, are given by
PCla: = e—ﬁwv,cw’ PE|:1: —1— ¢ Pwvee

The proof of Lemma 8 is given in Appendix H.

(40)

(41)

(42)

We now consider the busy cycle. Recall that the server is always on working vacation at
the beginning of busy cycle. Let © denote the length of a randomly chosen busy cycle. We
divide © into two parts, and let ©) (resp. ©V) denote the length of the subinterval during
which the server is on working vacation (resp. in a normal service period). Furthermore,

we divide ©0) into two parts, and let @g) (resp. @g )) denote the length of the subinterval
during which the server is idle (resp. busy). By definition, © = @Q) + @](; ) +©W. For each
k(ke€K),let N ,5’” (resp. N, ,51)) denote the number of class k customers arriving during @)

(resp. ©). We then define the joint transform of those quantities as follows.
TCON e
N N, —_we _ o _snpO)
9*(Zwv,ZNP,W,3WV73NP) =E [(H ZWkV,k . ZNf’,k) .eTWOR L eTSWVOR' | o TSNP
kek

By definition, 0*(zwv, 2xp, w, Swv, Sxp) satisfies

*
6 (ZW\/’ZNP;WaSWV;SNP)
o Awy Z ZWV AWV
w + /\WV

/ Gwv (2wv, 2np, swv, sap | ¥)dHwy ik (y)-
0

A
kek WV

Therefore, with (40), we obtain the following theorem.

Theorem 6. 0*(zwv, 2xp, W, Swv, SNp) S given by

Awv Z ZWV EAWV &
w + >\WV

0" (zwv, 2Np, W, SWv, SNP) = [hikzvv,k (ﬁévv,c(zwv, SWV))

A
kek wv

hTNV,k (B%p(2np, SnP)) — h*WV,k (Bikzvv,c (2wv, SWV))

Bivv.c(zwv, swv) — Bip(2xp, sxp)
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Remark 8. It is clear from the derivation of Theorem 6 that

Pr(A randomly chosen busy period ends while the server is on working vacation)

. Awv AWV &
A p— ;C oy WV (5wv,c( ,0)) wv(Bwv,c) =T,

where we use (53). This result is consistent with Remark 3. Furthermore, using (38) and
(39), we obtain an alternative expression for 0*(zwv, Znp, W, Swv, SNP)-

)\WV |: 1
w + >\WV

0" (zwv, 2np, W, Swv, Sxp) = {SWV + Awv — 75$Vv,c(zwv, SWv)

Awv

+vBwv E (Zwv, swv, Bxp(2np, snp)) }} :

Taking the partial derivatives of 0*(zwv, 2xp, W, Swv, Sxp), We can obtain the moments
of Név)a N,ﬁ”, @](37), and ©W. In particular,

— 1 B
E[NISY)] = AWV (/\— + E[@g)]) : E[N,El)] = \vpy - E[OW],
Y%
poy) = e 1 o) _ (g _py. By

NAwv  Awv 1—pxp

7. Concluding Remarks

We considered the stationary multi-class FIFO M/G/1 queue with exponential working
vacations. We derived the LST of the stationary work in system, and the LSTs of the
stationary waiting time and sojourn time in each class. We also obtained the joint transform
for the queue lengths and the amounts of work in system in respective classes and the
joint transform associated with the busy cycle. Before closing this paper, we provide some
remarks.

As stated in section 1, if we delete time intervals in normal service periods from the
time axis, the resulting process can be viewed as a multi-class FIFO M/G/1 queue with
Poisson disasters, where the processing rate is equal to 7. Because queues with disasters
are of independent interest, Appendix I summarizes the analytical results for the multi-class
FIFO M/G/1 queue with Poisson disasters, all of which are immediately obtained from the
results in this paper.

In queueing models with working vacations, the processing rate is always equal to v when
the system becomes empty. In other words, the queue length process directly affects the
processing rate. From this point of view, the queueing model with working vacations differs
from the queueing model embedded in a random environment (i.e., the processing rate is
assumed to change according to an underlying environmental process). More specifically,
we can see the difference between these two models by considering a special case of our
model, where the processing rate is proportional to the arrival rate and comparing it to the
corresponding queue embedded in a random environment of a two-state Markov chain. In
the latter, the stationary number of customers in the system is independent of the underlying
Markov chain and its conditional distribution given a specific state of the Markov chain is
the same as that of the ordinary M/G/1 queue (Section 6 in [11]). On the other hand, it is
verified that the model we considered does not have such a property. Thus, the queueing
model with working vacation is essentially different from the queueing model embedded in
a random environmental process.
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Appendix
A. Proof of Lemma 1

We define Ugp as the total amount of work in system at the beginning of a normal service
period. Note that Ufp is a conditional random variable of U, given that the server is busy
at the end of a working vacation. Let u{p (s) denote the LST of Ufp. We then have

“tzvv,E<5) - Pr<U\}ZEVV =0)
1— Pr(U\];:vv =0) ’

uxpp(s) =B [G_SU‘];:W

Ul > 0] = (43)

E [USy
B[0] = e (44

Consider a censored workload process by removing all working vacation periods from the
time axis. In steady state, the censored process has the same distribution as Uxp. Also, the
censored process can be viewed as the conditional workload process of the M/G/1 vacation
queue with exhaustive services, given that the server is busy. Therefore, it follows from (5.6)
in [2] that uip(s) is given by

W (s) I ultIP,B(S) o (s)
Ne\S) = T ETB [U5,] M/G/1\S)-
Note here that (2), (43), and (44) imply

1 - ultIP,B(S) _ 1- u@VV,E(S) _ 1 — ujyy(s)
sE [URp] sE [Ugy] sE[Uwy]

which completes the proof.

B. Proof of Lemma 2

We regard an interval between successive ends of working vacations as a cycle. Let Cywy
(resp. Cnp) denote the length of an interval during which the server is on working vacation
(resp. in a normal service period) in a randomly chosen cycle. Owing to the renewal reward
theorem, we have

_ E[CWV] . E[CNP}
v = E[Cwv] + E[Cxp]’ i E[Cwv] + E[Cxp]

(45)

Because Cyyy is equivalent to the working vacation length V', we have E[Cywv] = E[V]. On
the other hand, E[Cxp| equals to the mean first passage time to the empty system in the
corresponding ordinary M/G/1 queue with initial workload of Ugp. Noting that Cxp = 0 if
the system is empty at the end of the working vacation, we have

E[U%]  E[Uwy]

E[Cxp] = Pr(Uy = 0) - 0+ {1 = Pr(Uy = 0)} - 7 e 1= pup

(46)
where we use (2) and (44). (5) now follows from (45), (46), and E[Cwy] = E[V] = 1/7.
C. Proof of Lemma 3

The censored process obtained by removing all normal service periods is considered as an
M/G/1 queue with Poisson disasters with rate 7, where the system becomes empty when
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disasters occur. The M/G/1 queue with Poisson disasters has already been studied in [3, 15],
where the processing rate is assumed to be one. In order to apply the results in [3,15] to
our system, we consider the new process created by extending the time axis of the workload
process in working vacation periods 7 times so that the processing rate becomes one. Note
that the time-average quantities of the new censored process are identical to those of the
original process. In the new process, the arrival rate of customers is equal to Awy /v and
lengths of working vacations are exponentially distributed with parameter /7. uiy(s) in
(7) then immediately follows from Proposition 1 in [3]. We also obtain (8) by substituting 0
to the repair time in (2.1a) in [15]. The existence of the unique real root of (9) is shown in
Remark 2.2 in [15]. See Remark 3 for the positivity of r. Furthermore, taking the derivative
of ulyy(s) in (7) and evaluating at s = 0 yields E[Uwv]| in (7).

D. Proof of Lemma 5

We first consider a\%{,,k. Note that all customers being served in working vacation peri-

ods arrived during working vacation periods. Thus, from Little’s law, we have a\(,'&)v =

Awv i Pwvy - EJ W)Vk - W\gg\)/] Furthermore, with Lemma 3 and (21), E[ %Wk - WVJ\),]
obtained to be

E @v K W\ng] =E [T\SJ\)/(UWV + va,k)] —E [Tv%(Uwv)}
wiy (/7)) (1 =By (/7)) v 1= hiyvr(n/7)

— ? — . " ? , (47)
U Awv 1= hiyy(n/7)
from which (24) follows.
Similarly, 0\(,3,)\,7,6 follows from 0%)\/,1: = AwviPwv - E[ &,)Vk — W\&R,] and
E | QWi — W\%%/] =E [T\%i/(UWV + va,k:)] —E [Tv%)v(Uwv)}
1 _ *
_ E[HWV,k] L Wv,k(n/’Y) (48)

v L= (n/r)

Finally, we consider afw), x- Note that all customers arriving in normal service periods

are served in normal service periods. Therefore aﬁ}ll’k = ApiPxp - E[Hnpi] = Pap - pNpks
from which (26) follows.

E. Proof of Theorem 4

We first consider (27). Suppose a class k (k € K) customer is being served at processing
rate v (i.e., in a working vacation period). Note here that

ElQW x — Wigval

() () ")
E — Wl Q — Wt >0
[ wWv.kE — YWvk | WV,E— YWV k | = Wiy (n/7)

We thus have

awV,WV,k(wkv )

% wr+1n
1 Uy ~
COEQW .~ WaL ww(/7)
uyy (n/7)
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o0 x/'y .’L‘/’y T
. / dHopy 1 () lemx/v) / okt gmon(e—t) gy / e~ dr / ewkteaamt)dt],
0 0 0 0

from which (27) follows.

Next we consider (28). Suppose a class k (k € K) customer, who arrived in a working
vacation period, is being served at processing rate one (i.e., in a normal service period). We
then have

1 1
E[QWy s — Wl

go® w1 o0 _wd < - '
[QWV,k WV k | QWV,k WV .k ] 1 — U%V(U/V)h%v,k(ﬁ/V)

Therefore
awy NPk (Whs Sk, Q)
1
(1) (1)
E[QWV,k - WWV,k]
1 — wiy (0/7) Py 1 (0/7)

s (457)
uiyy (/7)1 = Byy (/7)) "WV
1 — uiyy (0/7) gy 1 (1/7) Uy (1/7)

1

1 /oo @ z/y . THT—T o )
’ * dHWV,k X / 776_ TdT/ e_wkTe_sk -7 e—ak r—y1T—(t—7 dt
1- hwv,k(n/V) 0 0 .
Wy (sk) — Uy (wk * 77)
1 — uiyy(n/7) 1 wv wv (T

1 — Wy (/N (/7)) 1= py(n/7) (v/m){(wr +m)/7 — si}

/ demk(:B)/ e_s’“te_a’“(””_t)dt],
0 0

from which (28) follows.
Finally, aip , (s, o) is given by

*3k 1 * > v s —an(r—
aNP,k<5kaak)=m-uNp,k(5)/o dHNP,k(x)/O e sktemon@= gt

from which (29) follows.

F. Proof of Lemma 6

For z > 0, y > 0, we have (§p(2xp, snp | 2 +vy) = ({p(2np, snp | @) - Kp(2np, sxp | Y).
Therefore

(Xp(2np, snp | 2 + Ax) = ({p(2np, snp | 7) - (p(2np, snp | A7)

= (Xp(2np, snp | 2) [1 — snpAr — Anp Az + Anp Az Z ZNP k
kek

>\ o0
A | g;;p<sz,sz|y>dHNp,k<y>+o<Ax>]
0

>\NP
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from which it follows that

0

p CXp(znp, sne | )| = —(p(2xp, snp | ) Byp (2P, Sxp).

Noting (%p(znp, Snp | 0) = 1, we obtain (30). Also, substituting (30) into (31), we obtain
(32).

G. Proof of Lemma 7
It is easy to see that for z > 0, y > 0,

Pojoyy - Gwv.c(zwy, swy | T+ ) = Poe - Gyv.c(2wv, swyv | 2) - Py * Gy c(2wv, swy | 9),
Prjaty - CGyvie(Zwy, swy, a | £ +y) = Paje - Gyyv p(2wv, swy, o | x) -e”

+ Pepe - Gwv.c(2wv, swy | @) - Pepy - Gy e(Zwy, swv, @ | y).

Therefore we have

Pojeyaz - Gy c(zwy, swy | ©+ Ar)

= Poje - Gyv.c(2wy, swyv | ) - Pojae - Gyv.c(2wy, swy | Ar)

* Ax Ax Az
= Fop - Gyv,c(2wv, swy | 2) [1 — sWV7 — 777 — /\Wv7

+/\wvﬁ Z 2WV EAWV k

/ Peyy - Gwv.c(zwvy, swy | ¥)dHwv k(y) + o(Ax) |,
0

A
kek wv

from which it follows that

0

Ep Pope - Gy .c(2wv, swv | $>} = —Poje - Gyv.c(2wy, swv | ) - By c(z2wv, swv).  (49)

(34) now follows from (49) with Pgjo - (fyy.c(2wv, swy | 0) = 1.
Similarly,

Prjotas - Gy p(2wy, swv, o | @ + Az)

= Pja - C{;VV,E(ZWVa swv,a | T) - e AT

+ Pepe - Gvv.c(2wv, swv | 2) - Pejae - Gy g(2wv, swv, o | Az)
= Pgs - Cévv,E(Zwv, swv,a | x) - (1 — adz) + o(Az)

. Ax
+ Poyy - va,c(zwv, swv | z) [777

Ax 2WV EAWV &
Ay e

| Bt G sl swvs | dbivaty) +o(4r)|,
kek 0

Awv

and therefore

0

o [PE|xC{zkvv,E(ZWV> Swv, « | 37)]
= —aPuz - Gyvp(zwvs swv, @ | 2) + Pop - Gyy o (2w, swy | 2) By s(2wv, swy, @). (50)
Multiplying both sides of (50) by e** and using (34) yield

0

_ *
% [PE\zC\yzﬂvv’E(ZWVa SWv, O | ZE) . eaa:} —e Bwv.clewv.swv)z | Bévv,E(zWV’ SWV, a) . 0T
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Because Pgjp = 0, we obtain

T
PE\a; . C{;VV,E(‘ZWV7 Swv, & | l’) . eo‘” = / 6_{BWV70(ZWV’SWV)_a}y : B{k)v\/,E(ZW\M SWV, Oé)dy,
0

from which (35) follows. Substituting (34) into (36) yields (38), and substituting (35) into
(37) yields (39).

H. Proof of Lemma 8
(42) follows from (v (1,0
below. Note that (v (1,0
(35), we obtain

| #) = 1, Poje + Pgje = 1, and (34). We thus consider (41)
,0 | ) = 1. Therefore, taking the limits « — 0 and s — 0 in
PE|m = 5WV’E . (1 _ e*ﬁwv,c-x)
Bwv,c
from which and (42), we have Bwv.c = fwv k-
It is readily seen from (38) that Swv ¢ satisfies

Pwv.e = n/7+ Awv/v = wv/7) by (Bwv.o), (51)

and hiyy (Bwv.c) = Ry (77/7—1— Awv/7 — (/\WV/’Y)h*wv(ﬁwv,c))- Furthermore, we have from
(36)

Y

Bwv.e =n/7+ Awv/v — ZO\WV,!@/V)/ PoydHwy k(y)
keK 0

/7 A/ — /) / " PoyydHywu(y) = n/y > 0, (52)

so that |hlyy (Bwv,c)| < 1. As aresult, hiyy(Swv,c) is identical to the minimum nonnegative
root r of (9). Finally, from (8) and (51), we obtain

n/v
1—v’

n/y+ Awv/v — Awv/y)r = (53)

which completes the proof.

I. The Multi-Class FIFO M/G/1 Queue with Poisson Disasters

In this Appendix, we summarize the results of the stationary multi-class FIFO M/G/1 queue
with Poisson disasters, where the processing rate is equal to one. We can readily obtain
those results by considering the conditional counterparts in the multi-class FIFO M/G/1
with exponential working vacations and v = 1, given that the server is on working vacation.

I.1. Model

Consider a stationary multi-class FIFO M/G/1 queue with Poisson disasters. Class k (k €
KC) customers arrive according to a Poisson process with rate \,. Let hy(z) and hi(s)
(k € K) denote the distribution function of service times Hy of class k customers and its
LST, respectively. Disasters occurs according to a Poisson process with rate n (n > 0), and
the system becomes empty when disasters occur. We define A and h(x) as

A
A=) "N, h*(s):zyk-h,’;(s).
ke kel

Note that if we ignore customer classes, the system can be regarded as a single-class FIFO
M/G/1 queue with Poisson disasters. Note also that the system is stable regardless of values
of system parameters.
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1.2. Results

The LST u*(s) of the amount of work in system is given by [3,15] (cf. Lemma 3 and its
proof)
* _ (1 — V)S —n
wi(s) = s—= AN+ Ah*(s) —n

Note that v denotes the stationary probability of the server being busy.

o (I=r)A
T oy

where r denotes the minimum nonnegative root of the following equation.
z=h"(n+X—Az2), |z| < 1. (55)

We denote the amount of work in system seen by a randomly chosen customer on arrival
by Ua, and the length of the interval from the arrival of this customer to the occurrence of
the next disaster by Da. Owing to the memoryless property, Dy is exponentially distributed
with parameter . We define Wy, and @, (k € K) as the waiting time and sojourn time,
respectively, of class k customers, i.e., Wy = min(UA,f)A) and Qp = min(Uy + Hk,f)A).
Note that owing to PASTA, W, (k € K) is identical to the waiting time W of a randomly
chosen customer. Furthermore, we define

Py =Pr(Ua < Dy), Py =Pr(Ux > Dy),
wi(s) = E[e™" | Uy < Dy, wi(s) = E[e™" | Uy > Da],
and for each k (k € K)

P, = Pr(Us + Hy, < Dy), P, = Pr(Us + Hy > Dy),
Gin(s) = Ble™ | Us+ Hy < Dal,  ghs) = Ble™™% | Uy + Hy > Da).

By definition, we have

w(s) = E[e_sw] = Plilszltr(s) + PBNU’]*)(S)a q(s) = E[e‘st] = Pl\(?,k(htl,k(s) + PDQ,kQI*),k(S)'

Because W corresponds to W\S\?\), in the queue with working vacations, we obtain from
Theorem 2
1—u*(s+mn)
(I/n)(s+mn)

Note here that u*(s + 1) = Py w3(s). Therefore the second term on the right hand side of
(56) represents Py wi(s). It then follows that

w*(s) =u*(s+n) + (56)

. (S>:M i (5) = 1 1-u(s+n)
N uw(n) P L—wu*(n) (I/n)(s+mn)’
By = u*(n), Py =1—u"(n).

Similarly, it follows from Theorem 3 that

1—u*(s+n)hi(s+n)
(1/m)(s+mn) ’

qr(s) = u™ (s +n)hg(s +n) + kelk,
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and therefore for each k (k € K)

G (s) = u”(s + n)hi(s + 1) g (5) = 1 -t (s +n)hi(s +n)
Nk w(nhp(n) Dk 1 — w*(n)h(n) 1/n)(s+n)
P, = u (n)hi(n), P3, =1—u(n)hi(n).

Let o (k € K) denote the probability of a class k customer being served, which corre-
()

sponds to oy ./ Pwy in the queue with working vacations. It follows from (24) that
AL = hig(m))
AL = h(n))

O = U-

where v is given in (54).

Let Ay (k € K) denote the conditional attained waiting time given that a class k customer
is being served and let H, (k € K) denote the remaining service time of class k customer
being served. We then define a}*(sg, o) (k € K) as

al*(sp, ay) = Ele™4% . g7k | 3 class k customer is being served).

Note that aj*(sg, ax) corresponds to a{“,{'}v WV i (Wk, ax) in the queue with working vacations.

Moreover, Q) and W}, corresponds to QWV , and W&Q,k, respectively. It then follows from
(27) that

w (s +mn)  hilow) — b (s, +n)

E[Qr — Wi] S+ 1 — o

where E[Qr — W] is obtained from (47).

ay’ (s, o) =

v 1—hi(n)
E[Qr — W] = N T (n)

Let Ly (k € K) denote the number of class k customers in the system and let Uy (k € K)
denote the total amount of work in system belonging to class k. We then define the joint

transform ¢ (z, s) as
=E [H z,f’“ . e_s’“U’“] ,

kek
where z = (21, 29,...,2K) and 8 = (51, S2, ..., Sk). We then have
P(z,8)=1—v+ Z 2L0kA), (ZP" — Nizih (si)], sk),
kek iek

which corresponds to Theorem 5.

Finally, we consider the busy cycle, which is defined as the interval between successive
ends of busy periods. Let © denote the length of a randomly chosen busy cycle. We divide
© into two parts, and let O (resp. ©p) denote the length of the subinterval during which
the server is idle (resp. busy). We define Nj (k € K) as the number of class k customers
arriving during ©. Let Uy, denote the amount of work in system that is lost due to disasters.
We then define joint transforms 0% (z, s) and 0;5(z, s, ) as follows.

05 (z,w,s)

<H zN’“> -e7wOr . 7598 | 3 busy period ends without disasters|
kek
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05 (z,w,s,a) =E

(H zN’“> w0 . 7508 . o=l | 3 husy period ends with disasters| .
kek

We also define P? as
P2 = Pr(a busy period ends without disasters),

and let P§ =1 — P§. Tt then follows from Lemma 7 that

e [T e man )

P2 05(z,w,s)

Z i Alz:s) )

)\—i-w
A s—|—77+)\—ﬂN(z s)
)\+w ’ (58)
)\ -y _ o —B%5(2,8)y
B * k *
B - 63(2,,5,0) = 10— > / Pl s
A hi(e) = by (B (2, 5))
B* z,8,«
A+w§c . Bi(z,5) —a b(z5,0)
. A BD(zﬂSvOé) -7
A tw A ’ (59)
where 3%(z, s) and (=, s, ) satisfy
Bu(z.s) =s+n+A=) alhi(5i(zs)),
kek
ﬁl*)(z75’og) -~ sz)\k . hk(a) - hk(BN(Z;S)) . 5]*)(2,5706),

kek (=, 5) —a

which correspond to By o(zwv, swv) in (36) and By g(2wv, swv, @) in (37), respectively.
We define Sy and fp as

An = B(1,0),  fp = Fp(1,0,0).

We then have (cf. Lemma 8 and its proof)

fn = Pp = d ) h*(@N)ZT,

1—v
where 7 is the minimum nonnegative root of (55). It then follows from (57) that
Pi=r, PS=1-r,
and from (58) and (59) that

A s+n+ A= 54(z,s) A B (z,s,a) — 1
. o = . )
A+ w n+A— Py ’ p(z,w5,0) At w Bp —n

0N (z,w,s) =
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