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Abstract This paper considers the problem of determining the optimal ordering quantity for a perishable
product to be sold over a finite sales horizon with a dynamic pricing policy. To date, most models developed
to study a dynamic pricing policy for perishable products assume that the salvage value is nonnegative.
In this model we allow the salvage value to be either a nonnegative or negative value. We derive the
conditions under which the optimal ordering quantity takes either a zero value or finite value greater than
zero. Moreover, we demonstrate the existence of a shortest sales horizon under a condition for which ordering
of the product is profitable if the seller’s planned sales horizon is longer than the shortest sales horizon.
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1. Introduction

In this paper we consider a product that must be sold within a specified time horizon.
Typical examples include perishable fresh food products which physically decay as time
elapses, fashion garments which become outdated due to shifts in consumer preferences,
and personal computers which become obsolete due to rapid technological changes. With
such products, sellers will normally lower their prices gradually as time passes rather than
adopt a fixed price throughout the sales horizon. Since the actual demand for such products
is unpredictable, the seller faces the risk of having leftover items at the end of the sales
horizon, that is the deadline, if the quantity ordered exceeds the actual demand over the
sales horizon. Items remaining unsold at the deadline may be salvaged at a giveaway
price. Similarly, some of the products such as fresh food products which become unsafe for
consumption by the deadline will have to be discarded as waste by paying a disposal cost.
This situation gives rise to the problem of determining the optimal ordering quantity at
the start of the sales horizon and the optimal prices to charge dynamically over the entire
horizon so as to maximize the total expected net profit gained.

There is ample literature on the problem of determining the optimal price and ordering
quantity for selling perishable products. Here we restrict our attention to the literature on
the integration of dynamic pricing and ordering quantity in which replenishment is not per-
mitted, and refer the interested reader to Chan et al. [4] and Elmaghraby and Keskinocak [8]
for discussions of the research on the joint pricing and inventory problem with replenish-
ment. Gupta et al. [10] divided the literature on the integration of dynamic pricing and
ordering quantity into two groups based on the approach used to model the demand for the
perishable product. In the first group demand functions such as additive and multiplicative
demand functions which depend on the selling price are given [2, 13], and the optimal or-
dering quantity is derived using these demand functions. The literature in the second group
assumes that each arriving buyer has his own reservation price and the demand for the
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product materializes if the reservation price of the arriving buyer is higher than the price
offered by the seller [1, 3, 5, 7, 9, 10, 12, 14, 15]. Research papers in this group focus mainly
on finding the optimal pricing policy. Brief discussions on the determination of the optimal
ordering quantity can be found in [1, 5, 9].

The pricing problem presented in this paper is in line with those in the second group.
That is, we model the demand for a product using the concept of the buyer’s reservation
price.

Most of the literature [1, 3, 5, 9, 10, 12, 15] that studied multi-period dynamic pricing
models for perishable products assumes that the salvage value of unsold items at the deadline
is nonnegative. In other words, revenue may be earned by selling the unsold items at the
end of the sales horizon at a discounted price and no penalty is imposed. For instance,
Monahan et al. [13] demonstrated the existence of the optimal ordering quantity for the
finite planning horizon models where the salvage price is zero. Although many end-of-life
perishable products can be sold at a discounted price or donated to charity, some sellers
have to pay a fee such as a waste collection fee or composting fee to dispose of the unsaleable
perishable products. The payment of the disposal fee is a cost to the seller and hence can
be expected to affect both the optimal ordering quantity and profit gained. Of the past
research papers, Ee and Ikuta [7] and You [14] addressed the dynamic pricing problem for
selling an asset or a perishable product without replenishment in which the salvage value
can take either a nonnegative or negative value. These two papers, however, did not discuss
the derivation of the optimal ordering quantity. The model developed in this paper is a
modification of the ones proposed in [7] and [14]. By assuming a salvage price which is not
always nonnegative, we derive the optimal ordering rule for a perishable product without
replenishment through the examination of the relationship between the optimal ordering
quantity and the model parameters, such as, the buyer arriving probability, discount factor,
salvage price, holding cost and purchasing cost.

Our main contribution is in considering the problem of determining the optimal ordering
quantity when a dynamic pricing policy is employed and the salvage value can be either
nonnegative or negative. We derive the conditions under which the ordering quantity takes
either a zero value or finite value greater than zero. The ordering rule can then be used
to assist the seller in determining whether or not ordering a product is profitable if the
model parameters are known to the seller. If ordering a product is known to be unprofitable
according to the conditions and for some reasons the seller would like to sell the product,
the seller could then take steps to change the parameters to make the selling of the product
profitable. In this case the conditions serve as a guideline in helping the seller determine how
much effort would be required to make the selling of the product profitable. For example, a
seller could contemplate volume buying by cooperating with other sellers to take advantage
of quantity discount, thereby reducing the ordering cost per unit and increasing any profit
that may be obtained.

In addition, we demonstrate that a shortest sales horizon exists under a condition for
which the ordering of the product will result in a profitable return for the seller if its planned
sales horizon is longer than the shortest sales horizon. The length of the seller’s planned
sales horizon of a product often depends on the product’s market life or useful life. For
instance, the planned sales horizon of ski apparel may cover the time horizon starting from
the time when the ski apparel is on sale to the time when it has to exit the market at the
end of the ski season. Therefore, if the planned sales horizon is shorter than the shortest
sales horizon, the seller should not engage in selling the perishable product. Moreover, using
a numerical example, we demonstrate that both optimal ordering quantity and maximum
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total expected net profit gained reduce when the salvage value changes from a positive to
negative value.

The rest of the paper is organized as follows. Section 2 presents the basic assumptions
of the model. In Section 3 we derive the optimality equations for the model and in Section 4
we clarify the properties of the optimal ordering quantity. Finally, in Section 5 we present
the overall conclusions of our research and suggest some further work.

2. Model Formulation

The model discussed in this paper is defined on the following assumptions:

(a) Consider the following discrete-time sequential stochastic decision problem of purchasing
a certain quantity of items at a certain point in time and then selling them at a certain
point in time that follows. The points in time are numbered backward from the final
point in time of the planning horizon, time 0 (the deadline) as 0, 1, · · · and so on.
Accordingly, if time t is the present point in time, the two adjacent times t+1 and t−1
are the previous and next points in time, respectively. Let the time interval between
times t and t − 1 be called the period t, which is small enough so that only one buyer
who requests one unit of the product may appear.

(b) A buyer who requests a unit of the product arrives with a probability λ (0 < λ < 1)
and the seller offers a selling price z. In this paper we assume that the appearing buyer
does not possess prior information about the selling price, so his decision to visit a store
is not influenced by the selling price. Accordingly, λ is independent of z.

(c) By w let us denote the reservation price of a buyer, implying that the buyer is willing
to buy an item if and only if the selling price z offered for the item by the seller is
lower than or equal to w, i.e., z ≤ w. Here, assume that subsequent buyers’ reservation
prices w, w′, · · · are independent, identically distributed random variables having a
known continuous distribution function F (w) with a finite expectation µ. Also, let
f(w) denote its probability density function, which is truncated on both sides, and
assume that

f(w) = 0, w < a, f(w) > 0, a ≤ w ≤ b, f(w) = 0, b < w,

for certain given numbers a and b such that 0 < a < b < ∞; clearly a < µ < b. Thus,
the probability of an arriving buyer buying the item, provided that a price z is offered by
the seller, is given by p(z) = Pr{z ≤ w}, where 0 ≤ p(z) ≤ 1. Hence, λp(z) represents
the probability of a buyer appearing and purchasing the item at the selling price z.

(d) Let c > 0 be the purchasing price per item and set c < b as a natural assumption.

(e) Let h ≥ 0 be the inventory holding cost per item remaining unsold for a period.

(f) An item remaining unsold at time 0, the deadline, can be sold at a salvage price ρ ∈
(−∞, c). Here, ρ < 0 implies the per-unit disposal cost to discard an unsold item.

(g) β ∈ (0, 1) denotes the discount factor, where the monetary value of one unit a period
hence is equivalent to β units at the present point in time.

The decision rules of the model consist of:

1. Ordering rule prescribing how many items to order at the time when the process starts.

2. Pricing rule prescribing what price to offer to an arriving buyer at each point in time.

The objective of the model is to find the optimal decision rule to maximize the total
expected present discounted net profit over the planning horizon, i.e., the total expected
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present discounted revenue minus the total expected present discounted purchasing costs
minus the total expected present discounted holding cost plus the total expected present
discounted salvage value.

3. Optimality Equations

Suppose that a certain quantity of a product had been purchased at a certain past point in
time and that i items remain unsold at a time t after that. Let ut(i, 0) and ut(i, 1) be the
maximum total expected present discounted profits, respectively, with no buyer and with a
buyer. Then, clearly

u0(i, 0) = ρi, ut(0, 0) = ut(0, 1) = 0, t ≥ 0, i ≥ 0, (3.1)

and

ut(i, 0) = β
(
λut−1(i, 1) + (1− λ)ut−1(i, 0)

)
− hi, t ≥ 1, i ≥ 0. (3.2)

ut(i, 1) = max
z

{
p(z)

(
z + ut(i− 1, 0)

)
+ (1− p(z))ut(i, 0)

}
, t ≥ 0, i ≥ 1. (3.3)

Optimal selling price The optimal selling price at time t ≥ 0 with i ≥ 1 items remaining
unsold is given by the z attaining the maximum of the right hand side of Equation (3.3) if
it exists, denoted by zt(i).

By vt(i) let us define the maximum of the total expected present discounted net profit,
provided that i items are ordered at time t with no buyer. Here, assume that there is no
lead time between ordering and receiving a product, i.e., the delivery is instantaneous and
that the items are sold at the optimal selling price at each point in time that follows up to
time 0. Then we have

vt(i) = ut(i, 0)− ci, or equivalently, ut(i, 0) = vt(i) + ci, t ≥ 0, i ≥ 0, (3.4)

where

vt(0) = 0, v0(i) = (ρ− c)i, t ≥ 0, i ≥ 0. (3.5)

Also, define v(i) = limt→∞ vt(i) for any given i ≥ 1 if it exists.
Optimal ordering quantity The optimal ordering quantity when the process starts from
time t is given by the smallest i maximizing vt(i) on i ≥ 0 if it exists, denoted by i∗t , that
is, vt(i

∗
t ) = maxi≥0 vt(i). If i

∗
t does not exist, then let i∗t = ∞ for explanatory convenience.

4. Analysis

The properties of the optimal pricing rule are very similar to those in [14], thus they are
omitted for brevity. Since our focus in this paper is the optimal ordering rule, we will
examine only its properties in this section. We refer the interested reader to You [14] for the
discussion on the properties of the optimal pricing rule. Before proceeding to the analysis
of the optimal ordering rule, we introduce some functions used in the subsequent analysis
and present their properties.

4.1. Preliminaries

This section introduces the functions that will be used to describe the optimality equations
of the model in Section 3. The properties of the functions given in this subsection will be
applied to the analysis of the model in the subsections that follow. For any x define

T (x) = max
z

p(z)(z − x), (4.1)
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and by z(x) let us designate the z attaining the maximum of the right hand side of Equation
(4.1) if it exists, i.e., T (x) = p(z(x))(z(x) − x). This T -function is the same as the T (ν)
function defined in [14]. Using the function T (x), we shall define the following two functions:

K(x) = λβT (x)− (1− β)x, (4.2)

N(x) = λβT (x) + βx− c− h. (4.3)

Here, by x∗, x
h
and x

N
let us denote the solutions of, respectively, K(x) = 0, K(x) = h,

and N(x) = 0 if they exist, i.e.,

K(x∗) = 0, K(x
h
) = h, N(x

N
) = 0, (4.4)

and if K(x) = 0, K(x) = h and N(x) = 0 have multiple solutions, then let us define the
smallest solution of K(x) = 0 and K(x) = h, respectively, by x∗ and x

h
, and the largest

solution of N(x) = 0 by x
N
.

The following are the properties of T (x), K(x), and N(x).
Lemma 4.1.
(a) T (x) > 0 on (−∞, b) and T (x) = 0 on [b,∞).

(b) T (x) is continuous and nonincreasing on (−∞,∞).

(c) If x ≤ (≥) y, then T (x)− T (y) ≤ (≥) (y − x).

(d) λβT (x) + βx is strictly increasing on (−∞,∞).

(e) limx→−∞ T (x) = ∞ and limx→−∞ λβT (x) + βx = −∞.

Proof. See Appendix A.

Lemma 4.2.
(a) K(x) is continuous and strictly decreasing on (−∞,∞).

(b) K(x) + x is strictly increasing in x ∈ (−∞,∞).

(c) For any x and y we have |K(x) + x−K(y)− y| ≤ β|x− y|.
(d) x∗ uniquely exists with 0 < x∗ < b where x < (= (>)) x∗ ⇔ K(x) > (= (<)) 0.

(e) x
h
uniquely exists with x < (= (>)) x

h
⇔ K(x) > (= (<)) h.

Proof. See Appendix B.

Lemma 4.3.
(a) x < (= (>)) x

N
⇔ N(x) < (= (>)) 0.

(b) x
h
> (= (<)) c ⇔ x

N
< (= (>)) x

h
.

Proof. See Appendix C.

4.2. Properties of Ut(i)

For convenience of analysis in the following subsections, let us transform the optimality
equations defined in Section 3. First, let us define, for i ≥ 1 and t ≥ 0

Ut(i) = ut(i, 0)− ut(i− 1, 0) (4.5)

where Ut(i) is the marginal total expected present discounted profit by increasing the quan-
tity i for one additional unit. In addition, let U(i) = limt→∞ Ut(i) if it exists. Noting
Equation (3.1), we have

U0(i) = ρ, i ≥ 1. (4.6)
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Using the T -function, we can rewrite Equation (3.3) multiplied by λβ as follows.

λβut(i, 1) = λβT (Ut(i)) + λβut(i, 0), t ≥ 0, i ≥ 1. (4.7)

In addition, let

Ut(0) = M, t ≥ 0 (4.8)

for a sufficiently large M > b > ρ. Noting λβT (Ut(0)) + λβut(0, 0) = λβT (M) = 0 =
λβut(0, 1) due to Equation (3.1) and Lemma 4.1(a), we see that Equation (4.7) also holds
for i ≥ 0 instead of i ≥ 1. Thus, from Equation (4.7) we can rewrite Equation (3.2) as
follows.

ut(i, 0) = λβT (Ut−1(i)) + βut−1(i, 0)− hi, t ≥ 1, i ≥ 0. (4.9)

Accordingly, we can express Ut(i) for t ≥ 1 and i ≥ 1 as follows.

Ut(i) = λβT (Ut−1(i))− λβT (Ut−1(i− 1)) + βUt−1(i)− h. (4.10)

Now let us examine the properties of Ut(i), which will be used to derive the optimal
ordering rule.
Lemma 4.4.
(a) Ut(i) ≤ M for t ≥ 0 and i ≥ 0.

(b) Ut(i) is nonincreasing in i ≥ 0 for t ≥ 0.

(c) Ut(i) is bounded in t for i ≥ 0.

(d) If ρ ≤ (>) x
h
, then Ut(1) is nondecreasing (strictly decreasing) in t ≥ 0.

Proof. The properties of Ut(i) stated in (a,b) are proven using the approach similar to the
one employed in [7, 14]. However, due to the differences that exist between the optimality
equations in this paper and those in the aforementioned past research, it becomes necessary
to provide the proof of these properties below.

(a) The assertion holds for i = 0 since Ut(0) = M for t ≥ 0 from Equation (4.8). Then
from this result, Equation (4.6) and the assumption of ρ < M we have U0(i) ≤ M for i ≥ 0.
Suppose Ut−1(i) ≤ M · · · (1∗) for i ≥ 0, so Ut−1(i − 1) ≤ M · · · (2∗) for i ≥ 1. Note that
λβT (M) = 0 · · · (3∗) due to Lemma 4.1(a) and the assumption of M > b. Then from (1∗)
and Lemma 4.1(d), we have λβT (Ut−1(i)) + βUt−1(i) ≤ λβT (M) + βM = βM ≤ M for
i ≥ 0. In addition, λβT (Ut−1(i− 1)) ≥ λβT (M) = 0 for i ≥ 1 from (2∗) and Lemma 4.1(b).
Hence from Equation (4.10) and the above results it follows that Ut(i) ≤ M − h ≤ M for
i ≥ 1, thus for i ≥ 0.

(b) Since U0(0) = M > ρ = U0(i) for i ≥ 1 by assumption, Equations (4.8) and (4.6),
the assertion is clearly true for t = 0. Let t ≥ 1. Suppose Ut−1(i) is nonincreasing in i ≥ 0
as the induction hypothesis. Then Ut−1(i) ≤ Ut−1(i − 1) ≤ Ut−1(i − 2) · · · (4∗) for i ≥ 2.
From Equation (4.10) for i ≥ 2 we get

Ut(i)− Ut(i− 1) = λβ(T (Ut−1(i))− T (Ut−1(i− 1))) + β(Ut−1(i)− Ut−1(i− 1))

−λβ(T (Ut−1(i− 1))− T (Ut−1(i− 2))). (4.11)

Moreover, from (4∗) and Lemma 4.1(c), we get T (Ut−1(i))− T (Ut−1(i− 1)) ≤ Ut−1(i− 1)−
Ut−1(i) · · · (5∗). Also, T (Ut−1(i − 1)) − T (Ut−1(i − 2)) ≥ 0 · · · (6∗) due to Lemma 4.1(b).
Noting (6∗) and (4∗), and substituting (5∗) into Equation (4.11), we obtain

Ut(i)− Ut(i− 1) ≤ λβ(Ut−1(i− 1)− Ut−1(i)) + β(Ut−1(i)− Ut−1(i− 1))

= β(1− λ)(Ut(i)− Ut(i− 1)) ≤ 0,
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i.e., Ut(i) ≤ Ut(i − 1) for i ≥ 2. Since Ut(1) ≤ M = Ut(0) from (a), it follows that
Ut(i) ≤ Ut(i− 1) for i ≥ 1, which completes the proof.

(c) Note that Ut(i) is upper bounded in t for any given i ≥ 0 from (a). First, it is clear
from Equation (4.8) that the assertion is true for i = 0. Since Ut−1(i) ≤ Ut−1(i− 1) due to
(b), we have T (Ut−1(i))−T (Ut−1(i−1)) ≥ 0 from Lemma 4.1(b). Then from Equation (4.10)
we get Ut(i) ≥ βUt−1(i)− h for t ≥ 1 and i ≥ 1. Noting that U1(i) ≥ βU0(i)− h = βρ− h
for i ≥ 1, we immediately obtain Ut(i) ≥ βtρ− (1+β+ · · ·+βt−1)h. Moreover, since β < 1,
we get Ut(i) ≥ βtρ− h/(1− β) for t ≥ 1 and i ≥ 1. If ρ ≥ 0, then Ut(i) ≥ −h/(1− β), and
if ρ < 0, then Ut(i) ≥ ρ− h/(1− β). Hence, from these results and Equation (4.6) Ut(i) is
lower bounded in t for any i ≥ 1.

(d) Since λβT (Ut−1(0)) = λβT (M) = 0 for t ≥ 1 due to Equation (4.8) and (3∗) in the
proof of (a), from Equation (4.10) and the fact that K(x)+x = λβT (x)+βx (see Equation
(4.2)) we immediately obtain

Ut(1) = K(Ut−1(1)) + Ut−1(1)− h, t ≥ 1. (4.12)

Let t = 1. Then U1(1)− U0(1) = K(ρ)− h from Equations (4.12) and (4.6). If ρ ≤ (>) x
h
,

we get U1(1) ≥ (<) U0(1) due to Lemma 4.2(e). Assume Ut−1(1) ≥ (<) Ut−2(1). Then from
Equation (4.12) and Lemma 4.2(b) we have Ut(1) ≥ (<) K(Ut−2(1))+Ut−2(1)−h = Ut−1(1)
for t ≥ 2. In other words, Ut(1) is nondecreasing in t ≥ 0 if ρ ≤ x

h
, and strict decreasing in

t ≥ 0 if ρ > x
h
.

4.3. Optimal ordering rule

In this section we first examine the properties of vt(i) which then leads us to the derivation
of the optimal ordering rule. For notation simplicity, let us define vt(i) = vt(i)− vt(i− 1).
Then from Equations (4.5) and (3.4) we get

Ut(i) = vt(i) + c, t ≥ 0, i ≥ 1. (4.13)

Note that vt(1) = vt(1)− vt(0) = vt(1) from Equation (3.5). Then Equation (4.13) can be
rewritten as

Ut(1) = vt(1) + c, or equivalently, vt(1) = Ut(1)− c, t ≥ 0. (4.14)

Lemma 4.5.

(a) If vt(1) ≤ 0 for a certain t ≥ 0, then vt(i) is nonincreasing in i ≥ 0 with vt(i) ≤ 0 for
i ≥ 0.

(b) vt(i) is strictly decreasing in i ≥ t ≥ 0.

(c) If ρ ≤ (>) x
h
, then vt(1) is nondecreasing (strictly decreasing) in t ≥ 0.

(d) vt(1) converges to a finite v(1) with v(1) = x
h
− c.

Proof. (a) The proof of this assertion consists of two steps. First, we show that vt(i) is
concave in i ≥ 0 for all t ≥ 0. Then, we prove the monotonicity property of vt(i) in i ≥ 0.

In general, let a series ax, x = 0, 1, · · · , be said to be concave in x if the difference
ax − ax−1 is nonincreasing in x. v0(i) is concave in i ≥ 0 due to Equation (3.5). Moreover,
Ut−1(i) ≤ Ut−1(i−1) ≤ Ut−1(i−2) · · · (1∗) for any given t ≥ 1 and i ≥ 2 from Lemma 4.4(b).
Then from Equations (4.13) and (4.10) for i ≥ 1 we get:

vt(i) = λβT (Ut−1(i))− λβT (Ut−1(i− 1)) + β vt−1(i)− (1− β)c− h. (4.15)
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Note that T (Ut−1(i)) − T (Ut−1(i − 1)) ≤ Ut−1(i − 1) − Ut−1(i) · · · (2∗) due to (1∗) and
Lemma 4.1(c) and that T (Ut−1(i − 1)) − T (Ut−1(i − 2)) ≥ 0 due to Lemma 4.1(b). Then
from Equation (4.15) and the above results for i ≥ 2 we get

vt(i)− vt(i− 1)

= λβ(T (Ut−1(i))− T (Ut−1(i− 1)))− λβ(T (Ut−1(i− 1))− T (Ut−1(i− 2)))

+β( vt−1(i)− vt−1(i− 1))

≤ λβ(Ut−1(i− 1)− Ut−1(i)) + β( vt−1(i)− vt−1(i− 1)) · · · (3∗)

Using Equation (4.13) and (1∗), we can rewrite (3∗) as vt(i)− vt(i−1) ≤ β(1−λ)(Ut−1(i)−
Ut−1(i− 1)) ≤ 0, i.e., vt(i) ≤ vt(i− 1) · · · (4∗) for all t ≥ 0 and i ≥ 2. So, vt(i) is concave
in i ≥ 0 for all t ≥ 0.

Now, let vt(1) ≤ 0 for a certain t ≥ 0. Then vt(1) = vt(1)− vt(0) = vt(1) ≤ 0 = vt(0)
due to Equation (3.5). Suppose vt(i − 1) ≤ 0 and vt(i − 1) ≤ 0. Then from (4∗) we
have vt(i) ≤ vt(i − 1) ≤ 0, so vt(i) ≤ vt(i − 1) ≤ 0. Accordingly, by induction we have
vt(i) ≤ vt(i− 1) ≤ 0 for t ≥ 0, hence the assertion holds.

(b) Clearly, v0(i)−v0(i−1) = ρ−c < 0 for i ≥ 1 from Equation (3.5) and the assumption
of ρ < c, i.e., v0(i) < v0(i − 1) for i ≥ 1, hence the assertion holds for t = 0. Let t ≥ 1.
Suppose vt−1(i) < vt−1(i−1) · · · (5∗) for i ≥ t, or equivalently, vt−1(i−1) < vt−1(i−2) · · · (6∗)
for i ≥ t+ 1. Then from Equations (4.15), (2∗) and (4.13) we get

vt(i) ≤ λβ(Ut−1(i− 1)− Ut−1(i)) + β vt−1(i)− (1− β)c− h

= λβ( vt−1(i− 1)− vt−1(i)) + β vt−1(i)− (1− β)c− h

= β(1− λ) vt−1(i) + λβ vt−1(i− 1)− (1− β)c− h

= β(1− λ)(vt−1(i)− vt−1(i− 1)) + λβ(vt−1(i− 1)− vt−1(i− 2))− (1− β)c− h.

From (5∗), (6∗) and the fact that (1 − β)c + h > 0 it follows that vt(i) < 0, i.e., vt(i) <
vt(i− 1) for i ≥ t+ 1. Thus, by induction it follows that vt(i) is strictly decreasing in i ≥ t
for t ≥ 0.

(c) Immediate from Equation (4.14) and Lemma 4.4(d).
(d) Since Ut(1) is bounded in t for i ≥ 0 due to Lemma 4.4(c) and monotone in t

due to Lemma 4.4(d), it follows that Ut(1) converges to a finite U(1) as t → ∞. Hence
v(1) = U(1) − c · · · (7∗) from Equation (4.14). Furthermore, we can easily show that Ut(1)
converges to K(U(1)) + U(1)− h using the same approach as the one in Lemma 12.2(c) in
[11]. From Equation (4.12) and Lemma 4.2 (c) we have |Ut(1) − K(U(1)) − U(1) + h| ≤
β|Ut−1(1))− U(1)|, which converges to 0 as t → ∞. Thus, U(1) = K(U(1)) + U(1)− h, so
K(U(1)) = h. Since U(1) = x

h
from Lemma 4.2(e), v(1) = x

h
− c due to (7∗).

Lemma 4.5 summarizes the properties of vt(i). Using this lemma and the properties of
N(x), we derive the ordering rule in the following theorem.

Theorem 4.1. Let t ≥ 1.

(a) Let x
h
≤ c. Then i∗t = 0.

(b) Let x
h
> c.

1. If ρ ≤ x
N
, then there exists a finite t∗ ≥ 1 such that if 1 ≤ t ≤ t∗, then i∗t = 0, or

else 1 ≤ i∗t ≤ t.

2. If ρ > x
N
, then 1 ≤ i∗t ≤ t.
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Proof. Noting that 0 = vt(0) = v(0) · · · (1∗) for all t ≥ 0 due to Equation (3.5), from
Lemma 4.5(d) we get

v(1)− v(0) = x
h
− c. (4.16)

(a) Let x
h
≤ c. Then v(1) ≤ 0 from Equation (4.16). In addition, v0(1) = ρ − c < 0

· · · (2∗) from Equation (3.5) and the assumption of ρ < c. Noting Lemma 4.5(c), if ρ ≤ x
h
,

we have vt(1) ≤ 0 for t ≥ 0 due to v(1) ≤ 0, and if ρ > x
h
, then vt(1) ≤ 0 for t ≥ 0 due to

(2∗). Accordingly, vt(1) ≤ 0 = vt(0) for t ≥ 0 whether ρ ≤ x
h
or ρ > x

h
. Thus, it follows

from Lemma 4.5(a) that vt(i) ≤ 0 for i ≥ 0, implying that i∗t = 0.
(b) Let x

h
> c. Then x

N
< x

h
due to Lemma 4.3(b), and v(1) > v(0) = 0 · · · (3∗)

from Equation (4.16). Also, we have ρ < x
h
due to the assumption of ρ < c, so vt(1)

is nondecreasing in t ≥ 0 due to Lemma 4.5(c). Moreover, from Lemma 4.5(b) and the
definition of i∗t it follows that i∗t ≤ t · · · (4∗) for t ≥ 1.

Noting that U0(1) = u0(1, 0) due to Equations (4.5) and (3.1), from Equations (3.4),
(4.9), (4.3) and (4.6) we obtain v1(1) = λβT (U0(1)) + βU0(1) − h − c = N(U0(1)) =
N(ρ) · · · (5∗).

(b1) Let ρ ≤ x
N
. Then N(ρ) ≤ 0 due to Lemma 4.3(a), so v1(1) ≤ 0 = v1(0) from (5∗)

and (1∗). In addition, since v(1) > 0 due to (3∗), from the monotonicity of vt(1) in t ≥ 0 it
follows that there exists a t∗ ≥ 1 such that vt(1) > 0 = vt(0) for t > t∗ and vt(1) ≤ 0 = vt(0)
for 1 ≤ t ≤ t∗. This implies that 1 ≤ i∗t ≤ t if t > t∗ due to (4∗), or else i∗t = 0 due to
Lemma 4.5(a).

(b2) Let ρ > x
N
. Since N(ρ) > 0 due to Lemma 4.3(a), we have v1(1) > 0 from (5∗) and

(1∗). Hence vt(1) > 0 = vt(0) for t ≥ 1 due to the monotonicity of vt(1) in t ≥ 0, implying
that 1 ≤ i∗t ≤ t for t ≥ 1.

With reference to Theorem 4.1, we can summarize the conditions for the optimal ordering
quantity as follows:

1. Suppose x
h
≤ c. Then the optimal ordering quantity is zero, i.e., do not order any

quantity for all t ≥ 1.

2. Suppose x
h
> c. If ρ > x

N
, then the optimal ordering quantity is a finite value greater

than zero. On the other hand, if ρ ≤ x
N
, then if t ≤ t∗, the optimal ordering quantity is

zero, or else the optimal ordering quantity is a finite value greater than zero. Hence in
this case a shortest sales horizon indicated by t∗ exists. If the shelf life of the product or
the seller’s planned sales horizon is shorter than or equal to t∗, the product should not
be ordered.

Numerical examples. A clothing retailer is considering the ordering of a certain quantity
of a fashion blouse for sale in its store. Suppose the blouse can be purchased at a cost
of $20 per unit (i.e., c = 20) at the start of the planned sales horizon. Let the buyer
arriving probability be λ = 0.6, discount factor β = 0.999, and holding cost h = 0.15. The
distribution of the buyer’s reservation price F (w) is assumed to be a uniform distribution
on [15, 45], i.e., a = 15 and b = 45. Using Equations (4.2) to (4.4), we obtain the solution of
K(x) = h and N(x) = 0, x

h
≈ 38.8512 and x

N
≈ 15.9509, respectively. Hence, c < x

h
and

this meets the condition in Theorem 4.1(b). Next, using two different values of the salvage
price ρ, we illustrate the following two scenarios:

1. Assume that the clothing retailer can sell the remaining unsold blouses to a discount
store for $17.4 per unit (i.e., the salvage price ρ = 17.4) at the end of the planned
sales horizon. Thus x

N
< ρ. Then we have 1 ≤ i∗t ≤ t for all t ≥ 1, implying that
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ordering the finite quantity i∗t is optimal. From the numerical calculation we get the finite
ordering quantity which is greater than zero, for example, i∗50 = 10 and i∗80 = 14, and
the corresponding maximum total expected present discounted net profits if these finite
quantities are ordered, that is, v50(10) = 89.0682 and v80(14) = 114.5967, respectively.

2. Suppose the clothing retailer has no other options to get rid of the unsaleable blouses,
but to hire a recycling company to dispose of the blouses by paying a disposal fee of
$1 per unit (i.e., the salvage price ρ = −1), hence ρ < x

N
. Figure 1 gives the i∗t for

0 ≤ t ≤ 83. From this figure, we see that i∗t is a step function with i∗t = 0 for t ≤ 3 and
1 ≤ i∗t ≤ t for t > 3. Hence, by definition the shortest sales horizon is t∗ = 3. In other
words, ordering the fashion blouse will result in a profit for the retailer if the planned
sales horizon for this blouse is greater than 3. In addition, we observe that the optimal
ordering quantity may change as ρ changes. For example, in this scenario we get i∗50 = 9
and i∗80 = 13, which are smaller than i∗50 = 10 and i∗80 = 14 for the case of ρ = 17.4. The
corresponding maximum total expected present discounted net profits for i∗50 = 9 and
i∗80 = 13 in this scenario are v50(9) = 84.627 and v80(13) = 112.7616, respectively.

t

i∗t

12

8

4

0
0 10 20 30 40 50 60 70 80

Figure 1: Optimal ordering quantity i∗t

This result demonstrates that all the model parameters interrelate in determining the
practicality of ordering a product for resale. By comparing the purchasing cost and salvage
value against the two threshold values x

h
and x

N
, the seller can easily determine whether

or not the ordering of a product is profitable. Furthermore, the result shows that both the
optimal ordering quantity and maximum total expected net profit gained are smaller if the
seller incurs a cost to dispose of the unsold items at the end of the sales horizon.

5. Conclusions

In this paper we examine the optimal ordering quantity for a perishable product with a
dynamic pricing policy. Most research papers on the integration of dynamic pricing policy
and ordering quantity assume that salvage value is nonnegative. By allowing the salvage
value to be nonnegative or negative, we modified the models developed in [7, 14]. We derive
the conditions that inform the sellers whether or not the product should be ordered. In
addition, we show that under a certain condition a shortest sales horizon exists where the
seller should engage in selling the product only if the seller’s expected sales horizon or the
shelf-life of the product is longer than the shortest sales horizon. Future research may
consider the existence of a fixed advertising budget to search for new buyers and a case
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where the buyer arriving probability is dependent on the price offered by the seller and the
advertising budget.
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Appendices

A. Proof of Lemma 4.1

(a,b) See Lemma 3.1(b,c1) in [14]. (c–e) see Lemmas 6.17, 6.14(e2) and 6.19(c,d) in [11].

B. Proof of Lemma 4.2

(a) Noting the assumption of β < 1, the assertion can be proven in the same manner as in
Lemma 3.2(a) in [6].
(b) Note that K(x) defined in this paper is similar to K(x) of types S and P in [11]. Hence
the assertion can be proven in the same manner as in Lemma 6.32(f) in [11].
(c) See Equation (6.62) in [11].
(d) The assertion can be proven in the same manner as in Lemma 3.2(f2) in [6].
(e) Note that K(x)−h = 0 and x

h
defined in this paper are similar to K1(x) = 0 and xK1 in

[6], respectively. Thus, the assertion can be proven in the same manner as in Lemma 3.2(e)
in [6].

C. Proof of Lemma 4.3

(a) Note thatN(x) is strictly increasing on (−∞,∞) from Equation (4.3) and Lemma 4.1(d).
Since λβT (x) = 0 for x ≥ b from Lemma 4.1(a), clearly limx→∞ N(x) = ∞. Further, from
Lemma 4.1(e) we have limx→−∞ N(x) = −∞. Accordingly, it must be that x

N
uniquely

exists. Hence the assertion holds due to the definition of x
N
.

(b) Since N(x) = K(x) + x − c − h due to Equation (4.2), from Equation (4.4) we have
N(x

h
) = K(x

h
) + x

h
− c − h = x

h
− c > (= (<)) 0 if x

h
> (= (<)) c. Hence the assertion

holds due to (a).
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