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Abstract In this paper, we consider the following variant of the matroid intersection problem. We are
given two matroids M1,M2 on the same ground set E and a subset A of E. Our goal is to find a common
independent set I of M1,M2 such that |I ∩A| is maximum among all common independent sets of M1,M2

and such that (secondly) |I| is maximum among all common independent sets of M1,M2 satisfying the
first condition. This problem is a matroid-generalization of the simplest case of the rank-maximal matching
problem introduced by Irving, Kavitha, Mehlhorn, Michail and Paluch (2006). In this paper, we extend the
“combinatorial” algorithm of Irving et al. for the rank-maximal matching problem to our problem by using
a Dulmage-Mendelsohn type decomposition for the matroid intersection problem.

Keywords: Discrete optimization, matroid, matching, Dulmage-Mendelsohn decompo-
sition

1. Introduction

Consider the following constrained bipartite matching problem. We are given a finite bi-
partite graph G and a subset A of the edge set of G. We want to find a matching M in G
such that |M ∩ A| is maximum among all matchings in G and such that (secondly) |M | is
maximum among all matchings in G satisfying the first condition. This problem is the sim-
plest case of the rank-maximal matching problem introduced by Irving, Kavitha, Mehlhorn,
Michail and Paluch [7]. (For the formal definition of the rank-maximal matching problem,
see Section 6). This problem models the situation in which we want to make a matching
between two groups as large as possible and some possible pairs have a higher priority than
other possible pairs. It is not difficult to see that this problem can be solved in polynomial
time by reducing it to the maximum-weight matching problem. In [7], the authors proposed
a “combinatorial” algorithm that can solve the rank-maximal matching problem without
reduction to the maximum-weight matching problem. This algorithm is generally more ef-
ficient than a straightforward reduction to the maximum-weight matching problem. (For a
more efficient reduction to the maximum-weight matching problem, see [10]).

In this paper, we consider the following matroid-generalization of the above constrained
matching problem. We are given two matroids M1,M2 on the same ground set E and a
subset A of E. (For the definition of matroids, see Section 2.) Our goal is to find a common
independent set I of M1,M2 such that |I ∩A| is maximum among all common independent
sets of M1,M2 and such that (secondly) |I| is maximum among all common independent
sets of M1,M2 satisfying the first condition. We should remark that a common independent
set of two matroids can represent not only a matching in a bipartite graph but also, e.g.,
a branching in a directed graph which is a directed analogue of a forest in an undirected
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16 N. Kamiyama

graph. (For the definition of branchings, see [13].) This problem can be solved in polynomial
time by reducing it to the maximum-weight matroid intersection problem.

The aim of this paper is to extend the “combinatorial” algorithm of Irving, Kavitha,
Mehlhorn, Michail and Paluch [7] for the rank-maximal matching problem to our prob-
lem. The motivation for our study is the extendibility of algorithms for bipartite matching
problems to those for matroid intersection problems. The augmenting-path algorithm for
the maximum-size matching problem and the Hungarian method for the maximum-weight
matching problem can be naturally extended to the matroid intersection setting. The above
constrained matching problem can be regarded as an intermediate problem of the maximum-
size matching problem and the maximum-weight matching problem. So, the following ques-
tion naturally arises. Can we extend the “combinatorial” algorithm for the rank-maximal
matching problem to our problem? If possible, how can we do that? In this paper, we prove
that the algorithm in [7] for the rank-maximal matching problem can be extended to our
problem by using the idea of a Dulmage-Mendelsohn decomposition [3].

The algorithm of [7] partitions the vertices of a given bipartite graph into three categories
by using a maximum-size matching on A. However, in our matroid setting, there is no
object corresponding to vertices. Elements of matroids correspond to edges in a bipartite
graph. So, it seems that the algorithm of [7] cannot be straightforwardly extended to
our problem. In this paper, by using a Dulmage-Mendelsohn type decomposition for the
maximum-size matroid intersection problem, we prove an “augmentability” theorem for our
problem (see Theorem 5.1) and we extend the algorithm of [7] to our problem. This theorem
can be viewed as an intermediate theorem of corresponding theorems for the maximum-size
matroid intersection problem and the maximum-weight matroid intersection problem (see
Theorems 3.1 and 3.2).

The rest of this paper is organized as follows. In Section 2, we give necessary definitions
and notation. In Section 3, we explain known results about the matroid intersection problem.
In Section 4, we give definitions and some structural results about a Dulmage-Mendelsohn
type decomposition for the maximum-size matroid intersection problem. In Section 5, we
give our algorithm. Section 6 concludes this paper with some remarks.

2. Preliminaries

For each finite set X and each element x, we write X + x and X − x instead of X ∪ {x}
and X \ {x}, respectively. For each finite sets X and Y , define

X�Y := (X \ Y ) ∪ (Y \X).

A pair (E, I) is called a matroid, if E is a finite set and I is a nonempty family of
subsets of E satisfying the following conditions.

(I1) If I ∈ I and J ⊆ I, then J ∈ I.
(I2) If I, J ∈ I and |I| < |J |, then I + x ∈ I for some element x of J \ I.
Let M = (E, I) be a matroid. A subset I of E is called an independent set of M, if
I ∈ I. A subset C of E is called a circuit, if C /∈ I, but any proper subset C ′ of C is an
independent set of M. It is known [12] that if I is an independent set of M and x is an
element of E \ I such that I + x /∈ I, then I + x contains the unique circuit C and x ∈ C.
The circuit C is called the basic circuit of x with respect to I in M. It is easy to see
that the basic circuit C of x with respect to I in M is the set of all elements y of I +x such
that I − y + x ∈ I. For each subset X of E, a subset B of X is called a base of X, if B is
an inclusionwise maximal independent subset of X. By (I2), every two bases of a subset X
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Matroid Intersection with Priority Constraints 17

of E have the same size, which is called the rank of X and denoted by ρM(X). For each
subset X of E, define

I|X := {I ∈ I | I ⊆ X}, M|X := (X, I|X).

It is not difficult to see that M|X is a matroid.
Now we formally define our problem, called the matroid intersection problem with

priority constraints (the MIwPC problem for short). Throughout this paper, we assume
that two matroids M1 = (E, I1) and M2 = (E, I2) are given. Furthermore, we are given a
subset A of E. A common independent set I of M1,M2 is said to be feasible, if |I ∩A| is
maximum among all common independent sets of M1,M2. Namely, I is said to be feasible,
if I ∩A is a maximum-size common independent set of M1|A and M2|A. Then, the MIwPC
problem asks for finding a feasible common independent set I of M1,M2 such that |I| is
maximum among all feasible common independent sets of M1,M2.

3. Matroid Intersection Problems

For each common independent set I of M1,M2, define a directed graph DM1M2(I), with a
vertex set E, as follows. For each elements x of E \ I and y of I,

(y, x) is an arc of DM1M2(I) if and only if I − y + x ∈ I1,

(x, y) is an arc of DM1M2(I) if and only if I − y + x ∈ I2.

These are all arcs of DM1M2(I). Notice that DM1M2(I) is a bipartite graph with vertex
classes I, E \ I. We may not distinguish a simple directed path P (that is, no vertices in P
are repeated) in DM1M2(I) and its vertex set. The size of a path P of DM1M2(I) is defined
by the number of the vertices traversed by P . Define

SM1(I) := {x ∈ E \ I | I + x ∈ I1},
SM2(I) := {x ∈ E \ I | I + x ∈ I2}.

Let PM1M2(I) be the set of directed paths from SM1(I) to SM2(I) in DM1M2(I). The
following theorem is well-known (also, see [13, Section 41.2]).
Theorem 3.1 ([1, 9]). For each common independent set I of M1,M2, there exists a com-
mon independent set I ′ of M1,M2 such that |I ′| = |I| + 1 if and only if PM1M2(I) �= ∅.
Moreover, if PM1M2(I) �= ∅, then for each minimum-size path P of PM1M2(I), I�P is a
common independent set of M1,M2 such that |I�P | = |I|+ 1.

Next we consider the weighted version of Theorem 3.1. Suppose that we are given a
weight function w : E → R, where R is the set of real numbers. The weight w(X) of a
non-empty subset X of S is defined by w(X) :=

∑
x∈X w(x), and define w(∅) := 0. A

common independent set I of M1,M2 is said to be extreme, if w(I) ≥ w(J) for any
common independent set J of M1,M2 such that |J | = |I|. For each element x of E, define
the length l(x) by

l(x) :=

{
w(x) if x ∈ I,

−w(x) if x /∈ I.
(3.1)

The length of a directed path P in DM1M2(I), denoted by l(P ), is equal to the sum of
the lengths of the vertices traversed by P . Although the length of some element may be
negative in DM1M2(I), it is known [5, 8] that I is extreme if and only if DM1M2(I) has no
directed cycle of negative length. So, we can find a minimum-length path among all paths of
PM1M2(I) in polynomial time with, e.g., the Bellman-Ford method. The following weighted
version of “augmentability” theorem is well-known (also, see [13, Section 41.3]).

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



18 N. Kamiyama

Theorem 3.2 ([9]). For each extreme common independent set I of M1,M2, there exists
an extreme common independent set I ′ of M1,M2 such that |I ′| = |I| + 1 if and only
if PM1M2(I) �= ∅. Moreover, if PM1M2(I) �= ∅, then for each path P of PM1M2(I) such
that l(P ) is minimum among all paths of PM1M2(I) and such that (secondly) the size of P
is minimum among all minimum-length paths of PM1M2(I), I�P is an extreme common
independent set of M1,M2 such that |I�P | = |I|+ 1 and w(I�P ) = w(I)− l(P ).

4. Dulmage-Mendelsohn Type Decomposition

In this section, we explain a Dulmage-Mendelsohn type decomposition (a DM type decom-
position for short) for the maximum-size matroid intersection problem. In the sequel, define
M′

1 := M1|A, I ′
1 := I1|A, M′

2 := M2|A and I ′
2 := I2|A,

Let I∗ be a maximum-size common independent set of M′
1,M

′
2. Notice that by The-

orem 3.1, PM′
1M

′
2
(I∗) = ∅. Let A+ be the set of elements of A that are reachable from

SM′
1
(I∗) in DM′

1M
′
2
(I∗), and let A− be the set of elements of A from which SM′

2
(I∗) is reach-

able in DM′
1M

′
2
(I∗). Let D′ be the directed graph obtained from DM′

1M
′
2
(I∗) by deleting

vertices of A+ ∪ A−. Let A1, . . . , Ak be the strongly connected components of D′ such
that i ≤ j if Ai is reachable from Aj in D′. Define A0 := A+ and Ak+1 := A−. We call
A = (A0;A1, . . . , Ak;Ak+1) a DM type decomposition of M′

1,M
′
2 for I∗. For each

i ∈ {0, 1, . . . , k + 1}, define Bi := A0 ∪ A1 ∪ · · · ∪ Ai. Although Lemmas 4.1 and 4.2 are
easily obtained from well-known results (for example, see [6, 11]), we give their proofs for
completeness.
Lemma 4.1. For every i ∈ {0, 1, . . . , k},

|I∗ \Bi| = ρM′
1
(A \Bi), |I∗ ∩ Bi| = ρM′

2
(Bi).

Proof. For every i ∈ {0, 1, . . . , k}, since I∗ \Bi is an independent set of M′
1,

|I∗ \Bi| ≤ ρM′
1
(A \Bi). (4.1)

If Equation (4.1) is not satisfied by equality for some i ∈ {0, 1, . . . , k}, then there exists a
subset J of A \Bi such that J ∈ I ′

1 and |J | > |I∗ \Bi|. So, by (I2), there exists an element
x of A \ (Bi ∪ I∗) such that (I∗ \ Bi) + x ∈ I ′

1. Recall that I∗ + x /∈ I ′
1 since SM′

1
(I∗) is

a subset of A0. Let C be the basic circuit of x with respect to I∗ in M′
1. Since {x} ∈ I ′

1

follows from (I∗ \Bi)+x ∈ I ′
1 and (I1), C−x is not empty. Moreover, by (I∗ \Bi)+x ∈ I ′

1,
C − x is not a subset of I∗ \Bi. So, there exists an element y of C − x contained in I∗ ∩Bi,
and thus I∗ − y+ x ∈ I ′

1 by the property of the basic circuit. This implies that there exists
an arc from Bi to A \Bi, which contradicts the fact that i ≤ j if Ai is reachable from Aj in
D′.

For every i ∈ {0, 1, . . . , k}, since I∗ ∩ Bi is an independent set of M′
2,

|I∗ ∩Bi| ≤ ρM′
2
(Bi). (4.2)

If Equation (4.2) is not satisfied with equality for some i ∈ {0, 1, . . . , k}, then there exists a
subset J of Bi such that J ∈ I ′

2 and |J | > |I∗ ∩ Bi|. So, by (I2), there exists an element x
of Bi \ I∗ such that (I∗ ∩Bi) + x ∈ I ′

2. Recall that I
∗ + x /∈ I ′

2 since SM′
2
(I∗) is a subset of

Ak+1. Let C be the basic circuit of x with respect to I∗ in M′
2. Since {x} ∈ I ′

2 follows from
(I∗ ∩ Bi) + x ∈ I ′

2 and (I1), C − x is not empty. Moreover, by (I∗ ∩ Bi) + x ∈ I ′
2, C − x

is not a subset of I∗ ∩ Bi. So, there exists an element y of C − x contained in I∗ \ Bi, and
thus I∗ − y + x ∈ I ′

2 by the property of the basic circuit. This implies that there exists an
arc from Bi to A \ Bi, which contradicts the fact that i ≤ j if Ai is reachable from Aj in
D′.
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Lemma 4.2. If I is a maximum-size common independent set of M′
1,M

′
2, then

|I \Bi| = ρM′
1
(A \Bi), |I ∩ Bi| = ρM′

2
(Bi)

for every i ∈ {0, 1, . . . , k}.
Proof. For every i ∈ {0, 1, . . . , k}, |I \Bi| ≤ ρM′

1
(A \Bi) by I \Bi ∈ I ′

1. If

|I \Bj| < ρM′
1
(A \Bj) (= |I∗ \Bj| by Lemma 4.1)

for some j ∈ {0, 1, . . . , k}, then

|I ∩ Bj| > |I∗ ∩ Bj| = ρM′
2
(Bj)

by |I| = |I∗| and Lemma 4.1. This contradicts the fact that I ∩ Bj ∈ I ′
2.

For every i ∈ {0, 1, . . . , k}, |I ∩ Bi| ≤ ρM′
2
(Bi) by I ∩Bi ∈ I ′

2. If

|I ∩Bj | < ρM′
2
(Bj) (= |I∗ ∩ Bj| by Lemma 4.1)

for some j ∈ {0, 1, . . . , k}, then

|I \Bj | > |I∗ \Bj | = ρM′
1
(A \Bj)

by |I| = |I∗| and Lemma 4.1. This contradicts the fact that I \Bj ∈ I ′
1.

5. Main Results

Throughout this section, let I∗ be a maximum-size common independent set of M′
1,M

′
2.

Let A = (A0;A1, . . . , Ak;Ak+1) be a DM type decomposition of M′
1,M

′
2 for I∗. Recall that

a common independent set I of M1,M2 is said to be feasible, if |I ∩ A| = |I∗|. For each
feasible common independent set I of M′

1,M
′
2, an arc (x, y) of DM1M2(I) is said to be bad,

if it satisfies one of the following three conditions (see Figure 1).

x ∈ Ai and y ∈ Aj for some i, j ∈ {0, 1, . . . , k + 1} such that i �= j, or (5.1)

x ∈ E \ (I ∪ A) and y ∈ (I ∩ A) \ Ak+1, or (5.2)

x ∈ (I ∩ A) \ A0 and y ∈ E \ (I ∪A). (5.3)

For each feasible common independent set I of M1,M2, we denote by HM1M2(I) the
directed graph obtained by removing all bad arcs from DM1M2(I). Let QM1M2(I) be the
set of directed paths from from SM1(I) to SM2(I) in HM1M2(I). We are now ready to give
our main theorem. We leave its proof to the next subsection.

Theorem 5.1. For each feasible common independent set I ofM1,M2, there exists a feasible
common independent set I ′ of M1,M2 such that |I ′| = |I|+1 if and only if QM1M2(I) �= ∅.
Moreover, if QM1M2(I) �= ∅, then for each minimum-size path P of QM1M2(I), I�P is a
feasible common independent set of M1,M2 such that |I�P | = |I|+ 1.

5.1. Proof of Theorem 5.1

Before proving Theorem 5.1, we give necessary lemmas.

Lemma 5.1. For each feasible common independent set I of M1,M2,

SM1(I) ∩ A ⊆ A0, SM2(I) ∩A ⊆ Ak+1.
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Ak+1

A0

Ak

A1

A E \ A

I \ A

E \ (I ∪ A)

(a)

Ak+1

A0

Ak

A1

A E \ A

I \ A

E \ (I ∪ A)

(b)

Ak+1

A0

Ak

A1

A E \ A

I \ A

E \ (I ∪ A)

(c)

Figure 1: White and black points represent elements of I and E \ I, respectively (a) Arcs
satisfy Equation (5.1) (b) Arcs satisfy Equation (5.2) (c) Arcs satisfy Equation (5.3)

Proof. Suppose that there exists an element x of E \I such that x ∈ SM1(I)∩A and x /∈ A0.
Obviously,

(I + x) ∩ (A \ A0) = ((I ∩ A) \ A0) + x ∈ I ′
1. (5.4)

However, since I ∩ A is a maximum-size common independent set of M′
1,M

′
2,

ρM′
1
(A \ A0) = |(I ∩ A) \ A0| < |((I ∩A) \ A0) + x|

by Lemma 4.2. This contradicts Equation (5.4) and the definition of ρM′
1
.

Suppose that there exists an element x of E \ I such that x ∈ SM2(I)∩A and x /∈ Ak+1.
Obviously,

(I + x) ∩Bk = (I ∩ Bk) + x ∈ I ′
2. (5.5)

However, since I ∩ A is a maximum-size common independent set of M′
1,M

′
2,

ρM′
2
(Bk) = |I ∩Bk| < |(I ∩ Bk) + x|

by Lemma 4.2. This contradicts Equation (5.5) and the definition of ρM′
2
.

Lemma 5.2. For each feasible common independent set I of M1,M2, there exists no arc
from Ai to Aj in DM1M2(I) for any i, j ∈ {0, 1, . . . , k + 1} such that i < j.

Proof. Suppose that there exists an arc (x, y) from Ai to Aj in DM1M2(I) for some i, j ∈
{0, 1, . . . , k + 1} such that i < j.

If x ∈ I and y /∈ I, then I − x+ y ∈ I1. So,

(I − x+ y) ∩ (A \Bi) = ((I ∩A) \Bi) + y ∈ I ′
1. (5.6)

However, since I ∩ A is a maximum-size common independent set of M′
1,M

′
2,

ρM′
1
(A \Bi) = |(I ∩ A) \Bi| < |((I ∩A) \Bi) + y|

by Lemma 4.2. This contradicts Equation (5.6) and the definition of ρM′
1
.

If x /∈ I and y ∈ I, then I − y + x ∈ I2. So,

(I − y + x) ∩Bi = (I ∩Bi) + x ∈ I ′
2. (5.7)

However, since I ∩ A is a maximum-size common independent set of M′
1,M

′
2,

ρM′
2
(Bi) = |I ∩Bi| < |(I ∩ Bi) + x|

by Lemma 4.2. This contradicts Equation (5.7) and the definition of ρM′
2
.
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Lemma 5.3. Assume that I is a feasible common independent set of M1,M2, x is an
element of A \ I and y is an element of I \ A.

If (y, x) is an arc of DM1M2(I), then x ∈ A0.

If (x, y) is an arc of DM1M2(I), then x ∈ Ak+1.

Proof. Assume that there exists an arc (y, x) of DM1M2(I) such that x ∈ Ai for some i �= 0.
Since I − y + x ∈ I1,

(I − y + x) ∩ (A \Bi−1) = ((I ∩A) \Bi−1) + x ∈ I ′
1. (5.8)

However, since I ∩ A is a maximum-size common independent set of M′
1,M

′
2,

ρM′
1
(A \Bi−1) = |(I ∩ A) \Bi−1| < |(I ∩A) \Bi−1) + x|

by Lemma 4.2 and i �= 0. This contradicts Equation (5.8) and the definition of ρM′
1
.

Assume that there exists an arc (x, y) of DM1M2(I) such that x ∈ Ai for some i �= k+1.
Since I − y + x ∈ I2,

(I − y + x) ∩Bi = (I ∩Bi) + x ∈ I ′
2. (5.9)

However, since I ∩ A is a maximum-size common independent set of M′
1,M

′
2,

ρM′
2
(Bi) = |I ∩Bi| < |(I ∩ Bi) + x|

by Lemma 4.2 and i �= k+1. This contradicts Equation (5.9) and the definition of ρM′
2
.

By Lemmas 5.2, 5.3 and the fact that there exists no bad arc inHM1M2(I), every arc (x, y)
of HM1M2(I) satisfies one of the following conditions for each feasible common independent
set I of M1,M2 (see Figure 2).

x, y ∈ Ai for some i ∈ {0, 1, . . . , k + 1}, or x, y ∈ E \ A. (5.10)

x ∈ Ak+1 \ I and y ∈ I \ A, or x ∈ I \ A and y ∈ A0 \ I. (5.11)

x ∈ A0 ∩ I and y ∈ E \ (I ∪ A), or x ∈ E \ (I ∪A) and y ∈ Ak+1 ∩ I. (5.12)

Ak+1

A0

Ak

A1

A E \ A

I \ A

E \ (I ∪ A)

(a)

Ak+1

A0

Ak

A1

A E \ A

I \ A

E \ (I ∪ A)

(b)

Ak+1

A0

Ak

A1

A E \ A

I \ A

E \ (I ∪ A)

(c)

Figure 2: White and black points represent elements of I and E \ I, respectively (a) Arcs
satisfy Equation (5.10) (b) Arcs satisfy Equation (5.11) (c) Arcs satisfy Equation (5.12)

In the sequel, define the weight of each element x of E by

w(x) :=

{
1 if x ∈ A,
0 if x /∈ A.

(5.13)

Recall that the length of each element of E is defined by Equation (3.1).
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22 N. Kamiyama

Lemma 5.4. For each feasible common independent set I of M1,M2 and each path P of
QM1M2(I), we have l(P ) = 0 and I�P is feasible.

Proof. We first consider the case where P traverses no vertex of A. In this case, I�P is
feasible since |(I�P ) ∩ A| = |I ∩ A|. Furthermore, by Equation (5.13), we have l(P ) = 0.

Next we consider the case where P traverses at least one vertex of A. Assume that P
traverses vertices x1, x2, . . . , xm in this order. Since P traverses at least one vertex of A,
there exist p, q ∈ {1, 2, . . . , m} such that

p ≤ q, xp, xp+1, . . . , xq ∈ A, p = 1 or xp−1 /∈ A, q = m or xq+1 /∈ A. (5.14)

For proving the lemma, we need the following claim.

Claim 5.1. Exactly one of xp, xq is contained in I.

Proof. We first consider the case of p = 1 or xp−1 ∈ I. If p = 1, then xp ∈ SM1(I), i.e.,
xp /∈ I. Moreover, xp ∈ A0 follows from Lemma 5.1. If p �= 1 and xp−1 ∈ I, then xp /∈ I.
Moreover, since all arcs from E \ A to xp in HM1M2(I) satisfy Equation (5.11), we have
xp ∈ A0. In both cases, xq ∈ A0 follows from xp ∈ A0 and Lemma 5.2. This implies
that xq /∈ SM2(I) by Lemma 5.1. So, since all arcs from xq to E \ A in HM1M2(I) satisfy
Equation (5.12), we have xq ∈ I.

Next we consider the case of p �= 1 and xp−1 /∈ I, i.e., xp ∈ I. In this case, since all arcs
from E \ A to xp in HM1M2(I) satisfy Equation (5.12), we have xp ∈ Ak+1. If q = m, then
xq ∈ SM2(I), i.e., xq /∈ I and the proof is done. If q �= m, then xq ∈ Ak+1 follows from
xp ∈ Ak+1 and the fact that we remove all arcs satisfying Equation (5.1). So, since all arcs
from xq to E \ A in HM1M2(I) satisfy Equation (5.11), we have xq /∈ I.

Let Q be the path (xp, xp+1, . . . , xq). Since HM1M2(I) is a bipartite graph with vertex
classes I, E \ I, it follows from Claim 5.1 that l(Q) = 0 and |(I�Q) ∩ A| = |I ∩ A|. There
may exist several pairs p, q ∈ {1, 2, . . . , m} satisfying Equation (5.14). Let p1, q1 and p2, q2
be such pairs. Since we have q1 < p2 + 1 or q2 < p1 + 1, we can treat p1, q1 and p2, q2
independently. So, l(P ) = 0 follows from Equation (5.13), and |(I�P ) ∩ A| = |I ∩ A|, i.e.,
I�P is feasible.

Lemma 5.5. For each feasible common independent set I of M1,M2 and each path P of
PM1M2(I) using a bad arc, we have l(P ) ≥ 1.

Proof. Assume that P traverses vertices x1, x2, . . . , xm in this order. Since P uses a bad
arc, P traverses at least one vertex of A. So, there exist p, q ∈ {1, 2, . . . , m}

p ≤ q, xp, xp+1, . . . , xq ∈ A, p = 1 or xp−1 /∈ A, q = m or xq+1 /∈ A. (5.15)

If p = 1, then xp ∈ SM1(I), i.e., xp ∈ A0 follows from Lemma 5.1. So, by Lemma 5.2, we have
xq ∈ A0 and q �= m. This implies that (xi, xi+1) is not a bad arc for any i ∈ {p, p+1, . . . , q}.
If q = m, then xq ∈ SM2(I), i.e., xq ∈ Ak+1 follows from Lemma 5.1. So, by Lemma 5.2,
we have xp ∈ Ak+1 and p �= 1. This implies that (xi−1, xi) is not a bad arc for any
i ∈ {p, p + 1, . . . , q}. By this observation and the fact that P use a bad arc, there exists
s, t ∈ {1, 2, . . . , m} such that

1 < s ≤ t < m, xs, xs+1, . . . , xt ∈ A, xs−1 /∈ A, xt+1 /∈ A,

and (xi, xi+1) is a bad arc for some i ∈ {s − 1, s, . . . , t}. For proving the lemma, we need
the following claim.
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Claim 5.2. Both of xs, xt are contained in I.

Proof. We first consider the case where (xs−1, xs) is a bad arc, i.e., xs ∈ I and xs /∈ Ak+1.
By Lemma 5.2, we have xt /∈ Ak+1. If xt /∈ I, then xt ∈ Ak+1 by Lemma 5.3. So, xt ∈ I.

Next we consider the case where (xs−1, xs) is not a bad arc, but (xt, xt+1) is a bad arc.
In this case, xt ∈ I and xt /∈ A0. By Lemma 5.2, we have xs /∈ A0. Since (xs−1, xs) is not a
bad arc, if xs /∈ I, then xs ∈ A0 by Lemma 5.3. So, xs ∈ I.

Finally, we consider the case where (xs−1, xs) and (xt, xt+1) are not bad arcs, but (xi, xi+1)
is a bad arc for some i ∈ {s, s+1, . . . , t− 1}. By Lemma 5.2, xs /∈ A0 and xt /∈ Ak+1. Since
(xs−1, xs) and (xt, xt+1) are not bad arcs, then xs, xt ∈ I follows from xs /∈ A0, xt /∈ Ak+1

and Lemma 5.3.

For p, q ∈ {1, 2, . . . , m} satisfying Equation (5.15), let Q be the path (xp, xp+1, . . . , xq).
In the same way as the proof of Lemma 5.4, we can prove that if (a) p = 1, or (b) q = m,
or (c) p �= 1 and q �= m and (xi, xi+1) is not a bad arc for any i ∈ {p − 1, p, . . . , q}, then
l(Q) = 0. If p �= 1 and q �= m and (xi, xi+1) is a bad arc for some i ∈ {p− 1, p, . . . , q}, then
we have l(Q) ≥ 1 by Claim 5.2. So, l(P ) ≥ 1 follows from Equation (5.13).

We are now ready to prove Theorem 5.1.

Theorem 5.1. Suppose that QM1M2(I) �= ∅. By Lemmas 5.4 and 5.5, a path P of PM1M2(I)
is a minimum-length path of PM1M2(I) if and only if P ∈ QM1M2(I). Let P be a minimum-
size path of QM1M2(I). By Equation (5.13) and the feasibility of I, I is extreme. So, by
Theorem 3.2, I�P is a common independent set such that |I�P | = |I|+ 1. Moreover, by
Lemma 5.4, I�P is feasible.

Conversely, suppose that QM1M2(I) = ∅. If PM1M2 = ∅, then there exists no common
independent set I ′ of M1,M2 such that |I ′| = |I| + 1 by Theorem 3.1, and thus the proof
is done. So, assume that PM1M2 �= ∅. Let P be a path of PM1M2(I) such that l(P ) is
minimum among all paths of PM1M2(I) and such that (secondly) the size of P is minimum
among all minimum-length paths of PM1M2(I). By QM1M2(I) = ∅, P uses a bad arc.
So, by Lemma 5.5, l(P ) ≥ 1. By Equation (5.13) and the feasibility of I, I is extreme.
So, by Theorem 3.2, I�P is an extreme common independent set of M1,M2 such that
|I�P | = |I| + 1 and w(I�P ) = w(I) − l(P ) < w(I). If there exists a feasible common
independent set J of M1,M2 such that |J | = |I| + 1, then this contradicts the fact that
I�P is extreme since w(J) = w(I) > w(I�P ) by Equation (5.13).

5.2. Algorithm and its time complexity

From Theorem 5.1, we can obtain the following Algorithm 1 for the MIwPC problem.

Algorithm 1

Input: matroids M1 = (E, I1),M2 = (E, I2), and a subset A of E.
Output: an optimal solution for the MIwPC problem.
1: Find a maximum-size common independent set I∗ of M′

1,M
′
2.

2: Find the DM type decomposition A of M′
1,M

′
2 for I∗.

3: while QM1M2(I) �= ∅ do
4: Find a minimum-size path P of QM1M2(I) and update I := I�P .
5: end while
6: return I
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For each common independent set I ofM1,M2, the time required to construct DM1M2(I)
heavily depends on matroids M1,M2. So, we denote by T the time required to construct
DM1M2(I) for any common independent set I of M1,M2.

Theorem 5.2. Algorithm 1 solves the MIwPC problem in O(γT ) time, where γ is the size
of an optimal solution for the MIwPC problem.

Proof. The correctness of Algorithm 1 immediately follows from Theorem 5.1. (Notice that
if there exists no feasible common independent set of M1,M2 whose size is equal to N , then
it follows from (I1) that there exists no feasible common independent set of M1,M2 whose
size is more than N .) So, we consider its time complexity. Step 1 can be done in O(γT )
time with Theorem 3.1 and breadth-first search. (Notice that breadth-first search can be
done in O(T ) time since the size of DM1M2(I) is O(T ).) Step 2 is essentially equivalent to
finding the strongly connected components of DM1M2(I) for some common independent set
I of M1,M2. So, this step can be done in O(T ) time. Since HM1M2(I) can be constructed
in O(T ) time for any common independent set I of M1,M2, Steps 3 to 5 can be done in
O(γT ) time with Theorem 5.1 and breadth-first search. From these observations, the time
complexity of Algorithm 1 is O(γT ).

As stated in Section 1, it is not difficult to see that the MIwPC problem can be reduced
to the maximum-weight matroid intersection problem with the weight function defined in
Equation (5.13). If we use the maximum-weight matroid intersection algorithm of [2, 4] with
naive analysis, then the time complexity is O(γ(T+n logn)), where define n := |E| (also, see
[13, Section 41.3]). However, it should be noted that the weight defined in Equation (5.13)
is very restricted, and thus there is a possibility of achieving O(γT ) time by using the
algorithms of [2, 4] with more careful analysis.

6. Concluding Remarks

In this paper, we introduced the matroid intersection problem with priority constraints
that is a matroid-generalization of the simplest case of the rank-maximal matching prob-
lem. Then, we proposed an algorithm for the matroid intersection problem with priority
constraints by extending the “combinatorial” algorithm for the rank-maximal matching
problem presented by Irving, Kavitha, Mehlhorn, Michail and Paluch [7]. We conclude this
paper with a remark about the extendibility of the results of this paper to the “general”
rank-maximal matching problem. The rank-maximal matching problem is formally
defined as follows. We are given a finite bipartite graph G and a partition E1, E2, . . . , Ek

of the edge set of G. Then, our goal is to find a matching M of G such that |M ∩ E1|
is maximized and given that |M ∩ E1| is maximized, |M ∩ E2| is also maximized, and so
on. We can naturally generalize this problem to the matroid intersection setting and it is
not difficult to see that this problem can be solved in polynomial time by reducing it to
the maximum-weight matroid intersection problem. The problem studied in this paper is
the case of k = 2. So, the following question naturally arises. Can we extend the “combi-
natorial” algorithm for the rank-maximal matching problem to its matroid-generalization?
However, it does not seem that we can straightforwardly do this extension.
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