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Abstract This paper proposes random age, periodic and block replacement policies which are made at
random variable times, and optimal policies that minimize their expected cost rates are discussed analytically
and computed numerically. We compare such random replacements with their standard policies that are
made at constant times. Comparison results show that when costs for random and constant replacements are
the same, the standard policies are better than the random ones. Furthermore, it is computed numerically
that if how much the random replacement cost is lower than that for the constant one, then the standard
and random replacements have the same optimal cost rates. That is, the modified random replacement
costs and their optimal times are discussed and computed when the random replacements would be better
than the standard policies.
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1. Introduction

It has been well-known that the random replacement is not better theoretically than the
standard policy with a constant replacement time T [1, p. 72], and is not used in practice
at all. However, if the random replacement would be easier and more economical than the
standard policy, this should be applied to actual systems.

As systems have become more complex and higher reliable, their failures might occur
randomly with time and have a kind of exponential distributions [1, p. 18]. For such systems,
it would not be suitable to determine maintenances at constant planned times theoretically
and economically due to several unpredictable factors. On the other hand, in place of the
traditional maintenances with constant time T , we propose random age, periodic and block
replacement policies to spread widely in practical fields. Such policies without operational
suspensions for jobs would be performed more easily to maintenance policies for machines
with random working times [2, 3] and computers with random processing times [9]. That
is, when a job has a variable working time or processing time, it would be better to do
maintenance or replacement after the job is just completed even though the maintenance
time has arrived [6, p. 245]. A representative practical example for such random policies is
to maintain a database or to perform a backup of data when a transaction is processing its
sequences of operations, because it is necessary to guarantee ACID (atomicity, consistency,
isolation, and durability) properties of database transactions, especially for a distributed
transaction across a distributed database. In other words, if any part of transaction fails,
the entire transaction fails and the database state is left unchanged [4, 5].

By considering the factors of random working times in operations, the reliability quanti-
ties of the random age replacement policy were obtained [1, p. 72]. Several schedules of jobs
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that have random processing times were summarized [12]. The properties of replacement
policies between two successive failed units, where the unit is replaced at random times,
were investigated [13]. A summary of discussions for inspections with random policies were
made [8]. Under the assumptions of random failure and maintenance, replacement and
inspection with planned and random policies were considered, and their comparisons were
made [11, 14]. Combining a planned replacement with working times, the age and periodic
replacement policies, where the unit is replaced at a planned time T and at the Nth ran-
dom working time, were discussed [2, 3]. From the viewpoint of unnecessary replacement in
[2, 3], the notion of “whichever occurs last” between planned and random replacements was
explored and discussed [15]. Such a notion of random maintenance was applied to a parallel
system with random number of units to satisfy the random jobs [10].

This paper firstly takes up the combined constant and random age replacement policy
in which the unit is replaced at a constant time T or at a random time Y , where Y is
a random variable, and obtains the expected cost rate. We discuss optimal constant and
random replacement times for the standard and random policies, respectively. It has already
known that such a random replacement is not better than the standard policy that is
made at constant time T , when costs for constant and random replacements are the same.
Under the assumption of random replacement cost might be more economical than that at
constant time, we compare two expected costs and discuss numerically that if how much
the random replacement cost is lower than that for the standard one, they have the same
optimal cost rates. That is, the modified random replacement cost and its optimal time are
discussed and computed when the random replacement would be better than the standard
policy. Furthermore, we make similar discussions for the periodic replacement [1, 6] and
block replacement [1, 6]. Expected cost rates of each replacement are obtained and optimal
random policies which minimize them are derived analytically. Furthermore, we compare the
random replacements with their standard policies and compute modified costs for random
replacements when two expected costs of random and standard policies are the same.

2. Age Replacement

It is assumed that every operating unit has an identical failure distribution F (t) with a finite
mean µ (0 < µ < ∞), failure rate h(t) ≡ f(t)/F (t) and cumulative hazard rate H(t) ≡∫ t

0
h(u)du, where f(t) is a density function of F (t), i.e., F (t) ≡

∫ t

0
f(u)du, and Φ(t) ≡

1 − Φ(t) for any function Φ(t), and h(t) increases strictly with t to h(∞) ≡ limt→∞ h(t),
which might be infinity. Furthermore, M(t) ≡

∑∞
n=1 F

(n)(t) which is called a renewal
function in stochastic processes [7, p. 50], where F (n)(t) (n = 0, 1, 2, · · · ) denotes the n-fold
Stieltjes convolution of F (t) with itself and F (0)(t) ≡ 1 for t ≥ 0, and m(t) ≡ M ′(t) which
is called a renewal density. In addition, a random variable Y has a general distribution
G(t) ≡ Pr{Y ≤ t} with a finite mean θ ≡

∫∞
0

G(t)dt (0 < θ < ∞).
Suppose that the unit is replaced before failure at a planned time T or at a random time

Y , whichever occurs first, where T (0 < T ≤ ∞) is constant and Y is a positive random
variable with a general distribution G(t) with a finite mean θ (0 < θ ≤ ∞). Then, the
expected cost rate is [6, p. 247]

CA(T,G) =
cT + (cF − cT )

∫ T

0
G(t)dF (t) + (cR − cT )

∫ T

0
F (t)dG(t)∫ T

0
G(t)F (t)dt

, (2.1)

where cF = replacement cost at failure, cT = replacement cost at time T , cR = replacement
cost at time Y , and cF > cT and cF > cR. An optimal replacement time T ∗ which minimizes
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CA(T,G) was derived analytically [1, 2].
Clearly, when G(t) = 0 for any t ≥ 0, i.e., the unit is replaced only at time T , the

expected cost rate is [1, 6]

CA(T ) =
cT + (cF − cT )F (T )∫ T

0
F (t)dt

, (2.2)

which is called the standard age replacement. If h(∞) > cF/[µ(cF − cT )], then an optimal
time T ∗

A (0 < T ∗
A < ∞) which minimizes CA(T ) satisfies uniquely

h(T )

∫ T

0

F (t)dt− F (T ) =
cT

cF − cT
, (2.3)

and the resulting cost rate is

CA(T
∗
A) = (cF − cT )h(T

∗
A). (2.4)

On the other hand, when T = ∞, i.e., the unit is replaced only at time Y is

CA(G) ≡ lim
T→∞

CA(T,G) =
cR + (cF − cR)

∫∞
0

F (t)dG(t)∫∞
0

G(t)F (t)dt
, (2.5)

which is called the random age replacement.
It has been already shown [1, p. 87] that when cT = cR, (2.5) can be written as

CA(G) =

∫∞
0

Q(t)dG(t)∫∞
0

S(t)dG(t)
,

where

Q(t) ≡ cT + (cF − cT )F (t), S(t) ≡
∫ t

0

F (u)du.

Suppose that there exists a minimum value T (0 < T ≤ ∞) which minimizes Q(t)/S(t).
Because

Q(t)

S(t)
≥ Q(T )

S(T )
,

which follows that ∫ ∞

0

Q(t)dG(t) ≥ Q(T )

S(T )

∫ ∞

0

S(t)dG(t).

So that,

CA(G) ≥ Q(T )

S(T )
= CA(GT ) = CA(T ),

where GT (t) is the degenerate distribution placing unit mass at T , i.e., GT (t) ≡ 0 for t < T
and 1 for t ≥ T . If T = ∞, then the units is replaced only at failure and the expected cost
rate is

CA ≡ lim
T→∞

CA(T ) =
cF
µ
. (2.6)
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Therefore, the optimal replacement policy is nonrandom and the expected cost rate is given
in (2.2).

Next, when G(t) = 1− e−t/θ, we find an optimal θ∗A which minimizes the expected cost
rate

CA(θ) =
cR + (cF − cR)

∫∞
0

e−t/θdF (t)∫∞
0

e−t/θF (t)dt
. (2.7)

Differentiating CA(θ) with respect to θ and setting it equal to zero,

r(θ)

∫ ∞

0

e−t/θF (t)dt−
∫ ∞

0

e−t/θdF (t) =
cR

cF − cR
, (2.8)

where r(θ) ≡ limT→∞ r(T, θ), and for 0 < T ≤ ∞,

r(T, θ) ≡
∫ T

0
te−t/θdF (t)∫ T

0
te−t/θF (t)dt

. (2.9)

First, we investigate the properties of r(T, θ): It can be easily seen that because h(t)
increases strictly with t, r(T, θ) ≤ h(T ) and increases strictly with T from h(0) to r(θ).
Furthermore, differentiating r(T, θ) with θ,

dr(T, θ)

dθ
=

1

[
∫ T

0
θte−t/θF (t)dt]2

[∫ T

0

t2e−t/θdF (t)

∫ T

0

te−t/θF (t)dt

−
∫ T

0

te−t/θdF (t)

∫ T

0

t2e−t/θF (t)dt

]
.

Denoting L(T ) be the numerator of the right-hand side, L(0) = 0 and

L′(T ) = T e−T/θF (T )

∫ T

0

te−t/θF (t)[h(T )− h(t)](T − t)dt > 0,

i.e., L(T ) > 0 for 0 < T < ∞. So that, r(T, θ) increases strictly with θ to

r(T ) ≡
∫ T

0
tdF (t)∫ T

0
tF (t)dt

.

From the above result, the left-hand side of (2.8) also increases with θ from 0 to r(∞)µ−1,
where r(∞) ≡

∫∞
0

tdF (t)/
∫∞
0

tF (t)dt. Therefore, if r(∞) > cF/[µ(cF − cR)], then there
exists an optimal θ∗A (0 < θ∗A < ∞) which satisfies (2.8), and the resulting cost rate is

CA(θ
∗
A) = (cF − cR)r(θ

∗
A). (2.10)

Note that r(θ) plays the same role as the failure rate h(t) in the standard age replacement.
We have already known that if cT ≤ cR, then the standard age replacement is better

than the random policy. When cT > cR, r(∞) > cF/[µ(cF − cR)] and G(t) = 1− e−t/θ, we
compare the expected cost rates CA(T ) in (2.2) and CA(θ) in (2.7). We derive a modified

optimal policy θ̂ and its modified replacement cost ĉR (ĉR < cT ) in which two optimal cost
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rates CA(T
∗
A) and CA(θ̂) are the same. First, we compute T ∗

A (0 < T ∗
A < ∞) which satisfies

(2.3) for cT and cF , and CA(T
∗
A) in (2.4). Next, we compute modified ĉR which satisfies

r(θ)

∫ ∞

0

e−t/θF (t)dt+

∫ ∞

0

(1− e−t/θ)dF (t) =
cF

cF − ĉR
,

(cF − cT )h(T
∗
A) = (cF − ĉR)r(θ),

i.e., we firstly obtain θ̂ for T ∗
A which satisfies

1

r(θ)

∫ ∞

0

(1− e−t/θ)dF (t) +

∫ ∞

0

e−t/θF (t)dt =
1

h(T ∗
A)

cF
cF − cT

, (2.11)

and using θ̂, we compute ĉR which satisfies

cF − ĉR
cF − cT

=
h(T ∗

A)

r(θ̂)
. (2.12)

It is assumed as a numerical example that the failure time has a gamma distribution
with order k, i.e., F (t) =

∑∞
j=k[(λt)

j/j!]e−λt (k = 2, 3, · · · ), f(t) = [λ(λt)k−1/(k − 1)!]e−λt,

and h(t) = [λ(λt)k−1/(k − 1)!]/
∑k−1

j=0 [(λt)
j/j!], which increases strictly with t from 0 to λ.

Then, if k > cF/(cF − cT ), then an optimal T ∗
A (0 < T ∗

A < ∞) satisfies uniquely

λ(λT )k−1/(k − 1)!∑k−1
j=0 [(λT )

j/j!]

k−1∑
j=0

∫ T

0

(λt)j

j!
e−λtdt−

∞∑
j=k

(λT )j

j!
e−λT =

cT
cF − cT

,

and the resulting cost rate is

CA(T
∗
A) = (cF − cT )

λ(λT ∗
A)

k−1/(k − 1)!∑k−1
j=0 [(λT

∗
A)

j/j!]
.

On the other hand, when F (t) is a gamma distribution,∫ ∞

0

te−t/θdF (t) =
kθ

1 + λθ

(
λθ

1 + λθ

)k

,∫ ∞

0

te−t/θF (t)dt =
1

λ2

k∑
j=1

j

(
λθ

1 + λθ

)j+1

,

r(θ) =
kλ[λθ/(1 + λθ)]k−1∑k
j=1 j[λθ/(1 + λθ)]j−1

,

which increases strictly with θ from 0 to λ. Then, if k > cF/(cF − cR), then an optimal
θ∗A (0 < θ∗A < ∞) satisfies uniquely

kXk−1∑k
j=1 jX

j−1

k∑
j=1

Xj −Xk =
cR

cF − cR
,

where X ≡ λθ/(1 + λθ), and the resulting cost rate is

CA(θ
∗
A) = (cF − cR)

kλ[λθ∗A/(1 + λθ∗A)]
k−1∑k

j=1 j[λθ
∗
A/(1 + λθ∗A)]

j−1
.
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Table 1 presents T ∗
A for cT/cF , θ

∗
A for cR/cF which satisfies (2.3) and (2.8) when cT = cR,

and modified θ̂, ĉR/cF , and ĉR/cT which satisfy (2.11) and (2.12) when F (t) =
∑∞

j=k(t
j/j!)e−t

(k = 2, 3, 4). From the comparison results among T ∗
A, θ

∗
A and θ̂, it is shown that T ∗

A > θ∗A
for small cT/cF or cR/cF , however, T

∗
A < θ∗A for large ones. Note that θ̂ < θ∗A, i.e., we should

replace the unit earlier for the random policy in order to have the same expected cost rate
with the standard policy. It also could be show clearly that ĉR/cF decreases with k. From
the numerical value of ĉR/cT , we can find that if how much the modified ĉR is less than
cT , the expected costs for the standard and random age replacements are almost the same.
Taking k = 2 for an example, when ĉR is a little more than about 60% of cT , we can adopt
the random replacement.

Table 1: Optimal T ∗
A, θ

∗
A, θ̂, ĉR/cF , and ĉR/cT when F (t) =

∑∞
j=k(t

j/j!)e−t.

cT /cF k = 2 k = 3 k = 4
or

cR/cF T ∗
A θ∗A θ̂ ĉR/cF ĉR/cT T ∗

A θ∗A θ̂ ĉR/cF ĉR/cT T ∗
A θ∗A θ̂ ĉR/cF ĉR/cT

0.01 0.157 0.051 0.030 0.006 0.600 0.357 0.195 0.137 0.005 0.500 0.631 0.348 0.248 0.004 0.400
0.02 0.233 0.062 0.044 0.012 0.600 0.468 0.299 0.204 0.010 0.500 0.784 0.471 0.329 0.008 0.400
0.05 0.412 0.335 0.207 0.031 0.620 0.697 0.540 0.348 0.026 0.520 1.069 0.757 0.496 0.022 0.440
0.1 0.680 0.793 0.430 0.064 0.640 0.984 0.955 0.557 0.053 0.530 1.400 1.220 0.725 0.046 0.460
0.2 1.306 4.017 1.104 0.129 0.645 1.512 2.462 1.042 0.109 0.545 1.957 2.649 1.216 0.099 0.495

3. Periodic Replacement

A new unit begins to operate at time 0 and undergoes only minimal repair at each failure.
Suppose that the unit is replaced at time T or at time Y , whichever occurs first. Then, the
expected cost rate is [6, p. 250]

CP (T,G) =
cM
∫ T

0
G(t)h(t)dt+ cT + (cR − cT )G(T )∫ T

0
G(t)dt

, (3.1)

where cM = minimal repair cost at each failure, and cT and cR are given in (2.1). The
optimal replacement time T ∗

P which minimizes CP (T,G) was derived analytically [3, 6].
Clearly, when G(t) = 0 for any t ≥ 0, i.e., the unit is replaced only at time T , the

expected cost rate is [1, 6]

CP (T ) =
cMH(T ) + cT

T
, (3.2)

which is called the standard periodic replacement. If
∫∞
0

tdh(t) > cT/cM , then an optimal
T ∗
P (0 < T ∗

P < ∞) which minimizes CP (T ) satisfies

Th(T )−H(T ) =
cT
cM

, i.e.,

∫ T

0

tdh(t) =
cT
cM

, (3.3)

and the resulting cost rate is

CP (T
∗
P ) = cMh(T ∗

P ). (3.4)

On the other hand, when T = ∞, i.e., the unit is replaced only at time Y is

CP (G) ≡ lim
T→∞

CP (T,G) =
cM
∫∞
0

G(t)h(t)dt+ cR∫∞
0

G(t)dt
, (3.5)
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which is called the random periodic replacement.
By the method similar to Section 2, when cT = cR, (3.5) can be written as

CP (G) =

∫∞
0

Q(t)dG(t)∫∞
0

S(t)dG(t)
,

where

Q(t) ≡ cMH(t) + cR, S(t) = t.

Suppose that there exists a minimum value T (0 < T ≤ ∞) which minimizes Q(t)/S(t).
Because

Q(t)

S(t)
≥ Q(T )

S(T )
,

it follows that

CP (G) ≥ Q(T )

S(T )
= CP (GT ) = CP (T ).

If T = ∞, then the unit is replaced only at failure and the expected cost rate is

CP ≡ lim
T→∞

CP (T ) = cMh(∞),

where h(∞) might be infinity. Therefore, the optimal replacement policy is nonrandom and
the expected cost rate is given in (3.2).

Next, when G(t) = 1 − e−t/θ and H(t) = λtα (α > 1), we find an optimal θ∗P which
minimizes the expected cost rate

CP (θ) =
cM
∫∞
0

e−t/θλαtα−1dt+ cR

θ
=

cMλΓ(α+ 1)θα + cR
θ

, (3.6)

where Γ(α) ≡
∫∞
0

xα−1e−xdx for α > 0.
An optimal θ∗P which minimizes CP (θ) is easily given by

θ∗P =

[
cR
cM

1

λ(α− 1)Γ(α + 1)

]1/α
, (3.7)

and the resulting cost rate is

CP (θ
∗
P ) = cMλαΓ(α + 1)(θ∗P )

α−1. (3.8)

On the other hand, an optimal T ∗
P which satisfies (3.3) is

T ∗
P =

[
cT
cM

1

λ(α− 1)

]1/α
, (3.9)

and the resulting cost rate is

CP (T
∗
P ) = cMλα(T ∗

P )
α−1. (3.10)
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It can be easily seen that when cT = cR, T
∗
P = [Γ(α + 1)]1/αθ∗P , and hence, θ∗P < T ∗

P

and CP (T
∗
P ) < CP (θ

∗
P ). So that, the standard periodic replacement is better than the

random policy, as shown already. Furthermore, we derive a modified optimal policy θ̂ and
its modified replacement cost ĉR (ĉR < cT ) in which two optimal cost rates CP (T

∗
P ) and

CP (θ̂) are the same. That is, compute θ̂ satisfies

θ̂ =
T ∗
P

[Γ(α + 1)]1/(α−1)
.

Using θ̂, we compute

ĉR
cM

= λ(α− 1)Γ(α + 1)(θ̂)α =
cT
cM

1

[Γ(α + 1)]1/(α−1)
. (3.11)

Table 2 presents optimal T ∗
P for cT/cM , θ∗P for cR/cM which satisfies (3.9) and (3.7) when

cT = cR, and modified θ̂, ĉR/cM , and ĉR/cT when F (t) = 1− e−tα (α = 2, 3, 4). It indicates

that T ∗
P > θ∗P > θ̂ and ĉR/cF decreases with α. It is of great interest that ĉR/cT depends

only on α, because from (3.11), ĉR/cT = θ̂/T ∗
P = Γ(α+1)−1/(α−1). For example, when α = 2,

ĉR/cT is about 0.5, i.e., when the random replacement cost is 50% of the periodic one, the

two expected costs CP (T
∗
P ) and CP (θ̂) are the same.

Table 2: Optimal T ∗
P , θ

∗
P , θ̂, ĉR/cM , and ĉR/cT when F (t) = 1− e−tα .

cT /cM α = 2 α = 3 α = 4
or

cR/cM T ∗
P θ∗P θ̂ ĉR/cM ĉR/cT T ∗

P θ∗P θ̂ ĉR/cM ĉR/cT T ∗
P θ∗P θ̂ ĉR/cM ĉR/cT

0.1 0.316 0.224 0.158 0.050 0.500 0.368 0.203 0.150 0.041 0.410 0.427 0.193 0.148 0.035 0.350
0.2 0.477 0.316 0.224 0.100 0.500 0.464 0.255 0.189 0.082 0.410 0.508 0.230 0.176 0.069 0.350
0.5 0.707 0.500 0.354 0.250 0.500 0.630 0.347 0.257 0.204 0.410 0.639 0.289 0.222 0.173 0.350
1.0 1.000 0.707 0.500 0.500 0.500 0.794 0.437 0.324 0.408 0.410 0.760 0.343 0.263 0.347 0.350
2.0 1.414 1.000 0.707 1.000 0.500 1.000 0.550 0.408 0.816 0.410 0.904 0.408 0.313 0.693 0.350
5.0 2.236 1.581 1.118 2.500 0.500 1.357 0.747 0.554 2.041 0.410 1.136 0.513 0.394 1.733 0.350
10.0 3.162 2.236 1.581 5.000 0.500 1.710 0.941 0.698 4.082 0.410 1.351 0.610 0.468 3.467 0.350

4. Block Replacement

A new unit begins to operate at time 0 and failed units are replaced at each failure. Suppose
that the unit is replaced at time T or at time Y , whichever occurs first. Then, replacing
H(t) in (3.1) with M(t), the expected cost rate is

CB(T,G) =
cF
∫ T

0
G(t)m(t)dt+ cT + (cR − cT )G(T )∫ T

0
G(t)dt

, (4.1)

where cF = replacement cost at each failure, and cT and cR are given in (2.1).
Clearly, when G(t) = 0 for any t ≥ 0, i.e., the unit is replaced only at time T , the

expected cost rate is [1, 6]

CB(T ) =
cFM(T ) + cT

T
, (4.2)

which is called the standard block replacement. An optimal T ∗
B which minimizes CB(T )

satisfies

Tm(T )−M(T ) =
cT
cF

, (4.3)
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and the resulting cost rate is

CB(T
∗
B) = cFm(T ∗

B). (4.4)

On the other hand, when T = ∞, i.e., the unit is replaced only at time Y is

CB(G) ≡ lim
T→∞

CB(T,G) =
cF
∫∞
0

G(t)m(t)dt+ cR∫∞
0

G(t)dt
, (4.5)

which is called the random block replacement. By the method similar to Sections 2 and 3,
when cT = cR, the optimal policy which minimizes CB(G) is nonrandom, and the expected
cost rate is given in (4.2).

Next, when G(t) = 1− e−t/θ, the expected cost rate in (4.5) is rewritten as

CB(θ) =
cF
∫∞
0

e−t/θm(t)dt+ cR

θ
=

cFM
∗(1/θ) + cR

θ
, (4.6)

where M∗(1/θ) ≡
∫∞
0

e−t/θdM(t) which is the LS transform of M(t) for any θ > 0.
In particular, when F (t) is a gamma distribution with order k (k = 2, 3, · · · ), i.e.,

F (t) =
∑∞

j=k[(λt)
j/j!]e−λt and M(t) =

∑∞
n=1

∑∞
j=kn[(λt)

j/j!]e−λt [1, 7], the expected cost
rate is

CB(θ) =
1

θ

[
cF (λθ)

k

(1 + λθ)k − (λθ)k
+ cR

]
. (4.7)

Differentiating CB(θ) with respect to θ and setting it equal to zero,

(λθ)k

[(1 + λθ)k − (λθ)k]2
[(k − 1− λθ)(1 + λθ)k−1 + (λθ)k] =

cR
cF

, (4.8)

and the resulting cost rate is

CB(θ
∗
B) =

cFkλ[λθ
∗
B(1 + λθ∗B)]

k−1

[(1 + λθ∗B)
k − (λθ∗B)

k]2
. (4.9)

For example, an optimal θ∗B is, when k = 2,(
λθ

1 + 2λθ

)2

=
cR
cF

,

whose left-hand side increases strictly with θ from 0 to 1/4, and when k = 3,

(λθ)3(2 + 3λθ)

[1 + 3λθ + 3(λθ)2]2
=

cR
cF

,

whose left-hand side increases strictly from 0 to 1/3.
When cT > cR, G(t) = 1 − e−t/θ and F (t) =

∑∞
j=k[(λt)

j/j!]e−λt (k = 2, 3, · · · ), we

compute a modified optimal policy θ̂ and its modified replacement cost ĉR (ĉR < cT ) in

which two optimal cost rates CB(T
∗
B) and CB(θ̂) are the same. First, from (4.3), we compute

T ∗
B which satisfies

∞∑
j=1

(λT )kj

(kj − 1)!
e−λT −

∞∑
n=1

∞∑
j=kn

(λT )j

j!
e−λT =

cT
cF

. (4.10)
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Using T ∗
B, we compute θ̂ which satisfies

k[λθ(1 + λθ)]k−1

[(1 + λθ)k − (λθ)k]2
=

∞∑
j=1

(λT ∗
B)

kj−1

(kj − 1)!
e−λT ∗

B . (4.11)

Using θ̂, from (4.8), we compute

ĉR
cF

=
(λθ̂)k

[(1 + λθ̂)k − (λθ̂)k]2
[(k − 1− λθ̂)(1 + λθ̂)k−1 + (λθ̂)k]. (4.12)

For example, when k = 2, T ∗
B is given by a solution of the equation(

1

4
+

λT

2

)
(1− e−2λT )− λT

2
=

cT
cF

,

θ̂ is given by

λθ(1 + λθ)

(1 + 2λθ)2
=

λ

4
(1− e−2λT ∗

B),

and using θ̂,

ĉR
cF

=

(
λθ̂

1 + 2λθ̂

)2

.

Table 3 presents optimal T ∗
B for cT/cF , θ

∗
B for cR/cF which satisfies (4.3) and (4.8) when

cT = cR, modified θ̂, ĉR/cF , and ĉR/cT when F (t) =
∑∞

j=k(t
j/j!) e−t (k = 2, 3, 4). It has

the similar comparison results with Table 1, i.e., θ∗B > θ̂, and T ∗
B > θ∗B for small cT/cF or

cR/cF and T ∗
B < θ∗B for large ones, and both ĉR/cF and ĉR/cT decrease with k.

Table 3: Optimal T ∗
B, θ

∗
B, θ̂, ĉR/cF , and ĉR/cT when F (t) =

∑∞
j=k(t

j/j!)e−t.

cT /cF k = 2 k = 3 k = 4
or

cR/cF T ∗
B θ∗B θ̂ ĉR/cF ĉR/cT T ∗

B θ∗B θ̂ ĉR/cF ĉR/cT T ∗
B θ∗B θ̂ ĉR/cF ĉR/cT

0.01 0.157 0.125 0.085 0.005 0.500 0.355 0.235 0.164 0.004 0.400 0.630 0.365 0.260 0.004 0.400
0.02 0.233 0.197 0.131 0.011 0.550 0.467 0.330 0.226 0.009 0.450 0.781 0.487 0.338 0.008 0.400
0.05 0.412 0.405 0.255 0.029 0.580 0.691 0.565 0.367 0.024 0.480 1.059 0.771 0.507 0.022 0.440
0.1 0.688 0.860 0.495 0.062 0.620 0.969 0.981 0.587 0.053 0.530 1.374 1.234 0.748 0.047 0.470
0.2 1.497 4.236 1.734 0.151 0.755 1.487 2.503 1.213 0.123 0.615 1.881 2.669 1.331 0.109 0.545

Finally, when the unit fails, it is not replaced and remains in a failure state for the time
interval from a failure to its detection [6, p. 120]. Suppose that the unit is replaced at time
T or at time Y , whichever occurs first. Then, the mean time from failure to its detection is

G(T )

∫ T

0

(T − t)dF (t) +

∫ T

0

[∫ t

0

(t− u)dF (u)

]
dG(t) =

∫ T

0

F (t)G(t)dt.

Thus, the expected cost rate is

CD(G) =
cD
∫ T

0
F (t)G(t)dt+ cT + (cR − cT )G(T )∫ T

0
G(t)dt

, (4.13)
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where cD = downtime cost per unit of time from failure to its detection, and cT and cR are
given in (2.1).

Clearly, when G(t) = 0 for any t ≥ 0, i.e., the unit is replaced only at time T , the
expected cost rate is [1, p. 120]

CD(T ) =
cD
∫ T

0
F (t)dt+ cT

T
. (4.14)

If µcD > cT , then an optimal T ∗
D which minimizes CD(T ) satisfies uniquely

TF (T )−
∫ T

0

F (t)dt =
cT
cD

, i.e.,

∫ T

0

tdF (t) =
cT
cD

, (4.15)

and the resulting cost rate is

CD(T
∗
D) = cDF (T ∗

D). (4.16)

On the other hand, when T = ∞, i.e., the unit is replaced only at time Y is

CD(G) ≡ lim
T→∞

CD(T,G) =
cD
∫∞
0

F (t)G(t)dt+ cR∫∞
0

G(t)dt
. (4.17)

By the method similar to Sections 2–4, when cT = cR, the optimal policy which minimizes
CD(G) is nonrandom, and the expected cost rate is given in (4.16).

Next, when G(t) = 1− e−t/θ, the expected cost rate in (4.17) is written as

CD(θ) = cD

∫ ∞

0

e−t/θdF (t) +
cR
θ
. (4.18)

Differentiating CD(θ) with respect to θ and setting it equal to zero,∫ ∞

0

te−t/θdF (t) =
cR
cD

, (4.19)

whose left-hand increases strictly with θ from 0 to µ. Thus, if µcD > cR, then there exists
a finite and unique θ∗D (0 < θ∗D < ∞) which satisfies (4.19), and the resulting cost rate is

CD(θ
∗
D) = cD

∫ ∞

0

t

θ∗D
e−t/θ∗DF (t)dt. (4.20)

In particular, when F (t) =
∑k−1

j=0 [(λt)
j/j!]e−λt (k = 1, 2, · · · ), (4.19) becomes

k

(
λθ

1 + λθ

)k+1

=
cR

cD/λ
, (4.21)

whose left-hand side increases strictly with θ from 0 to k. Therefore, if k(cD/λ) > cR, then
there exists a finite and unique θ∗D (0 < θ∗D < ∞) which satisfies (4.21), and the resulting
cost rate is

CD(θ
∗
D) = cD

(
λθ∗D

1 + λθ∗D

)k (
1 +

k

1 + λθ∗D

)
. (4.22)
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12 T. Nakagawa & X. Zhao

Next, when cT > cR, G(t) = 1 − e−t/θ, F (t) =
∑∞

j=k[(λt)
j/j!]e−λt and k(cD/λ) > cT ,

we compute a modified optimal policy θ̂ and its modified replacement cost ĉR (ĉR < cT )

in which two optimal cost rates CD(T
∗
D) and CD(θ̂) are the same. First, from (4.15), we

compute T ∗
D which satisfies

k

∞∑
j=k+1

(λT )j

j!
e−λT =

cT
cD/λ

. (4.23)

Using T ∗
D, we compute θ̂ which satisfies(

λθ̂

1 + λθ̂

)k (
1 +

k

1 + λθ̂

)
=

∞∑
j=k

(λT ∗
D)

j

j!
e−λT ∗

D . (4.24)

Using θ̂, from (4.21),

ĉR
cD/λ

= k

(
λθ̂

1 + λθ̂

)k+1

. (4.25)

Table 4 presents optimal T ∗
D for cT/cD, θ

∗
D for cR/cD, which satisfies (4.15) and (4.19)

when cT = cR, modified θ̂, ĉR/cD, and ĉR/cT when F (t) =
∑∞

j=k(t
j/j!)e−t (k = 2, 3, 4),

which has similar variation trends with Tables 1 and 3.

Table 4: Optimal T ∗
D, θ

∗
D, θ̂, ĉR/cD and ĉR/cT when F (t) =

∑∞
j=k(t

j/j!)e−t.

cT /cD k = 2 k = 3 k = 4
or

cR/cD T ∗
D θ∗D θ̂ ĉR/cD ĉR/cT T ∗

D θ∗D θ̂ ĉR/cD ĉR/cT T ∗
D θ∗D θ̂ ĉR/cD ĉR/cT

0.1 0.818 0.583 0.399 0.046 0.460 1.195 0.746 0.521 0.041 0.410 1.624 0.916 0.649 0.038 0.380
0.2 1.102 0.866 0.574 0.097 0.485 1.508 1.033 0.700 0.086 0.430 1.970 1.219 0.839 0.079 0.395
0.3 1.331 1.134 0.730 0.150 0.500 1.745 1.285 0.851 0.134 0.446 2.233 1.473 0.993 0.123 0.410
0.4 1.535 1.408 0.884 0.207 0.518 1.946 1.527 0.990 0.184 0.446 2.433 1.710 1.131 0.168 0.420
0.5 1.727 1.702 1.041 0.266 0.532 2.128 1.770 1.125 0.236 0.472 2.617 1.939 1.260 0.216 0.432
0.6 1.914 2.025 1.207 0.327 0.545 2.297 2.091 1.259 0.290 0.483 2.785 2.167 1.386 0.265 0.442
0.7 2.099 2.382 1.385 0.397 0.567 2.457 2.279 1.395 0.345 0.493 2.941 2.398 1.510 0.315 0.450
0.8 2.285 2.800 1.580 0.459 0.574 2.612 2.554 1.535 0.403 0.505 3.090 2.633 1.633 0.367 0.459
0.9 2.476 3.279 1.796 0.530 0.589 2.764 2.847 1.679 0.463 0.514 3.231 2.877 1.758 0.421 0.468
1.0 2.674 3.847 2.040 0.604 0.604 2.913 3.164 1.830 0.525 0.525 3.369 3.130 1.884 0.476 0.476

In general, the results of three periodic replacements in Sections 3 and 4 are summarized
as follows [6, p. 12]: The expected cost rate of random and periodic replacement is

C(T,G) =
ci
∫ T

0
G(t)φ(t)dt+ cT + (cR − cT )G(T )∫ T

0
G(t)dt

, (4.26)

where φ(t) = h(t), m(t), F (t) and i = cM , cF , cD. The expected cost rate of periodic
replacement is

C(T ) =
ci
∫ T

0
φ(t)dt+ cT

T
. (4.27)

Differentiating C(T ) with respect to T and setting it equal to zero,

Tφ(T )−
∫ T

0

φ(t)dt =
cT
ci

or

∫ T

0

tdφ(t) =
cT
ci
. (4.28)
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If there exists T ∗ which satisfies (4.28), then the resulting cost rate is

C(T ∗) = ciφ(T
∗). (4.29)

The expected cost rate of random replacement is

C(G) =
ci
∫∞
0

G(t)φ(t)dt+ cR∫∞
0

G(t)dt
. (4.30)

5. Conclusions

We have taken up the random age, periodic and block replacements and compared them
with their standard policies. It has been already known that the random replacement is not
better than the standard policy with constant time T . However, if the random replacement
cost would be lower than that for constant time, the random replacement should be adopted
in practical fields. It would be much useful to has been shown that if how much the random
replacement cost is lower than that for the standard one, the random replacement is better
than the standard policy. From these results, the random replacement should be applied
actual systems from economical and environmental viewpoints.

Acknowledgement

This work is partially supported by National Natural Science Foundation of China 71171110;
Natural Science Foundation of Jiangsu Province of China BK2010555; Grant-in-Aid for
Scientific Research (C) of Japan Society for the Promotion of Science under Grant No.
22500897 and No. 24530371.

References

[1] R.E. Barlow and F. Proschan: Mathematical Theory of Reliability (Wiley, New York,
1965).

[2] M. Chen, S. Mizutani, and T. Nakagawa: Random and age replacement policies. In-
ternational Journal of Reliability, Quality and Safety Engineering, 17 (2010), 27–39.

[3] M. Chen, S. Nakamura, and T. Nakagawa: Replacement and preventive maintenance
models with random working times. IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, E93-A (2010), 500–507.

[4] T. Haerder and A. Reuter: Principles of transaction-oriented database recovery. ACM
Computing Surveys, 15 (1983), 287–317.

[5] P. Lewis, A. Bernstein, and M. Kifer: Databases and Transaction Processing: An
Application-Oriented Approach (Addison Wesley, Boston, 2002).

[6] T. Nakagawa: Maintenance Theory of Reliability (Springer, London, 2005).

[7] T. Nakagawa: Stochastic Process with Applications to Reliability Theory (Springer,
London, 2011).

[8] T. Nakagawa, S. Mizutani, and M. Chen: A summary of periodic and random inspection
policies. Reliability Engineering and System Safety, 95 (2010), 906–911.

[9] T. Nakagawa, K. Naruse, and S. Maeji: Random checkpoint models with N tandem
tasks. IEICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences, E92-A (2009), 1572–1577.

[10] T. Nakagawa and X. Zhao: Optimization problems of a parallel system with a random
number of units. IEEE Transactions on Reliability, 61 (2012), 543–548.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



14 T. Nakagawa & X. Zhao

[11] T. Nakagawa, X. Zhao, and W. Yun: Optimal age replacement and inspection policies
with random failure and replacement times. International Journal of Reliability, Quality
and Safety Engineering, 18 (2011), 405–416.

[12] M. Pinedo: Scheduling Theory, Algorithms and Systems (Prentice Hall, Englewood
Cliffs, NJ, 2002).

[13] W. Stadje: Renewal analysis of a replacement process. Operations Research Letters, 31
(2003), 1–6 .

[14] X. Zhao and T. Nakagawa: Optimal age replacement and inspection policies with
random failure and replacement times. In H. Pham (ed.): Proceedings of the 17th ISSAT
International Conference on Reliability and Quality in Design, 200–204, Vancouver,
B.C., 2011.

[15] X. Zhao and T. Nakagawa: Optimization problems of replacement first or last in reli-
ability theory. European Journal of Operational Research, 223 (2012), 141–149.

Xufeng Zhao
Nanjing University of Technology
30 Puzhu Road, Nanjing 211816, China
Aichi Institute of Technology
1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan
E-mail: g09184gg@aitech.ac.jp

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.


