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Abstract The purpose of this note is to add some important properties to the results obtained in [2].
Specifically, it is shown that (i) an apportionment for relaxed divisor methods remains unchanged over an
interval and (ii) any relaxed divisor method approaches the Webster method as the house size increases.
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1. Introduction

Balinski and Young [1] shows that an apportionment method is population monotone if and
only if it is a divisor method. Because the population monotonicity is admitted to be most
reflective of proportionality in apportionment, divisor methods are indispensable. However,
it is true that some undesirable methods are divisor methods. For example, the Jefferson
method favors large states and the Adams method favors small states, although they are
divisor methods. On the other hand, there are some desirable divisor methods as Webster’s
and Hill’s. Hence it might be useful to exclude such undesirable methods from the class
of divisor methods. This is exactly the motivation for relaxed divisor methods. Relaxed
divisor methods are derived from the concept of “relaxed proportionality”, see [2] for details.

Because the rounding criterion of any relaxed divisor method is describable by way of a
parameter, it might be expected that we could easily handle it mathematically and hence
this might be most helpful in discovering the best method of apportionment.

In this note we add some important properties to the results obtained in [2]. Specifically,
we will show that (i) an apportionment for relaxed divisor methods remains unchanged over
an interval and (ii) any relaxed divisor method approaches the Webster method as the house
size increases.

Although there are an infinite number of relaxed divisor methods based on parameters
between any two different finite values, the first property (i) implies that there are only a
finite number of apportionments between them. For example, for parameters between −10
and 10 we have only seven different apportionments, see Section 5. This will be helpful in
the sense that we will find out the best one among a finite number of candidates rather than
among an infinite number of candidates. In other words, the first property (i) could reduce
the effort for finding the best one .

The second property (ii) theoretically shows that the rounding criterion of any method
except for Webster’s is not identical to that of Webster’s for any finite house size. Moreover,
computer simulations performed in [2] strongly suggest the Webster method is not biased
for small or large states for any of the house size between 200 and 43,500. Therefore, the
second property (ii) shows that any relaxed divisor method except for the Webster method
is biased for small or large states. This means that the Webster method is the one and only
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unbiased relaxed divisor method, or it is the best.

In Section 2 we review divisor methods and relaxed divisor methods. In Section 3
we discuss the invariance of an apportionment over an interval. In Section 4 we show the
limitation of any relaxed divisor method is the Webster method as the house size approaches
infinity. Finally in Section 5 we give some apportionments for the 2010 U.S. Census.

2. Apportionment Methods

In this section, the definitions of divisor methods and relaxed divisor methods are given.

2.1. Divisor methods

Let N and N+ denote the sets of non-negative integers and positive integers, respectively.
Define a real valued function d(a) for a ∈ N, known as a rounding criterion. The function
d(a) is to be defined as a strictly increasing function in a. It satisfies a ≤ d(a) ≤ a + 1 for
a ∈ N and moreover satisfies d(b) = b and d(c) = c + 1 for no pair of integers b ∈ N+ and
c ∈ N.

Let z be a positive real number and let [z] denote an integer defined by the following
rule:

1. If z < d(0), then [z] = 0.
2. If d(a) < z < d(a+ 1) for some a ∈ N, then [z] = a+ 1.
3. If z = d(a) for some a ∈ N, then [z] = a or a+ 1.

Let s denote the number of states and h ≥ s the house size. Let pi > 0 denote the
population of state i. If the equality

∑s
i=1[pi/x] = h is achieved for some divisor x > 0, then

the number of seats to which state i is entitled is ai = [pi/x]; s-vector a = (a1, a2, . . . , as) is
referred to as an “ apportionment of h.” Such an apportionment of h is determined through
d(a), a ∈ N. If an apportionment method is defined with d(a), then the method is called a
divisor method. The following divisor methods are especially well known and defined with
respective d(a):

• the Adams method with d(a) = a,

• the Dean method with d(a) = a(a + 1)/(a+ 0.5),

• the Hill method with d(a) =
√

a(a+ 1),

• the Webster method with d(a) = a+ 0.5,

• the Jefferson method with d(a+ 1) = a+ 1.

2.2. Relaxed divisor methods

Let R+ and R denote the sets of positive real numbers and real numbers, respectively, where
it should be noted that infinities ±∞ are not included in R in a customary way.

For a real number θ ∈ R and a non-negative integer a ∈ N+, define the rounding criterion
dθ(a) as follows:

∗

dθ(a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

e

(a+ 1)a+1

aa
if θ = 1,

1

log a+1
a

if θ = 0,(
(a + 1)θ − aθ

θ

) 1
θ−1

if θ �= 1, 0,

(2.1)

∗In [2] n+ 1 is used instead of θ.
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and for real θ ∈ R, define dθ(0) as follows:

dθ(0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if θ ≤ 0,
1

e
≈ 0.37 if θ = 1,(
1

θ

) 1
θ−1

if θ > 0, θ �= 1.

(2.2)

An apportionment method is a relaxed divisor method if it is the divisor method defined
with dθ(a), a ∈ N. It is referred to as the relaxed divisor method based on θ.† For example,
the relaxed divisor method based on θ = −1 is the Hill method. Table 1 contains five
methods based on θ ∈ {−1, 0, 1, 2, 3}, see [2] for details.

Table 1: Relaxed divisor methods based on θ ∈ {−1, 0, 1, 2, 3}
Method θ
Hill −1
T&S 0
Theil 1
Webster 2
“1/3” 3

Theorem 2.1. Let a be an apportionment of h with
∑

i∈J ai = h for the relaxed divisor
method based on θ. Then

max
i∈I

dθ(ai − 1)

pi
≤ min

j∈J
dθ(aj)

pj

where I = {i | ai > 0, i = 1, 2, . . . , s} and J = {1, 2, . . . , s}.
Proof. See [1] for the proof.

3. Invariance of an Apportionment over an Interval

For real θ, ω ∈ R with θ �= 0 and θ �= ω, and for positive x, y ∈ R+ with x �= y, let

u(x, y; θ, ω) =

(
ω(xθ − yθ)

θ(xω − yω)

) 1
θ−ω

.

It is easily seen that u(x, y; θ, ω) can be extended by continuity to a function defined for all
real θ and ω and all positive x and y with x �= y. Namely, we have

u(x, y; θ, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ω(xθ−yθ)
θ(xω−yω)

) 1
θ−ω

if θω(θ − ω) �= 0,(
xθ−yθ

θ(log x−log y)

) 1
θ

if θ �= 0, ω = 0,(
xω−yω

ω(log x−log y)

) 1
ω

if θ = 0, ω �= 0,

exp
(

xθ logx−yθ log y
xθ−yθ

− 1
θ

)
if θ = ω �= 0,

√
xy if θ = ω = 0.

(3.1)

†When we refer to the relaxed divisor method based on θ, the value of θ is assumed to be finite as in [2].
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It is clear that the function u(x, y; θ, ω) is symmetric with respect to x, y and θ, ω. Since
u(x, y; θ, ω) is a mean ‡ of positive x and y with x �= y, we have

min{x, y} < u(x, y; θ, ω) < max{x, y}

for any θ, ω ∈ R. For this function u(x, y; θ, ω), Stolarsky [4] gives the following theorem:

Theorem 3.1. For positive x and y with x �= y, the function u(x, y; θ, ω) is strictly increas-
ing in both θ and ω.

For positive x ∈ R+ and real θ ∈ R define

u(x, θ) = u(x+ 1, x; θ, 1). (3.2)

Lemma 3.1. For positive x ∈ R+

lim
θ→+∞

u(x, θ) = x+ 1, lim
θ→−∞

u(x, θ) = x.

Proof. It is obvious from the definition of the Stolarsky mean, see [4].

Lemma 3.2. Let ux(x, θ) be the derivative of u(x, θ) with respect to x. Then

ux(x, θ)

u(x, θ)
=

1

u(x+ 1, x; θ, θ − 1)
.

Proof. Suppose θ �= 1, 0. Then we can get from (3.1) and (3.2)

u(x, θ) =

(
(x+ 1)θ − xθ

θ

) 1
θ−1

. (3.3)

Take the logarithm of each side of (3.3), then

log u(x, θ) =
1

θ − 1
log((x+ 1)θ − xθ)− 1

θ − 1
log θ.

Differentiate with respect to x, then we get

ux(x, θ)

u(x, θ)
=

θ

θ − 1
× (x+ 1)θ−1 − xθ−1

(x+ 1)θ − xθ

=
1

θ−1
θ

(x+1)θ−xθ

(x+1)θ−1−xθ−1

.

Note that

u(x+ 1, x; θ, θ − 1) =

(
(θ − 1)

(
(x+ 1)θ − xθ

)
θ
(
(x+ 1)θ−1 − xθ−1

)
) 1

θ−(θ−1)

,

then the equality can be obtained:

ux(x, θ)

u(x, θ)
=

1

u(x+ 1, x; θ, θ − 1)
.

‡u(x, y; θ, ω) is the so-called Stolarsky mean. An apportionment method based on u(x, y; θ, ω) is proposed
in [3]. Note that it is a divisor method but not a relaxed divisor method.
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Next suppose θ = 1. Then we have

u(x, 1) = exp

(
(x+ 1) log(x+ 1)− x log x

(x+ 1)− x
− 1

)
= exp ((x+ 1) log(x+ 1)− x log x− 1) ,

or

log u(x, 1) = (x+ 1) log(x+ 1)− x log x− 1.

Again differentiate with respect to x, then

ux(x, 1)

u(x, 1)
= log(x+ 1) + 1− log x− 1 = log

x+ 1

x
.

Note that

u(x+ 1, x; 1, 0) =
(x+ 1)− x

log(x+ 1)− log x
=

1

log x+1
x

.

Then we obtain
ux(x, 1)

u(x, 1)
=

1

u(x+ 1, x; 1, 0)
.

Finally consider the case for θ = 0. But the proof is parallel to that for θ = 1, hence
omitted.

Therefore, the theorem is proved.

For positive x ∈ R+ and real θ, ω ∈ R with θ < ω, define

g(x) =
u(x, θ)

u(x, ω)
. (3.4)

Lemma 3.3. For x > 0, g(x) is strictly increasing in x.§

Proof. Take the logarithm of each side of (3.4) and differentiate with respect to x, then it
follows from Lemma 3.2 that

g′(x)
g(x)

=
1

u(x+ 1, x; θ, θ − 1)
− 1

u(x+ 1, x;ω, ω − 1)
.

Notice g(x) > 0, then we have g′(x) > 0 because Theorem 3.1 implies u(x+1, x; θ, θ− 1) <
u(x+ 1, x;ω, ω − 1) for θ < ω. Hence the function g(x) is strictly increasing in x.

Lemma 3.4. For positive x, y ∈ R+ and real θ ∈ R, let

r(θ) =
u(x, θ)

u(y, θ)
.

If x = y, then r(θ) ≡ 1; if x < y, then r(θ) is strictly increasing and x/y < r(θ) <
(x+ 1)/(y + 1); if x > y, then it is strictly decreasing and x/y > r(θ) > (x+ 1)/(y + 1).

§This lemma appears in [3].
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Proof. It is obvious that r(θ) ≡ 1 for all θ if x = y. Assume x < y. Then, it follows from
Lemma 3.3 that

u(x, θ)

u(x, ω)
<

u(y, θ)

u(y, ω)

for any x, y, θ, ω with 0 < x < y and θ < ω. Notice all u( , ) > 0. Then we can cross-multiply
to get

u(x, θ)

u(y, θ)
<

u(x, ω)

u(y, ω)
,

namely, r(θ) < r(ω) for θ < ω. In other words, r(θ) is strictly increasing in θ. From
Lemma 3.1 we can get the relations limθ→+∞ r(θ) = (x+1)/(y+1) and limθ→−∞ r(θ) = x/y.
Hence we obtain x/y < r(θ) < (x+ 1)/(y + 1).

The proof for the case where x > y is analogous to the proof of the case where x < y
and hence omitted.

Lemma 3.5. Let x, y > 0. If u(x, θ)/u(y, θ) is strictly increasing in θ, then x < y.

Proof. We will prove by contrapositive. Let r(θ) = u(x, θ)/u(y, θ) and assume x ≥ y > 0.
Then Lemma 3.4 claims that r(θ) ≡ 1 or r(θ) is strictly decreasing, namely, it is not ‘strictly
increasing’. Hence the lemma.

Extend u(x, θ) defined for positive x > 0 to u(x, θ) for non-negative x ≥ 0 by defining
u(0, θ) = dθ(0). Then we can obtain the following lemma similar to Lemma 3.5:

Lemma 3.6. Let x, y ≥ 0 and θ > 0. If u(x, θ)/u(y, θ) is strictly increasing in θ, then
x < y.

Proof. Omitted because it is similar to that of Lemma 3.5.

Lemma 3.7. For a ∈ N,

dθ(a) = u(a, θ).

Proof. We can easily obtain the lemma by comparing (2.1) with (3.1).

Theorem 3.2. If a is an apportionment of h for two relaxed divisor methods, one based
on θ1 and the other on θ2 with θ1 < θ2, then it is also an apportionment of h for all relaxed
divisor methods based on θ, where θ1 ≤ θ ≤ θ2.

Proof. Assume a is not an apportionment of h for the relaxed divisor method based on
some θ̄ where θ1 < θ̄ < θ2. Then Theorem 2.1 means that there must exist two different
states i and j satisfying

dθ̄(ai − 1)

pi
>

dθ̄(aj)

pj
(3.5)

where ai > 0 and aj ≥ 0.
Because a is an apportionment of h for two relaxed divisor methods based on θ1 and θ2,

these two states i and j have the following relations:

dθ1(ai − 1)

pi
≤ dθ1(aj)

pj
(3.6)
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and

dθ2(ai − 1)

pi
≤ dθ2(aj)

pj
. (3.7)

We have two cases to be considered: the case where θ1 ≤ 0 and the case where θ1 > 0.
First consider the case where θ1 ≤ 0. Then the first line in (2.2) gives us dθ1(0) = 0. Since
we assume h ≥ s, the equality dθ1(0) = 0 demands that every state should receive at least
one seat. Hence the state j naturally receives aj ≥ 1 seats, or dθ1(aj) and dθ̄(aj) are positive.
In addition, (3.5) demands ai ≥ 2 for the state i, or dθ̄(ai − 1) and dθ2(ai − 1) are positive.

It follows from (3.5) and (3.6) that

dθ1(ai − 1)

dθ1(aj)
<

dθ̄(ai − 1)

dθ̄(aj)
.

Lemmas 3.5 and 3.7 give the relation: ai − 1 < aj . On the other hand, it follows from (3.5)
and (3.7) that

dθ̄(aj)

dθ̄(ai − 1)
<

dθ2(aj)

dθ2(ai − 1)
.

Again, Lemmas 3.5 and 3.7 give the relation: aj < ai−1 and hence we have a contradiction.
In the latter case, where 0 < θ1 < θ̄ < θ2, note that all dθ1(aj), dθ̄(aj), dθ̄(ai − 1) and

dθ2(ai − 1) are positive. Use Lemmas 3.6 and 3.7. Then the remaining proof is parallel to
the proof for the first case. Hence the theorem.

Combine Theorem 3.2 with Theorem 4.1 in Section 4, then we have the following:
Corollary 3.1. Let a be an apportionment of h for two divisor methods, one is the Jef-
ferson method and the other is the relaxed divisor method based on θJ , then it is also an
apportionment of h for all relaxed divisor methods based on θ ≥ θJ
Corollary 3.2. Let a be an apportionment of h for two divisor methods, one is the Adams
method and the other is the relaxed divisor method based on θA, then it is also an appor-
tionment of h for all relaxed divisor methods based on θ ≤ θA

4. Limit of the Relaxed Divisor Method Based on θ

In this section, we first investigate the limits of the relaxed divisor method based on θ as θ
approaches ±∞.
Theorem 4.1. The limit of the relaxed divisor method based on θ is the Jefferson method
as θ approaches +∞ and the limit of it is the Adams method as θ approaches −∞.

Proof. Note that Lemma 3.7 shows dθ(a) = u(a, θ) for non-negative a ∈ N. Since Lemma 3.1
shows limθ→+∞ u(a, θ) = a + 1 for positive a, we get dθ(a) = a + 1 for positive a ∈ N+. In
addition, from the definition (2.2) of dθ(0), we can get limθ→+∞ dθ(0) = 1. Hence we have
the relation: limθ→+∞ d(a) = a+1 for each non-negative a ∈ N which is Jefferson’s rounding
criterion. The proof for the Adams method can be carried out in a similar manner.

Comment: This proof shows that the methods of Jefferson and Adams are not relaxed
divisor methods. In addition, the Dean method is not a relaxed divisor method because it
is obviously impossible to find a value of θ satisfying u(a, θ) = a(a + 1)/(a + 0.5) for all
non-negative integers a ∈ N.

Next we study the limit of the rounding criterion dθ(a) of a relaxed divisor method as
the house size h approaches +∞. Then we have the following:
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Theorem 4.2.

lim
a→∞

∣∣∣∣dθ(a)−
(
a +

1

2

)∣∣∣∣ = 0.

Proof. Let v(x) = u(x, θ)−x. Then from Lemma 3.2 we get v′(x) = u(x, θ)/u(x+1, x; θ, θ−
1)− 1 = u(x+ 1, x; θ, 1)/u(x+ 1, x; θ, θ− 1)− 1. It follows from Theorem 3.1 that if θ < 2,
then v′(x) > 0, if θ > 2, then v′(x) < 0 and if θ = 2, then v′(x) = 0.

Assume θ < 2. Then the function v(x) is strictly increasing in x and bounded from
above since we have v(x) = u(x, θ)− x < u(x, 2)− x = 0.5, where the last equality follows
from u(x, 2) = u(x+ 1, x; 2, 1) = ((x+ 1)2 − x2)/2 = x+ 0.5. Hence the function v(x) must
have a limit at positive infinity. Define the limit as e = limx→+∞ v(x) where e ≤ 0.5.

Moreover, assume e < 0.5. Then there must exist θ′ < 2 such that u(x, θ′) = x+ e since
u(x, θ) is continuous and strictly increasing in θ, limθ→−∞ u(x, θ) = x and u(x, 2) = x+0.5.
However, u(x, θ′)−x is also strictly increasing in x, which means limx→+∞

(
u(x, θ′)−x

)
> e.

Here we have a contradiction. Therefore we obtain limx→+∞
(
u(x, θ)− x

)
= 0.5 for θ < 2.

Next assume θ > 2. Then v(x) = u(x, θ)−x is strictly decreasing and we have u(x, θ)−
x > u(x, 2)−x = 0.5. By doing in a similar way as before we can obtain limx→+∞

(
u(x, θ)−

x
)
= 0.5 for θ > 2.

For θ = 2 there is nothing to do. Finally, choose x = a ∈ N, then dθ(a) = u(a, θ). Hence
we have the theorem.

Note that d2(a) = a+ 0.5 is Webster’s rounding criterion. Then we have the following:

Corollary 4.1. Any relaxed divisor method approaches the Webster method as the house
size increases.

This explains the results presented in Figure 1 of [2]. This author believes Corollary 4.1
is the most important in the theory of apportionment. In other words, he believes the
Webster method to be the best among all relaxed divisor methods.

5. Some Apportionments for the 2010 U.S. Census

We consider all relaxed divisor methods based on θ where −10 ≤ θ ≤ 10 for the 2010 U.S.
Census. Then seven different apportionments a1, . . . ,a7 are obtained for seven intervals
I1, . . . , I7, respectively. See Table 2 for the 7 intervals and the 4th to 10th columns of
Table 3 for the 7 apportionments. In Table 3, the house size h = 435 is used and the 3rd
column “Quota” represents the quota qi (fair share) of state i where qi = h× pi/

∑s
j=1 pj .

Interval I4 contains θ = −1, 0, 1 which correspond to the methods of Hill, T&S and Theil,
respectively. Interval I5 contains θ = 2, 3 which correspond to the methods of Webster and
“1/3”, respectively. Similar results are obtained for the 1950–2000 Censuses.

Table 2: Seven intervals for all relaxed divisor methods based on θ where −10 ≤ θ ≤ 10

I1 = [−10.0000,−7.6931], I2 = [−7.6931,−3.0885], I3 = [−3.0885,−1.5265],
I4 = [−1.5265, 1.6147], I5 = [1.6147, 7.0545], I6 = [7.0545, 8.2831],
I7 = [8.2831, 10.0000]
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Table 3: Seven different apportionments for intervals I1, . . . , I7
State Population Quota a1 a2 a3 a4 a5 a6 a7

CA 37,341,989 52.538 52 52 53 53 53 53 53
TX 25,268,418 35.551 35 36 36 36 36 36 36
NY 19,421,055 27.324 27 27 27 27 27 28 28
FL 18,900,773 26.592 27 27 27 27 27 27 27
IL 12,864,380 18.099 18 18 18 18 18 18 18
PA 12,734,905 17.917 18 18 18 18 18 18 18
OH 11,568,495 16.276 16 16 16 16 16 16 16
MI 9,911,626 13.945 14 14 14 14 14 14 14
GA 9,727,566 13.686 14 14 14 14 14 14 14
NC 9,565,781 13.458 13 13 13 13 14 14 14
NJ 8,807,501 12.392 12 12 12 12 12 12 12
VA 8,037,736 11.309 11 11 11 11 11 11 11
WA 6,753,369 9.502 10 10 10 10 10 10 10
MA 6,559,644 9.229 9 9 9 9 9 9 9
IN 6,501,582 9.147 9 9 9 9 9 9 9
AZ 6,412,700 9.022 9 9 9 9 9 9 9
TN 6,375,431 8.970 9 9 9 9 9 9 9
MO 6,011,478 8.458 8 8 8 8 8 8 8
MD 5,789,929 8.146 8 8 8 8 8 8 8
WI 5,698,230 8.017 8 8 8 8 8 8 8
MN 5,314,879 7.478 8 8 7 8 8 7 8
CO 5,044,930 7.098 7 7 7 7 7 7 7
AL 4,802,982 6.757 7 7 7 7 7 7 7
SC 4,645,975 6.537 7 7 7 7 7 7 7
LA 4,553,962 6.407 6 6 6 6 6 6 6
KY 4,350,606 6.121 6 6 6 6 6 6 6
OR 3,848,606 5.415 5 5 5 5 5 5 5
OK 3,764,882 5.297 5 5 5 5 5 5 5
CT 3,581,628 5.039 5 5 5 5 5 5 5
IA 3,053,787 4.296 4 4 4 4 4 4 4
MS 2,978,240 4.190 4 4 4 4 4 4 4
AR 2,926,229 4.117 4 4 4 4 4 4 4
KS 2,863,813 4.029 4 4 4 4 4 4 4
UT 2,770,765 3.898 4 4 4 4 4 4 4
NV 2,709,432 3.812 4 4 4 4 4 4 4
NM 2,067,273 2.909 3 3 3 3 3 3 3
WV 1,859,815 2.617 3 3 3 3 3 3 3
NE 1,831,825 2.577 3 3 3 3 3 3 2
ID 1,573,499 2.214 2 2 2 2 2 2 2
HI 1,366,862 1.923 2 2 2 2 2 2 2
ME 1,333,074 1.876 2 2 2 2 2 2 2
NH 1,321,445 1.859 2 2 2 2 2 2 2
RI 1,055,247 1.485 2 2 2 2 1 1 1
MT 994,416 1.399 2 2 2 1 1 1 1
DE 900,877 1.267 2 1 1 1 1 1 1
SD 819,761 1.153 1 1 1 1 1 1 1
AK 721,523 1.015 1 1 1 1 1 1 1
ND 675,905 0.951 1 1 1 1 1 1 1
VT 630,337 0.887 1 1 1 1 1 1 1
WY 568,300 0.800 1 1 1 1 1 1 1
Totals 309,183,463 435.000 435 435 435 435 435 435 435
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