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Abstract In this paper, we consider a non-cooperative n-person game in the strategic form. As is well
known, the game has a mixed-strategy Nash equilibrium. However, it does not always have a pure-strategy
Nash equilibrium. Wherein, Topkis (1979), Iimura (2003), and Sato and Kawasaki (2009) provided a
sufficient condition for the game to have a pure-strategy Nash equilibrium. However, they did not consider
necessary conditions.

This paper has two aims. The first is to extend the authors’ sufficient condition, which is based on
monotonicity of the best responses. The second is to show that the existence of a pure-strategy Nash
equilibrium implies the monotonicity of the best responses or an isolation of the equilibrium.
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1. Introduction

In this paper, we consider the non-cooperative n-person game G = {N, {Si}i∈N , {pi}i∈N},
where

• N := {1, . . . , n} is the set of players.

• For any i ∈ N , Si denotes the finite set, with a total order �i, of player i’s pure strategies.
An element of this set is denoted by si.

• pi : S :=
∏n

j=1 Sj → R denotes the payoff function of player i.

It is well known that we can prove the existence of a mixed-strategy Nash equilibrium,
originally introduced by Nash [5, 6], applying Kakutani’s fixed point theorem [3] to the best
response correspondence.

On the other hand, there are a couple of unified results proving the existence of a
pure-strategy Nash equilibrium. Iimura [2] provided a discrete fixed point theorem using
integrally convex sets [4], and Brouwer’s fixed point theorem [1]. As an application thereof,
he defined a class of non-cooperative n-person games that certainly have a pure-strategy
Nash equilibrium. Sato and Kawasaki [8] have provided a discrete fixed point theorem based
on the monotonicity of the mapping, and have given a class of non-cooperative n-person
games that also certainly have a pure-strategy Nash equilibrium. Their idea is similar to
Topkis’s work [10]. He introduced the so-called supermodular games. In the paper, he
first got the monotonicity of the greatest and least element of each player’s best response,
by assuming the increasing differences for each player’s payoff function. Next, relying on
Tarski’s fixed point theorem [9], he showed the existence of a pure-strategy Nash equilibrium
in supermodular games. However, these results are concerned with only sufficiency for the
existence of a pure-strategy Nash equilibrium. Hence, in this paper, we shall consider not
only sufficiency but necessity for the existence of it.
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This paper has two aims. The first is to extend the class of non-cooperative n-person
games provided in [8], which certainly have a pure-strategy Nash equilibrium. We intro-
duce“partial monotonicity” in Section 3. The second is to show that the partial monotonicity
is necessary for the existence of a pure-strategy Nash equilibrium in a bimatrix game. This
is discussed in Section 4. Here we emphasize that the extension in Section 3 not only is
an extension of the result in [8] but has a crucial role in the discussion on necessity of the
existence of a pure-strategy Nash equilibrium in Section 4. In order to achieve our goal, we
use a directed graphic representation of set-valued mappings.

2. Preliminaries

Since S is the product of finite sets Si’s, it is also finite, say, S = {s1, . . . , sm}. For any
non-empty set-valued mapping F from S to itself, we define a directed graph DF = (S,AF )
by AF = {(si, sj) : sj ∈ F (si), si, sj ∈ S}. For any selection f of F , that is, f(s) ∈ F (s) for
all s ∈ S, we similarly define a directed graph Df . For any s ∈ S, we denote by od(s) and
id(s) the outdegree and indegree of s, respectively. Then, od(s) ≥ 1 for DF , and od(s) = 1
for Df .

Definition 2.1. (Cycle of length l) We say a set-valued mapping F has a directed cycle
of length l if there exist l distinct points {si1 , si2, . . . , sil} of S such that si1 ∈ F (sil) and
sik+1 ∈ F (sik) for all k ∈ {1, . . . , l − 1}.
Example 2.1. Take S = {s1, . . . , s9} and define a non-empty set-valued mapping F as
in Figure 1. For example, F (s6) = {s2, s3, s5, s8}, F (s7) = {s7, s8} and etc. It is clear
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Figure 1: The graph DF has directed cycles of length 1, 2, 3 and 4.

that {s7}, {s3, s6}, {s6, s8, s9} and {s1, s4, s5, s2} are directed cycles of length 1, 2, 3 and 4,
respectively.

We now prove the following lemma required later:

Lemma 2.1. If Df is connected in the sense of the undirected graph, then f has only one
directed cycle.

Proof. We start with an arbitrary s ∈ S. Since S is finite, there exists 0 ≤ k < l such that
fk(s) = f l(s), where fk is the k-time composition of f . Hence, {fk(s), fk+1(s), . . . , f l−1(s)}
is a directed cycle. Next, suppose that there are two distinct directed cycles C1 and C2;
see Figure 2. Since Df is connected, there exists a path π = {si1, . . . , sij} joining C1 and
C2, where si1 ∈ C1 and sij ∈ C2. Further, since any directed cycle has no outward arc,
we obtain si1 = f(si2), si2 = f(si3), . . . , sij−1 = f(sij), which contradicts that C2 has no
outward arc. �
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Figure 2: The graph Df has two cycles, and od(si6) = 2.

3. A Sufficient Condition for the Existence of a Pure-Strategy Equilibrium

In this section, we present a class of non-cooperative n-person games that have a pure-
strategy Nash equilibrium. We use the following notation:

For any s ∈ S, we set s−i := (s1, . . . , si−1, si+1, . . . , sn), and S−i :=
∏n

j �=i Sj . For any
given s−i ∈ S−i, we denote by Fi(s−i) the set of best responses of player i, that is,

Fi(s−i) :=

{
si ∈ Si : pi(si, s−i) = max

ti∈Si

pi(ti, s−i)

}
. (3.1)

We set F (s) :=
∏n

j=1 Fj(s−j) and f(s) := (f1(s−1), . . . , fn(s−n)), where fi is a selection of
Fi.

An element s∗ of S is called a pure-strategy Nash equilibrium if

pi(s
∗
i , s

∗
−i) ≥ pi(si, s

∗
−i) ∀si ∈ Si (∀i ∈ N).

Therefore, any pure-strategy Nash equilibrium is characterized by a fixed point of the best
response correspondence F , that is, s∗ ∈ F (s∗). In other words, DF has a cycle of length 1.

Our sufficient condition is based on monotonicity of a selection f . In order to define
monotonicity, we need several kinds of orders.

Let Ti be a non-empty subset of Si. For any bijection σi : Ti → Ti, we define a total
order si �σi

ti on Ti by σi(si) �i σi(ti), where �i is the total order on Si. We denote by Tσi

the ordered set (Ti,�σi
). Further, si <σi

ti means si �σi
ti and si �= ti.

We set T :=
∏n

i=1 Ti and T−i :=
∏n

j �=i Tj . For any σ := (σ1, . . . , σn), Tσ denotes the
partially ordered set (T,≺=σ) such that s ≺=σ t if si �σi

ti for all i ∈ N . The symbol s 
σ t
means s ≺=σ t and s �= t. T−i is also equipped with the component-wise order ≺=σ−i

, and the
partially ordered set is denoted by Tσ−i

.

Definition 3.1. We say G is a partially monotone game if there exist a selection f of F ,
non-empty subsets Ti ⊂ Si, and bijections σi from Ti into itself (i ∈ N) such that at least
one of Ti’s has two or more elements, f(T ) ⊂ T , and

s−i 
σ−i
t−i ⇒ fi(s−i) �σi

fi(t−i) (3.2)

for any i ∈ N .

Theorem 3.1. Any partially monotone non-cooperative n-person game has a pure-strategy
Nash equilibrium.

Proof. Since Tσ is the product of totally ordered sets, it has a minimum element, say t0.
Then t0 ≺=σ f(t0) =: t1. If t0 = t1, t0 is a fixed point. If t0 �= t1, set

N1 := {i ∈ N : t0−i = t1−i}, N2 := {i ∈ N : t0−i 
σ−i
t1−i}.
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Then t0 ≺=σ t1, 0 ≤ |N1| ≤ 1, and N is a disjoint union of N1 and N2. Next, take

t2i :=

{
t1i , i ∈ N1

fi(t
1
−i), i ∈ N2.

Then, by partial monotonicity, we have t1i = fi(t
0
−i) �σi

fi(t
1
−i) = t2i for any i ∈ N2.

Therefore, t1 ≺=σ t2. Since T is finite, this procedure stops in finite steps, and we get a fixed
point, which is a pure-strategy Nash equilibrium. �

Here we recall the term “monotonicity” introduced by Sato and Kawasaki [8].
Definition 3.2. ([8, Definition 3.1]) We say G is a monotone game if εi = 1 or −1 is
allocated to each i ∈ N , and

s0−i 
 s1−i, t1i ∈ Fi(s
0
−i) ⇒ ∃t2i ∈ Fi(s

1
−i) such that εit

1
i � εit

2
i

for any i ∈ N , where s0−i 
 s1−i means that εjs
0
j � εjs

1
j for all j �= i.

Proposition 3.1. ([8, Theorem 3.1]) Any monotone non-cooperative n-person game G has
a Nash equilibrium of pure strategies.

When G is a monotone game, by taking Ti = Si, σi = id and

fi(s−i) :=

{
maximum element of Fi(s−i), if εi = 1
minimum element of Fi(s−i), if εi = −1,

we see that G is a partially monotone game.

As a specific example, let us consider the following bimatrix game:
• A = (aij) is a payoff matrix of player 1 (P1), that is, p1(i, j) = aij .

• B = (bij) is a payoff matrix of player 2 (P2), that is, p2(i, j) = bij .

• S1 := {1, . . . , m1} is the set of pure strategies of P1, where m1 ∈ N.

• S2 := {1, . . . , m2} is the set of pure strategies of P2, where m2 ∈ N.

• For any j ∈ S2, F1(j) := {i∗ ∈ S1 : ai∗j = maxi∈S1 aij} is the set of best responses of P1.

• For any i ∈ S1, F2(i) := {j∗ ∈ S2 : bij∗ = maxj∈S2 bij} is the set of best responses of P2.

• F (i, j) := F1(j)× F2(i) denotes the set of best responses of (i, j) ∈ S1 × S2.

• A pair (i∗, j∗) is a pure-strategy Nash equilibrium if (i∗, j∗) ∈ F (i∗, j∗).
Example 3.1. Let S1 = S2 = {1, 2, 3}. The following is not a monotone bimatrix game.

A =

⎛
⎝ 4© 2 3

2 5© 4©
3 1 4©

⎞
⎠ , B =

⎛
⎝ 2 1 3©

1 4© 2
3© 3© 2

⎞
⎠ .

Now we exchange the second and third columns. A and B are transformed into A′ and B′,
respectively, as given below:

A′ =

⎛
⎝ 4© 3 2

2 4© 5©
3 4© 1

⎞
⎠ , B′ =

⎛
⎝ 2 3© 1

1 2 4©
3© 2 3©

⎞
⎠ .

However, the bimatrix game defined by A′ and B′ is not a monotone game. Next, we remove
the third row. Then A′ and B′ are transformed into A′′ and B′′, respectively:

A′′ =
(

4© 3 2
2 4© 5©

)
, B′′ =

(
2 3© 1
1 2 4©

)
.
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The bimatrix game defined by A′′ and B′′ is now a monotone game for (ε1, ε2) = (1, 1), and
have a pure-strategy Nash equilibrium (2, 3). In the original bimatrix game, the equilibrium
is (2, 2).

The procedure above is equivalent to taking T1 := {1, 2} ⊂ S1, σ1 := id, T2 := S2 and σ2

permutation (2, 3) in Definition 3.1. Therefore, the original game is a partially monotone
game.

In Figure 3 left, we plot the directed graph DF corresponding to the best responses F
of the original bimatrix game. Figure 3 right is the directed graph corresponding to the
best responses of the bimatrix game after the above procedure. It is clear that the directed
graph has only one cycle of length 1.

Figure 3: Left: The directed graph defined by A and B; Right: The directed graph defined
by A′′ and B′′

4. A Necessary Condition for the Existence of a Pure-Strategy Equilibrium

In this section, we consider the bimatrix game, and show that partial monotonicity is a part
of necessary for the existence of a pure-strategy Nash equilibrium.

Before we show the main theorem in this section, we recall several definitions and propo-
sitions requested later from Sato and Ito [7].

Definition 4.1. ([7, Definition 3.1]) A Nash equilibrium (i∗, j∗) is said to be isolated if
(i∗, j∗) ∈ F (i, j) implies (i, j) = (i∗, j∗).
Proposition 4.1. ([7, Theorem 3.5]) A two-person game G is a partially monotone game
if and only if there exist a selection f of F , R1 ⊂ S1 and R2 ⊂ S2 such that one of the
following holds:

(i) #R1 = 1, #R2 = 2 and f(R1 ×R2) ⊂ R1 × R2;

(ii) #R1 = 2, #R2 = 1 and f(R1 ×R2) ⊂ R1 × R2;

(iii) there exists a permutation σ2 on R2 such that #R1 = #R2 = 2, f(R1×R2) ⊂ R1×R2,

j <σ2 j
′ ⇒ f1(j) �id f1(j

′) for any j, j′ ∈ R2, and

i <id i
′ ⇒ f2(i) �σ2 f2(i

′) for any i, i′ ∈ R1.

We are ready to present the main theorem in this section.

Theorem 4.1. Assume that a two-person game G has a pure-strategy Nash equilibrium,
say, s∗. Then either (i) or (ii) below holds:

(i) The game G is a partially monotone game.

(ii) s∗ is an isolated Nash equilibrium.

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



A Pure-Strategy Nash Equilibrium 197

Proof. Suppose that s∗ := (i∗, j∗) is not isolated, that is, there exists (i, j) �= (i∗, j∗) such
that (i∗, j∗) ∈ F (i, j). In other words, there exist (i, j) ∈ S1 × S2 and a selection f of F
such that (i, j) �= (i∗, j∗) and (i∗, j∗) = f(i, j).

Case 1: When i = i∗ and j �= j∗, we take R1 = {i∗} and R2 = {j∗, j}. Then we get (i)
of Proposition 4.1 because of f1(j) = i∗.

Case 2: When i �= i∗ and j = j∗, we easily obtain (ii) of Proposition 4.1 as well as Case
1.

Case 3: When i �= i∗ and j �= j∗. f(i, j) = (i∗, j∗), that is, f1(j) = i∗ and f2(i) = j∗, so
by taking R1 := {i∗} and R2 := {j∗, j}, we have f(R1 × R2) ⊂ R1 × R2. Hence we get (i)
of Proposition 4.1.

Therefore, we conclude that the game G is a partially monotone game from the propo-
sition. �

If the number of players is three or more, then Theorem 4.1 fails.

Example 4.1. Let P1, P2 and P3 be players; let the player’s strategies be i ∈ {1, 2},
j ∈ {1, 2} and k ∈ {1, 2}, respectively; and let each player’s best responses be the following:

P1 k = 1 k = 2

j = 1 i = 2 i = 1
j = 2 i = 2 i = 2

P2 k = 1 k = 2

i = 1 j = 2 j = 2
i = 2 j = 1 j = 2

P3 j = 1 j = 2

i = 1 k = 2 k = 1
i = 2 k = 1 k = 2

Then this game is not a partially monotone game. Indeed, there are only four combinations
of two bijections on S1 and S2. The above table on P3 corresponds to (σ1, σ2) = (id, id).
Three tables below correspond to ((1, 2), id), (id, (1, 2)), and ((1, 2), (1, 2)), respectively. In
any case, the best response does not satisfy (3.2).

P3 j = 1 j = 2

i = 2 k = 1 k = 2
i = 1 k = 2 k = 1

P3 j = 2 j = 1

i = 1 k = 1 k = 2
i = 2 k = 2 k = 1

P3 j = 2 j = 1

i = 2 k = 2 k = 1
i = 1 k = 1 k = 2

On the other hand, since (f1(2, 2), f2(2, 2), f3(2, 2)) = (2, 2, 2), (i, j, k) = (2, 2, 2) is a pure-
strategy Nash equilibrium, which is not isolated, see Figure 4.

(1,1,1)

(1,1,2)

(1,2,1)

(1,2,2)

(2,1,1)

(2,1,2)

(2,2,1)

(2,2,2)

Figure 4: Point (2, 2, 2) is a pure-strategy Nash equilibrium, which is not isolated.
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