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Abstract During the past decade, a structured financial product called “Collateralized Debt Obligation
(CDO)” has been drawing much attention of researchers and practitioners, and is now traded with growing
liquidity. However, the approach for CDO pricing has been rather limited in the literature, largely because
it is necessary to evaluate the time dependent distribution of the underlying cumulative loss so as to find the
pricing scheme satisfying the non-arbitrage condition of the derivatives market. The purpose of this paper is
to fill this gap by describing the CDO model in terms of a semi-Markov modulated Poisson process. Based
on the theoretical results of Huang and Sumita [6] as well as the Laguerre transform method, numerical
algorithms are developed for evaluating the time dependent distribution of the cumulative loss up to time
t, which in turn enables one to evaluate the price of a CDO tranche. Some numerical results are presented,
demonstrating the power of the algorithms.

Keywords: Applied probability, semi-Markov modulated Poisson process, reward pro-
cess, Laguerre transform, finance, CDO pricing

1. Introduction

A structured financial product called “Collateralized Debt Obligation (CDO)” securitizes a
reference portfolio of default risky instruments. If the portfolio contains loans or bonds, then
the CDO is called a cash CDO. When the referenced portfolio consists of “Credit Default
Swaps (CDS’s)”, it is called a synthetic CDO. Recently, portfolio credit derivatives such as
Tranched Index have been drawing much attention of researchers and practitioners, and are
now traded with growing liquidity.

A typical approach for assessing (synthetic) CDO and Tranched Index is based on the
Gaussian copula model of Li [10]. Because this model is essentially static, the dynamic
evolution of CDO tranches cannot be captured. In order to overcome this difficulty, it is
often necessary to introduce a two layer process, where the first layer describing the macro
economic condition would affect portfolio loss distributions expressed in the second layer.
In other words, the default intensity function would satisfy a stochastic differential equation
(or assumed to be driven by a certain Markov chain) characterized by the state of the
external economic condition as well as the history of defaults up to the current time. Some
recent papers along this direction include Arnsdorf and Halperin [1], Bielecki, Vidozzi and
Vidozzi [2], Frey and Backhaus [5], de Kock, Kraft and Steffensen [3], Schönbucher [11] and
Sidenius, Piterbarg and Andersen [12].

Although some structural characteristics of CDO tranches could be captured by these
pioneering models, they are far from offering the computational vehicle for evaluating CDO
tranches in continuous time, and one often has to resort to Monte Carlo simulation for this
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Cumulative random shocks and CDO pricing 159

purpose. To the best knowledge of the authors, Lando [9] is the first to suggest the use
of MMPP for capturing the stochastic behavior of portfolio losses. (Here, MMPP stands
for Markov Modulated Poisson Process, which is a generalization of the Poisson process in
that the arrival rate depends on the state of an independent continuous time Markov chain.
For further details, the reader is referred to Fischer and Meier-Hellstern [4].) Consequently,
the computational procedure for general Markov chains can be applied for evaluating loss
distributions. However, the infinitesimal generator characterizing the underlying Markov
chain could be huge, imposing the tremendous computational burden. Takada, Sumita and
Takahashi [21] recapture the MMPP model of Lando [9] within the context of CDO. By
exploiting the first passage time structure, efficient computational procedures are developed
for evaluating loss distributions and pricing CDO tranches. This model has been extended
further in Takada and Sumita [20], where two industrial segments are introduced to enhance
the reality of the model. In both Takada, Sumita and Takahashi [21] and Takada and
Sumita [20], the loss of a single default is considered to be constant, which may be somewhat
unrealistic.

In order to overcome this pitfall, this paper provides a cumulative random shock process
generated from a semi-Markov modulated Poisson process, enabling one to cope with random
costs associated with corporate defaults. It should be noted that this process is a special case
of the multivariate reward process discussed in Huang and Sumita [6], where the transform
results obtained therein are used to derive the time dependent distribution of the cumulative
aggregate loss explicitly. Using the Laguerre transform method developed by Keilson and
Nunn [7], Keilson, Nunn and Sumita [8], and further studied by Sumita [13], computational
algorithms are developed for evaluating the distribution of the loss process for the underlying
CDO model, which in turn enables one to evaluate the price of a CDO tranche.

The analytic results obtained in Huang and Sumita [6] cannot be inverted into real
domain. Accordingly, the use of such results have been largely restricted to asymptotic
expansions of moments. However, for applications like the CDO pricing problem under
consideration here, the moment information is not sufficient and it is absolutely necessary
to evaluate the distribution of the cumulative aggregate loss at time t explicitly. The
thrust of this paper is to re-express the transform results by taking advantage of a case
of a semi-Markov modulated Poisson process in such a way that the inversion from the
bivariate Laplace transform domain to the real domain becomes possible. This work is
quite laborious and challenging, and should be considered as a good contribution in its own
right. Furthermore, it is worth noting that the bivariate version of the matrix Laguerre
transform is developed for the first time in this paper.

Throughout the paper, vectors and matrices are underlined and double underlined re-
spectively, e.g. u and v. The vector of having all components equal to 1 is denoted by 1. The
indicator function δ{Statement} takes the value of 1 if Statement holds true and 0 otherwise.

The structure of this paper is as follows. In Section 2, the structure and pricing scheme
of CDO are introduced. Section 3 describes the model employed in this paper to capture
the default phenomenon, with transform results of the distribution of the cumulative ag-
gregate loss Z(t) of the underlying reference portfolio. Numerical algorithms for evaluating
the distribution of Z(t) via the Laguerre transform are provided in Section 4. Some nu-
merical results are presented in Section 5, demonstrating the power of the algorithms, with
concluding remarks given in Section 6.

In order to facilitate the readability of the paper, the inversion procedures via the La-
guerre transform and the algorithms discussed in Section 4 are summarized in Appendices
A and B. The reader is also referred to Sumita and Kijima [17, 18] for a succinct summary
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of the computational algorithms associated with the Laguerre transform.

2. Structure of CDO and Pricing CDO Tranches

The CDO scheme involves the protection buyer (the CDO issuer) and the protection seller
(the investor) as depicted in Figure 1. Given a reference portfolio, the CDO is typically
structured by dividing the associated credit risk into tranches of increasing seniority. Here,
each tranche consists of an attachment point Ka and a detachment point Kd of the cu-
mulative aggregate loss of the underlying reference portfolio, where 0 < Ka < Kd. The
protection buyer is fully responsible for the portfolio loss up to Ka. When the portfolio loss
exceeds Ka, the protection seller compensates the protection buyer by paying the exceeding
amount beyond Ka but only up to Kd − Ka. In exchange, predetermined premiums are
paid to the protection seller by the protection buyer according to a prespecified schedule
up to the maturity year in such a way that no-arbitrage condition of the credit derivatives
market is satisfied. Following Takada, Sumita and Takahashi [21], the procedural details
are described below for determining the premium scheme for each tranche.

Investor CDO Issuer

Protection Seller
−→ Protection −→
←− Premium ←−

Protection Buyer

Figure 1: Contract of CDO tranche

A typical CDO tranche contract consists of the attachment point Ka, the detachment
point Kd, the premium settlement points τ = {τ0, · · · , τK} with τ0 = 0, and the unit
premium c[Ka,Kd]. These entities are related to each other through the following procedural
details. Let Z(t) be the cumulative aggregate loss of the underlying reference portfolio up
to time t. We note that Z(t) can be typically described as a stochastic process characterized
by a counting process associated with corporate defaults and random bad debts resulting
from such corporate defaults. Let L[Ka,Kd](t) be defined by

L[Ka,Kd](t) =





0 if Z(t) ≤ Ka

ℓ(t)−Ka if Ka < Z(t) ≤ Kd

Kd −Ka if Kd < Z(t)

. (2.1)

With notation (x)+ = max{0, x}, L[Ka,Kd](t) in (2.1) can be rewritten as

L[Ka,Kd](t) =
(
Z(t)−Ka

)+

−
(
Z(t)−Kd

)+

. (2.2)

One sees that L[Ka,Kd](t) can be depicted as a function of Z(t) as shown in Figure 2.
Let PAY sell→buy(τk) be the amount to be paid to the protection buyer by the protection

seller at time τk, k = 0, 1, · · · , K. This amount is equal to the increment of the cumulative
aggregate loss since time τk−1, that is,

PAY sell→buy(τk) = L[Ka,Kd](τk)− L[Ka,Kd](τk−1) , k = 1, 2, · · · , K. (2.3)

In return, the protection buyer pays to the protection seller by the amount of the unit pre-
mium c[Ka,Kd] applied to the remaining hedge interval, i.e. (Kd−Ka) minus the cumulative
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Kd $ Ka

Ka Kd Z't)

L[Ka, Kd]'t)

Figure 2: Cumulative loss L[Ka,Kd] of a CDO tranche

payment made by the protection seller to the protection buyer up to time τk. This amount,
denoted by PAY buy→sell

(
c[Ka,Kd], τk

)
, can be written as

PAY buy→sell

(
c[Ka,Kd], τk

)
= c[Ka,Kd]

{
(Kd −Ka)−

k∑

j=1

PAY sell→buy(τj)
}

(2.4)

for k = 1, 2, · · · , K. Substitution of (2.3) into (2.4) then yields

PAY buy→sell

(
c[Ka,Kd], τk

)
= c[Ka,Kd]

{
(Kd −Ka)− L[Ka,Kd](τk)

}
. (2.5)

Figure 3 illustrates the procedural details discussed above.
In order to satisfy no-arbitrage condition of the credit derivatives market, the unit pre-

mium c[Ka,Kd] should be set in such a way that the expected payment throughout the contract
period from the protection buyer to the protection seller is equal to that from the protection
seller to the protection buyer. Let c∗[Ka,Kd] be this equilibrium premium. One then sees that,

K∑

k=1

e−rf τkE
[
PAY sell→buy(τk)

]
=

K∑

k=1

e−rf τkE
[
PAY buy→sell

(
c∗[Ka,Kd], τk

)]
, (2.6)

where rf is the risk free interest rate. Here, it is assumed that there exists a risk neutral
martingale measure under which all price processes discounted by the interest rate rf are
martingales. With an additional assumption that rf is constant, all expectations are taken
in this paper with respect to this measure.

By substituting (2.3) and (2.5) into (2.6), it can be solved for c∗[Ka,Kd] as

c∗[Ka,Kd] =

∑K
k=1 e−rf τkE

[
L[Ka,Kd](τk)− L[Ka,Kd](τk−1)

]

∑K
k=1 e−rf τkE

[
(Ka −Kd)− L[Ka,Kd](τk)

] , (2.7)

so that

c∗[Ka,Kd] =

∑K
k=1 e−rf τk

{
E
[
L[Ka,Kd](τk)

]
− E

[
L[Ka,Kd](τk−1)

]}

∑K
k=1 e−rf τk

{
(Ka −Kd)− E

[
L[Ka,Kd](τk)

]} . (2.8)
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Ka

Kd

cumulative aggregate loss: Z3t4

time

Protection Seller
3Protectionleg4

Protection Buyer
3Premiumleg4

[Ka, Kd];tranche

PAYbuy→sell 

= c[Ka, Kd] ×

PAYsell→buy =

Figure 3: Typical cash flow of a CDO tranche contract

As we will see, by specifying how corporate defaults are generated stochastically and
what would be the random nature of the bad debt resulting from such corporate defaults,
Z(t) can be modeled as a stochastic process. If the survival function F̄Z(z, t) = P[Z(t) > z]
of Z(t) is obtained, then the expectation of L[Ka,Kd](t) can be evaluated from (2.2) as

E
[
L[Ka,Kd](t)

]
=

∫ ∞

Ka

F̄Z(z, t)dz −

∫ ∞

Kd

F̄Z(z, t)dz + KaF̄Z(Kd, t) . (2.9)

Consequently, the equilibrium premium c∗[Ka,Kd] can be computed based on (2.8). In the
next section, we employ a semi-Markov modulated Poisson process , which is a special case
of the unified multivariate counting process of Sumita and Huang [15], for characterizing oc-
currences of corporate defaults. The corresponding univariate version of the reward process
discussed by Huang and Sumita [6] then characterizes Z(t), yielding the Laplace transform
of Z(t) for each t > 0 based on the results from [6]. The inversion of the Laplace transform
can be obtained via the Laguerre transform method, thereby enabling one to assess c∗[Ka,Kd]

numerically.

3. Corporate Default Structure based on Semi-Markov Modulated Poisson Pro-

cess and Associated Cumulative Aggregate Loss Process

For the CDO pricing problem discussed in the previous section, we assume that corporate
defaults are generated by a semi-Markov modulated Poisson process. More specifically, let
J(t) be a semi-Markov process on J = {0, 1, 2}, describing the macro-economic condition.
Here, state 1 corresponds to the normal economic condition while state 0 and state 2 repre-
sent the bad economic condition and the good economic condition respectively. Corporate
defaults occur according to a Poisson process Mi(t) with intensity λi whenever the semi-
Markov process is in state i. The d-th corporate default in state i results in the random bad
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debt of YM :i:d, where YM :i:d’s constitute a sequence of i.i.d. random variables with respect
to d for each i, and such i.i.d. sequences are mutually independent with respect to i.

In order to facilitate our analysis, it is assumed that the semi-Markov process J(t) is
governed by a matrix cumulative distribution function (c.d.f.) A(x) = [Aij(x)] , which is
absolutely continuous with the matrix probability density function (p.d.f.) a(x) = [aij(x)] =
d
dx

A(x) . It should be noted that, if we define Ai(x) and Āi(x) by

Ai(x) =
∑

j∈J

Aij(x) ; Āi(x) = 1− Ai(x) ,

then Ai(x) is the c.d.f. and Āi(x) is the corresponding survival function of the dwell time
of J(t) in state i. The hazard rate functions associated with the semi-Markov process are

then defined as ηij(x) =
aij(x)

Āi(x)
, i, j ∈ J . The Laplace transform of a(x) is denoted by

α(w) =
∫∞

0
e−wxa(x)dx .

For notational convenience, the transition epochs of the semi-Markov process are denoted
by τn, n ≥ 0, with τ0 = 0. The age process X(t) associated with the semi-Markov process
is then defined as X(t) = t − max{τn : 0 ≤ τn ≤ t}. For the cumulative arrival intensity
function Li(x) in state i, if we consider an age-dependent intensity function λi(x), one has
Li(x) =

∫ x

0
λi(y)dy . The probability of observing k arrivals in state i within the current age

of x can then be obtained as

gi(x, k) = e−Li(x)Li(x)k

k!
, k = 0, 1, 2, · · · , i ∈ J .

Huang and Sumita [6] provide a multivariate reward process Z(t) = [Z1(t), Z2(t), · · · , ZK(t)]⊤

defined on R
K given by

Z(t) =

∫ t

0

ρ
(
J(τ)

)
dτ +

∑

i∈J

Mi(t)∑

d=1

Y M :i:d +
∑

i∈J

∑

j∈J

Nij(t)∑

d=1

Y N :ij:d , (3.1)

where ρ(i) denotes the multivariate reward rate function while the underlying semi-Markov
process J(t) is in state i ∈ J . Y M :i:d and Y N :ij:d represent the vector valued random jumps
associated with the d-th arrival of Mi(t) in state i and the d-th jump of Nij(t) describing
transitions of J(t) from state i to state j, respectively.

In this paper, we let Z(t) be the cumulative aggregate loss of the underlying reference
portfolio. One then sees that

Z(t) =
∑

i∈J

Mi(t)∑

d=1

YM :i:d . (3.2)

We note that Z(t) is a univariate version of Z(t) analyzed in Huang and Sumita [6] , with
the following simplifications.





λi(x) = λi , for i ∈ J

YN :ij:d = 0 with probability 1

ρ(i) = 0 for all i ∈ J

(3.3)

Let ζ(r, s) be the double Laplace transform of Z(t), i.e.

ζ(r, s) =

∫ ∞

0

e−stE[e−rZ(t)]dt . (3.4)
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By setting u = 1, v = 1, w = 0+ in Theorem 3.1 of Huang and Sumita [6], and incorporating
the simplifications in (3.3), one sees that

ζ(r, s) = p⊤(0)×
∞∑

ℓ=0

β̂
(
s1, θM(r)

)ℓ

× β̂
∗

D

(
s1, θM(r)

)
× 1 , (3.5)

where Z(0) = 0, p(0) denotes the initial probability vector of J(0), and

θM(r) = [θM :0(r), · · · , θM :J(r)]⊤ with θM :i(r) denoting the Laplace transform of distribution
of YM :i:d, i.e., given the common probability density function YM :i(z) of YM :i:d,

θM :i(r) =

∫ ∞

0

e−rzYM :i(z)dz . (3.6)

The Laplace transform generating function β̂(w, u) and β̂
∗

D
(w, u) are defined as

β̂(w, u) =
[
β̂ij(wi, ui)

]
; β̂ij(wi, ui) =

∞∑

mi=0

(∫ ∞

0

e−wixaij(x)gi(x,mi)dx

)
umi

i , (3.7)

β̂
∗

D
(w, u) =

[
δ{i=j}β̂

∗
i (wi, ui)

]
; β̂∗

i (wi, ui) =
∞∑

mi=0

(∫ ∞

0

e−wixĀi(x)gi(x,mi)dx

)
umi

i .

(3.8)

Given t > 0, the random variable Z(t) has a mass at the origin denoted by z0(t) =
P[Z(t) = 0], and an absolutely continuous density fZ+

(z, t) for z ≥ 0. More formally,
FZ(z, t) = P[Z(t) ≤ z] can be written as

FZ(z, t) = z0(t) +

∫ z

0

fZ+
(x, t)dx . (3.9)

Accordingly, ζ(r, s) in (3.4) is given by

ζ(r, s) = ζ0(s) + ζ+(r, s) , (3.10)

where

ζ0(s) =

∫ ∞

0

e−stz0(t)dt ; ζ+(r, s) =

∫ ∞

0

∫ ∞

0

e−ste−rzfZ+
(z, t)dzdt . (3.11)

It can be readily seen that ζ0(s) = limr→∞ ζ(r, s). We note from (3.6) that limr→∞ θM(r) =
0. It then follows from Equation (3.5) that

ζ0(s) = p⊤(0)×

{
I +

∞∑

ℓ=1

[
αij(s + λi)

]ℓ
i,j∈J

}
×

[
1− αi(s + λi)

s + λi

]

i∈J

. (3.12)

From (3.5) together with (3.12), ζ+(r, s) = ζ(r, s)− ζ0(s) can then be obtained, after a little
algebra, as

ζ+(r, s) = p⊤(0)×

{
I +

∞∑

ℓ=1

β̂
+

(
s1, θM(r)

)ℓ
}
× β̂

∗

+:D

(
s1, θM(r)

)
× 1 , (3.13)
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where

β̂+:ij

(
s, θM :i(r)

)
= β̂ij

(
s, θM :i(r)

)
− αij(s + λi)

=
∞∑

k=1

θk
M :i(r)

∫ ∞

0

e−staij(t)e
−λit

(λit)
k

k!
dt , (3.14)

and

β̂∗
+:i

(
s, θM :i(r)

)
= β̂∗

i

(
s, θM :i(r)

)
−

1− αi(s + λi)

s + λi

=
∞∑

k=1

θk
M :i(r)

∫ ∞

0

e−stĀi(t)e
−λit

(λit)
k

k!
dt . (3.15)

4. Development of Numerical Algorithms for Evaluating the Distribution of

Z(t) via the Laguerre Transform

In this section, we develop numerical algorithms for evaluating z0(t) and fZ+
(z, t) via the

Laguerre transform based on (3.12) through (3.15). A succinct summary of the Laguerre
transform is provided in Appendix A. The reader is referred to Sumita and Kijima [17, 18]
for further details concerning the algorithmic aspects of the Laguerre transform.

Let

ak:ij(t) = aij(t)e
−λit

(λit)
k

k!
, k = 0, 1, 2, · · · (4.1)

Āk:i(t) = Āi(t)e
−λit

(λit)
k

k!
, k = 0, 1, 2, · · · . (4.2)

For notational simplicity, we define

{an}n:N = {a0, a1, · · · , aN} ;

{a(m,n)}mn:MN = {a(0,0), a(0,1), · · · , a(0,N), · · · , a(M,0), a(M,1), · · · , a(M,N)} , (4.3)

where an or a(m,n) may be a number, a vector or a matrix, and M or N denotes a positive
integer or ∞. With this notation, we define the corresponding Laguerre sharp and dagger

coefficients
{
a#

k:n

}
n:∞

,
{
a†

k:n

}
n:∞

,
{
Ā

#
k:n

}
n:∞

and
{
Ā

†
k:n

}
n:∞

, i.e.

T#

ak
(u) =

∫ ∞

0

e−sta
k
(t)dt

∣∣∣
s= 1

2

1+u
1−u

=
∞∑

n=0

a#

k:n
un , (4.4)

T
#

Āk
(u) =

∫ ∞

0

e−stĀk(t)dt
∣∣∣
s= 1

2

1+u
1−u

=
∞∑

n=0

Ā
#
k:nu

n , (4.5)

and a†
k:n

=
∑n

m=0 a#
k:m

, Ā
†
k:n =

∑n
m=0 Ā

#
k:m.

Similarly, for θM :i(r) =
∫∞

0
e−rzYM :i(z)dz, the Laguerre coefficients

{
y#

m

}
m:∞

and
{
y†

m

}
m:∞

are defined as

T
#
Y (v) = θM(r)

∣∣∣
r= 1

2

1+v
1−v

=
∞∑

m=0

y#

m
vm , (4.6)
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and y†
m

=
∑m

n=0 y#
n
. We note that the Laguerre transform generating functions associated

with time t are expressed using u with index n, while those corresponding to the reward z

are described in terms of v with index m.
By using the array operation CONV, VCONV, VBCONV, VMCONV and VMBCONV

defined in Appendix B, one has

{
π

#
0:n(1)

}
n:∞

def
⇔ π

#⊤
0:n (1) = p⊤(0) · a#

0:n
, n = 0, 1, · · · , (4.7)

{
π

#
0:n(ℓ)

}
n:∞

= VMCONV
({

π
#
0:n(ℓ− 1)

}
n:∞

,
{
a#

0:n

}
n:∞

)
, ℓ = 2, 3, · · · , (4.8)

{
π

#
0:n

}
n:∞

def
⇔ π

#
0:n =

∞∑

ℓ=1

π
#
0:n(ℓ) , n = 0, 1, · · · , (4.9)

{
Π#

0:n

}
n:∞

def
⇔ Π#

0:n = p⊤(0) · Ā
#
0:n , n = 0, 1, · · · . (4.10)

From Equation (3.12), the Laguerre sharp coefficients
{
z

#
0:n

}
n:∞

of z0(t) is then obtained as

{
z

#
0:n

}
n:∞

=
{
Π#

0:n

}
n:∞

+ VCONV
({

π
#
0:n

}
n:∞

,
{
Ā

#
0:n

}
n:∞

)
. (4.11)

For fZ+
(z, t), let

{
y

#
i:m(k)

}
m:∞

be defined by

{
y

#
i:m(k)

}
m:∞

= CONV
({

y
#
i:m(k − 1)

}
m:∞

,
{
y

#
i:m

}
m:∞

)
, k = 2, 3, · · · , (4.12)

with
{
y

#
i:m(1)

}
m:∞

=
{
y

#
i:m

}
m:∞

for i ∈ J . We also define

{
b
†
+:ij:(m,n)

}
mn:∞∞

def
⇔ b

†
+:ij:(m,n) =

∞∑

k=1

y
†
i:m(k)× a

†
k:ij:n , (4.13)

{
b
∗†
+:i:(m,n)

}
mn:∞∞

def
⇔ b

∗†
+:i:(m,n) =

∞∑

k=1

y
†
i:m(k)× Ā

†
k:i:n . (4.14)

Correspondingly,
{
b
#
+:ij:(m,n)

}
mn:∞∞

and
{
b
∗#
+:i:(m,n)

}
mn:∞∞

can be given by

b
#
+:ij:(m,n) = b

†
+:ij:(m,n) − b

†
+:ij:(m−1,n) − b

†
+:ij:(m,n−1) + b

†
+:ij:(m−1,n−1) , (4.15)

b
∗#
+:i:(m,n) = b

∗†
+:i:(m,n) − b

∗†
+:i:(m−1,n) − b

∗†
+:i:(m,n−1) + b

∗†
+:i:(m−1,n−1) . (4.16)

This then yields the matrix sequence
{
b#

+:(m,n)

}
mn:∞∞

with b#

+:(m,n)
=
[
b
#
+:ij:(m,n)

]
and the

vector sequence
{
b
∗#
+:(m,n)

}
mn:∞∞

with b
∗#
+:(m,n) =

[
b
∗#
+:i:(m,n)

]
i∈J

.

Using these matrix and vector sequences, we define

{
π

#
+:(m,n)(1)

}
mn:∞∞

def
⇔ π

#⊤
+:(m,n)(1) = p⊤(0) · b#

+:(m,n)
, m, n = 0, 1, · · · ,

(4.17)
{
π

#
+:(m,n)(ℓ)

}
mn:∞∞

= VMBCONV
({

π
#
+:(m,n)(ℓ− 1)

}
mn:∞∞

,
{
b#

+:(m,n)

}
mn:∞∞

)
,

ℓ = 2, 3, · · · (4.18)

{
π

#
+:(m,n)

}
mn:∞∞

def
⇔ π

#
+:(m,n) =

∞∑

ℓ=1

π
#
+:(m,n)(ℓ) , m, n = 0, 1, · · · , (4.19)

{
Π#

+:(m,n)

}
mn:∞∞

def
⇔ Π#

+:(m,n) = p⊤(0) · b∗#+:(m,n) , m, n = 0, 1, · · · . (4.20)
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From Equation (3.13), the Laguerre sharp coefficients
{
z

#
+:(m,n)

}
mn:∞∞

of fZ+
(z, t) can then

be obtained as

{
z

#
+:(m,n)

}
mn:∞∞

=
{
Π#

+:(m,n)

}
mn:∞∞

+ VBCONV
({

π
#
+:(m,n)

}
mn:∞∞

,
{
b
∗#
+:(m,n)

}
mn:∞∞

)
. (4.21)

Consequently, z0(t) and fZ+
(z, t) can be evaluated as

z0(t) =
∞∑

n=0

z
†
0:nℓn(t) , (4.22)

fZ+
(z, t) =

∞∑

n=0

∞∑

m=0

z
†
+:(m,n)ℓmn(z, t) , (4.23)

where z
†
0:n =

∑n
i=0 z

#
0:i, z

†
+:(m,n) =

∑n
j=0

∑m
i=0 z

#
+:(i,j) and ℓmn(z, t) = ℓm(z)ℓn(t) with ℓn(x) =

ex/2

n!

(
d
dx

)n

(xne−x) for n = 0, 1, 2, · · · .

The Laguerre coefficients of an exponential density function can be expressed in a closed
form as shown in Appendix A. For probability density functions that are generated from
exponential density functions through mixings and/or convolutions, their Laguerre coeffi-
cients can be obtained by employing operational properties of the Laguerre transform. For
example, let CMm be a class of completely monotone density functions defined by

CMm =
{

f : ϕf (s) =
m∑

i=1

pi
λi

s + λi

, pi ≥ 0 ,

m∑

i=1

pi = 1
}

, (4.24)

where ϕf (s) =
∫∞

0
e−stf(t)dt. We also introduce a class of Polya Frequency functions of

order n denoted by PFn, where

PFn =
{

f : ϕf (s) =
n∏

i=1

λi

s + λi

}
. (4.25)

The Laguerre transform of any probability density function in CMm ∪ PFn can be readily
obtained through mixings and/or convolutions of Laguerre transforms of exponential density
functions. Accordingly, if aij(x) ∈ CMm ∪ PFn, the corresponding z0(t) and fZ+

(z, t) can
be evaluated based on the algorithmic procedures given in this section. It is worth noting
that a family of PFn’s for n ∈ N is dense in the class of absolutely continuous probability
density functions associated with non-negative random variables.

5. Numerical Results

The purpose of this section is to demonstrate the power of the numerical algorithms de-
veloped in the previous section. In practice, it is natural to assume that the economic
condition changes in a lattice continuous manner so that J(t) becomes a skip-free semi-
Markov process. We also assume that the dwell time of J(t) in each state belongs to PF2.
More specifically, the matrix Laplace transform α(s) of the semi-Markov matrix of J(t) is
given by

α(s) =
[
pij αi(s)

]
, (5.1)
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where pij = 0 if i = j or |i− j| > 1 and pij > 0 otherwise,
∑

j∈J pij = 1, and

αi(s) =

∫ ∞

0

e−stdAi(t) =
αi,1

αi,1 + s
·

αi,2

αi,2 + s
, i ∈ J . (5.2)

The amount of the bad debt generated by each default is assumed to be exponentially
distributed with mean µ−1. Specific parameter values to be employed in this setting are
summarized in Table 1.

Table 1: Underlying parameter values for evaluating z0(t) and fZ+
(z, t)

Parameter Value Parameter Value Parameter Value

J {0, 1, 2} L 30 K 20

λ [1.2, 1, 0.8]⊤ α•,1 [1, 1.2, 1.4]⊤ α•,2 [2, 1.8, 1.6]⊤

µ 1 p(0) [0, 1, 0]⊤ p




0 1 0

0.6 0 0.4

0 1 0




The values of z0(t) and fZ+
(z, t) are depicted in Figures 4 and 5 respectively. The

corresponding survival function F̄Z(z, t) is shown in Figure 6. We note that the survival
function F̄Z(0, t) has jumps of size z0(t) at Z(t) = 0, which diminishes as t→∞.
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Figure 4: Probability of z0(t)

In Figure 7, the asymptotic expansion of
E[Z(t)]

t
as t→∞ is compared with the exact

value of
E[Z(t)]

t
obtained through the Laguerre transform procedure. In this numerical
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Figure 6: Survival function F̄Z(z, t)
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example, the asymptotic expansion is rather slow, demonstrating the importance of the
Laguerre transform procedure when t is not sufficiently large.
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E[Z(t)] / t using Laguerre transform
E[Z(t)] / t using asymptotic expansion
The limit of E[Z(t)] / t as t −> infinity

Figure 7: Convergence of
E[Z(t)]

t

For the CDO pricing problem discussed in Section 2, the equilibrium unit premium
c∗[Ka,Kd] in Equation (2.8) can be obtained by using Equation (2.9). The algorithmic pro-
cedure for evaluating c∗[Ka,Kd] is also shown in Appendix B. Let the risk free interest rate
be rf = 0.03, and let the maturity be 5 years. There are 4 periods in each year. In this
setting, the equilibrium unit premiums for various tranches are given in Table 2. In the first
block of Table 2, it can be seen that the underlying risk for the protection seller decreases
as the tranche interval shifts upwards, where the equilibrium unit premium decreases from
12.27% for [10, 20] to 1.30 bp for [40, 50]. In the second block, Ka is fixed at Ka = 10 while
Kd is changed from 20 to 50. The underlying risk for the protection seller also decreases
as Kd increases, where the equilibrium unit premium decreases from 12.27% for [10, 20] to
1.55% for [10, 50]. In the third block, Ka is increased from 10 to 40 while Kd is fixed at
Kd = 50. The underlying risk for the protection seller again decreases along the direction of
this change, where the equilibrium unit premium decreases from 1.55% for [10, 50] to 1.30
bp for [40, 50]. These results suggest the following.

1. The risk of the protection seller for the CDO model decreases as a tranche of the same
width shifts upward.

2. The above risk also decreases as the detachment point Kd increases while the attachment
point Ka is fixed.

3. A similar phenomenon to 2 is observed when the attachment point Ka increases while
the detachment point Kd is fixed.
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Table 2: Numerical results of equilibrium unit premium of CDO’s

[Ka, Kd] [10, 20] [20, 30] [30, 40] [40, 50]
Unit premium 12.27% 2.60% 27.03 bp 1.30 bp

[Ka, Kd] [10, 20] [10, 30] [10, 40] [10, 50]
Unit premium 12.27% 3.66% 2.14% 1.55%

[Ka, Kd] [10, 50] [20, 50] [30, 50] [40, 50]
Unit premium 1.55% 54.16 bp 9.36 bp 1.30 bp
“bp” = basis point, i.e. 1 bp = 0.01%

6. Concluding Remarks

In this paper, a dynamic model is developed for assessing the price of a CDO tranche. A
cumulative random shock process generated from a semi-Markov modulated Poisson process
is employed to capture the stochastic behavior of the cumulative aggregate loss of the under-
lying reference portfolio. By using the transform results obtained in Huang and Sumita [6]
together with the Laguerre transform method developed by Keilson and Nunn [7], Keilson,
Nunn and Sumita [8], and further studied by Sumita [13], computational algorithms are
developed for evaluating the distribution of the loss process for the underlying CDO model,
which in turn enables one to evaluate the price of the CDO tranche. Some numerical results
are presented, demonstrating the efficiency of the algorithms.

In order to calibrate the reality through this model, it is necessary to establish an efficient
procedure to estimate the underlying parameters specified in Table 1. These parameters
cannot be estimated by collecting historical data of corporate defaults as well as switches of
macro economic conditions. For this purpose, one has to obtain sufficient data concerning
CDO tranches as well as the associated prices from the market. The underlying parameters
ought to be estimated so as to provide “the minimum distance” to such market data. It is
quite difficult to overcome this hurdle without closely working with a financial institution
which has direct access to such information.
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[11] P.J. Schönbucher: Portfolio losses and the term structure of loss transition rates: a
new methodology for the pricing of portfolio credit derivatives. working paper, ETH
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A. Introduction of the Laguerre Transform Method as a Tool of Numerical

Inversion Laplace Transforms

In this section, the Laguerre transform method for numerical inversion of Laplace transforms
is succinctly summarized. We consider the Laguerre polynomials Ln(x) defined by

Ln(x) =
ex

n!

( d

dx

)n

(xne−x) , n = 0, 1, 2, · · · (A.1)

and the associated Laguerre functions

ℓn(x) = e−x/2Ln(x) . (A.2)

It is known that {ℓn(x)} constitute an orthonormal basis of L2(0,∞) = {f :
∫∞

0
f 2(x)dx <

∞}, i.e., the space of square integrable functions defined on [0,∞), see e.g. Szegö [19]. The
inner product defined on L2(0,∞) is 〈f, g〉 =

∫∞

0
f(x)g(x)dx. Thus, one has that

〈ℓm, ℓn〉 =

∫ ∞

0

ℓm(x)ℓn(x)dx =

{
1 for m = n

0 else
. (A.3)

For any function f ∈ L2(0,∞), the Fourier-Laguerre expansion of f is given by

f(x) =
∞∑

0

f †
nℓn(x) ; where f †

n = 〈f, ℓn〉 =

∫ ∞

0

f(x)ℓn(x)dx . (A.4)

The second part of (A.4) follows from the orthonormality of {ℓn(x)}. Using this relation,
a function f ∈ L2(0,∞) is mapped onto a series {f †

n}, which is called a sequence of the
Laguerre dagger coefficients. One can easily see that, if the Laguerre dagger coefficients are
known, the values of f(x) can be calculated easily via (A.4) based on the following recursion
formula

ℓn+1(x) =
1

n + 1

{
(2n + 1− x)ℓn(x)− nℓn−1(x)

}
, n = 2, 3, · · · (A.5)

starting with ℓ0(x) = e−x/2 and ℓ1(x) = (1− x)e−x/2.
Let the Laplace transform of f(x) be ϕ(w) =

∫∞

0
e−wxf(x)dx, and define T

†
f (u) =∑∞

n=0 f †
nu

n. It then follows that

T
†
f (u) =

1

1− u
ϕ
(1

2

1 + u

1− u

)
. (A.6)

Given the Laguerre dagger coefficients {f †
n} of function f , we define the Laguerre sharp

coefficients {f#
n } as follows

f
#
0 = f

†
0 , f#

n = f †
n − f

†
n−1 (n = 1, 2, · · · ) ; f †

n =
n∑

m=0

f#
m . (A.7)

From Equation (A.6), one has

T
#
f (u) =

∞∑

n=0

f#
n un = ϕ

(1

2

1 + u

1− u

)
. (A.8)
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It is shown by Keilson and Nunn [7] that using Equation (A.8), the continuum convolution of
two functions can be calculated through discrete convolution of their Laguerre sharp coeffi-
cients. More specifically, for (f ∗g)(x) =

∫ x

0
f(x−y)g(y)dy, one has ϕf∗g(w) = ϕf (w)ϕg(w),

where ϕf∗g(w), ϕf (w) and ϕg(w) denote the Laplace transforms of (f ∗ g)(x), f(x) and g(x)
respectively, so that

T
#
f∗g(u) = T

#
f (u)T#

g (u)

or equivalently

(f ∗ g)#
n =

n∑

m=0

f
#
n−mg#

m . (A.9)

Use Equation (A.9), one can easily calculate the Laguerre sharp coefficient {(f ∗ g)#
n } if

{f#
n } and {g#

n } are known, and then inverting via Equation (A.7) and the series expansion
in (A.4). Similarly, many other continuum operations are also mapped into lattice opera-
tions, including differentiation and integration. In what follows, some of these operational
properties used in this paper are summarized.
Theorem A.1 (Moment Formula). Let f(x) be a non-negative p.d.f. with Laguerre sharp

coefficients {f#
n }. Let M(i) =

∫∞

0
xif(x)dx, one has

M(i) = 4i

∞∑

n=0

(−1)nnif#
n , 0 ≤ i ≤ 2 . (A.10)

Theorem A.2 (Convolution and Integration). Consider r, f, g ∈ L2(0,∞) with Laguerre

sharp coefficients {r#
n }, {f

#
n } and {g#

n } respectively. Then,

1. r(x) =
∫ x

0
f(x− y)g(y)dy ⇔ r#

n =
∑n

m=0 f
#
n−mg#

m ;

2. r(x) =
∫∞

x
f(x)dx ⇔ r

#
0 − 2− 2f#

0 + 4
∑∞

m=0(−1)mf#
m

r#
n − 2f#

n + 4
∑∞

m=0(−1)mf
#
m+n , n ≥ 1 .

Matrix Laguerre transfrom

The Laguerre transform is extended to matrix functions by Sumita [13, 14]. For a K ×K

matrix function a(x) = [aij(x)], let L
2
(0,∞) = {a(x) : aij(x) ∈ L2(0,∞)}. The space

L
2
(0,∞) has inner product

〈a(x), b(x)〉 =
1

K

∫ ∞

0

tr{a(x)b(x)⊤}dx . (A.11)

The set of matrix function ℓ
n
(x) with ℓ

n
(x) = ℓn(x)I becomes an orthonormal basis of

L
2
(0,∞) in the following sence. There exists a unique sequence of the Laguerre dagger

coefficient matrices {a†
n
} such that

a(x) =
∞∑

n=0

a†

n
ℓ
n
(x) ; a†

n
= 〈a(x), ℓ

n
(x)〉 =

∫ ∞

0

a(x)ℓ
n
(x)dx . (A.12)

Similar to the one dimensional case, the matrix Laplace transform α(w) =
∫∞

0
e−wxa(x)dx

has the relations that

T †

a
(u) =

∞∑

n=0

a†

n
un =

1

1− u
α
(1

2

1 + u

1− u

)
, (A.13)
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and

T#

a
(u) =

∞∑

n=0

a#

n
un = α

(1

2

1 + u

1− u

)
, (A.14)

where a#
n

= a†
n
− a†

n−1
.

Bivariate Laguerre transfrom

The bivariate version of the Laguerre transform is introduced in Sumita and Kijima [16].
Let L2(R

2
+) = {f :

∫∫
R

2
+

f 2(x, y)dxdy <∞} and define

ℓmn(x, y) = ℓm(x)ℓn(y) , 0 ≤ x, y <∞ . (A.15)

It is then easy to see that {ℓmn(x, y)} is an orthonormal basis of L2(R
2
+). For any f ∈

L2(R
2
+), the Laguerre dagger coefficients {f †

mn} and the Laguerre sharp coefficients {f#
mn}

are given by

f †
mn = 〈f, ℓmn〉 =

∫∫

R
2
+

f(x, y)ℓmn(x, y)dxdy , (A.16)

f#
mn = f †

mn − f
†
m,n−1 − f

†
m−1,n + f

†
m−1,n−1 . (A.17)

One then has

f(x, y) =
∞∑

n=0

∞∑

m=0

f †
mnℓmn(x, y) . (A.18)

Define the double Laplace transform ϕ(w, s) =
∫∫

R
2
+

e−wxe−syf(x, y)dxdy, it follows that

T †(u, v) =
∞∑

n=0

∞∑

m=0

f †
mnu

mvn =
1

1− u

1

1− v
ϕ
(1

2

1 + u

1− u
,
1

2

1 + v

1− v

)
, (A.19)

T#(u, v) =
∞∑

n=0

∞∑

m=0

f#
mnu

mvn = ϕ
(1

2

1 + u

1− u
,
1

2

1 + v

1− v

)
. (A.20)

Theorem A.3 (Bivariate Matrix Convolution and Integration). Let a(x, y), b(x, y), c(x, y) ∈

L
2
(R2

+) has matrix Laguerre coefficients {a†
mn
}, {a#

mn
}, {b†

mn
}, {b#

mn
}, {c†

mn
} and {c#

mn
} re-

spectively. Then,

1. a(x, y) =
∫ x

0

∫ y

0
b(x− x′, y − y′)c(x′, y′)dx′dy′

⇔ a#
mn

=
∑m

i=0

∑n
j=0 b#

m−i,n−j
c#
i,j

;

2. a(x, y) =
∫∞

x
b(x′, y)dx′ ⇔ a†

mn
= 2

∑∞
i=m+1

∑n
j=0(−1)m+ib#

ij
;

3. a(x, y) =
∫∞

y
b(x, y′)dy′ ⇔ a†

mn
= 2

∑m
i=0

∑∞
j=n+1(−1)n+jb#

ij
.

At the last of this section, we summarize the Laguerre coefficients of exponential density
in a simple closed form, which are often appeared in applied probability theory.

Exponential density

The p.d.f. of an exponential density function having mean µ−1 is denoted by

e(µ; x) = µe−µx , x ≥ 0, µ > 0 ,

and the corresponding Laguerre dagger coefficients {e†n(µ)} is given as

e†n(µ) =
2µ

2µ + 1

(2µ− 1

2µ + 1

)n

, n ≥ 0 . (A.21)
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B. Algorithms in Section 4

In this section, provided are the numerical algorithms for evaluating the probability mass
function z0(t) and the p.d.f. fZ+

(z, t) discussed in Section 3, as well as the equilibrium unit
premium c∗[Ka,Kd] represented by Equation (2.8) in Section 2.

For numerical evaluation, the infinite series’ involved in (3.12) through (3.15) have to be
truncated. Let K and L be the truncation points determined as

ζ̃0(s) = p⊤(0)×

{
I +

L∑

ℓ=1

[
αij(s + λi)

]ℓ
i,j∈J

}
×

[
1− αi(s + λi)

s + λi

]

i∈J

, (B.1)

ζ̃+(r, s) = p⊤(0)×

{
I +

L∑

ℓ=1

β̂
+

(
s1, θM(r)

)ℓ
}
× β̂

∗

+:D

(
s1, θM(r)

)
× 1 , (B.2)

with

˜̂
β+:ij

(
s, θM :i(r)

)
=

K∑

k=1

θk
M :i(r)

∫ ∞

0

e−staij(t)e
−λit

(λit)
k

k!
dt , (B.3)

and

˜̂
β
∗

+:i

(
s, θM :i(r)

)
=

K∑

k=1

θk
M :i(r)

∫ ∞

0

e−stĀi(t)e
−λit

(λit)
k

k!
dt . (B.4)

K and L are determined so as to achieve the accuracy of ǫ for the first two moments of the
size of each default, which is exponentially distributed with parameter µ based on (A.10).

We are now in a position to describe the main algorithm. The following operators are
employed.

Definition B.1.

MMT1 : MMT1
({

fn

}
n:N

)
= 4

N∑

n=0

(−1)nnfn

MMT2 : MMT2
({

fn

}
n:N

)
= 42

N∑

n=0

(−1)nn2fn

CONV :
{
cn

}
n:N

= CONV
({

an

}
n:N

,
{
bn

}
n:N

)
⇔ cn =

n∑

m=0

an−mbm

CONVK
i=1

({
fi:n

}
n:N

)
= CONV

(
CONVK−1

i=1

({
fi:n

}
n:N

)
,
{
fK:n

}
n:N

))

PSUM :
{
bn

}
n:N

= PSUM
({

an

}
n:N

)
⇔ bn =

n∑

m=0

am
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OUTP :
{
c(m,n)

}
mn:MN

= OUTP
({

am

}
m:M

,
{
bn

}
n:N

)
⇔ c(m,n) = ambn

BDIFF :
{
b(m,n)

}
mn:MN

= BDIFF
({

a(m,n)

}
mn:MN

)

⇔ b(m,n) = a(m,n) − a(m−1,n) − a(m,n−1) + a(m−1,n−1)

VCONV :
{
cn

}
n:N

= VCONV
({

an

}
n:N

,
{
bn

}
n:N

)
⇔ cn =

n∑

m=0

a⊤
n−mbm

VBCONV :
{
c(m,n)

}
mn:MN

= VBCONV
({

a(m,n)

}
mn:MN

,
{
b(m,n)

}
mn:MN

)

⇔ c(m,n) =
m∑

i=0

n∑

j=0

a⊤
(m−i,n−j)b(i,j)

VMCONV :
{
cn

}
n:N

= VMCONV
({

an

}
n:N

,
{
b
n

}
n:N

)
⇔ c⊤n =

n∑

m=0

a⊤
n−mb

m

VMBCONV :
{
c(m,n)

}
mn:MN

= VMBCONV
({

a(m,n)

}
mn:MN

,
{
b
(m,n)

}
mn:MN

)

⇔ c⊤(m,n) =
m∑

i=0

n∑

j=0

a⊤
(m−i,n−j)b(i,j)

BPSUM :
{
b(m,n)

}
mn:MN

= BPSUM
({

a(m,n)

}
mn:MN

)
⇔ b(m,n) =

m∑

i=0

n∑

j=0

a(i,j)

BINNP : BINNP
({

a(m,n)

}
mn:MN

,
{
b(m,n)

}
mn:MN

)
=

M∑

m=0

N∑

n=0

a(m,n)b(m,n)

MSUV :
{
b(m,n)

}
mn:MN

= MSUV
({

a(m,n)

}
mn:MN

)

⇔ b(m,n) = 2
M∑

i=m+1

n∑

j=0

(−1)m+ia(i,j)

In what follows, the algorithm of evaluating z0(t) and fZ+
(z, t) is provided.

Algorithm B.2 Evaluating z0(t) and fZ+
(z, t) for given K and L

Input: p(0),
{
y
†
i:m

}
m:M

,
{
y

#
i:m

}
m:M

,
{
a
†
k:ij:n

}
n:N

,
{
a

#
k:ij:n

}
n:N

,
{
Ā

†
k:i:n

}
n:N

,
{
Ā

#
k:i:n

}
n:N

(i, j ∈
J , 1 ≤ k ≤ K), εM , εN , z, t

Output: z0(t) and fZ+
(z, t)

Procedure:

STEP 1: Preparation
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1: Fix K and L

2: Initialize M and N

STEP 2: Determine M

1: Evaluate the following two variable from mathematical moments of YM :i:•

E1
i:M = K(L + 1)E[YM :i:•]

E2
i:M = K(L + 1)Var[YM :i:•] + K2(L + 1)2E[YM :i:•]

2

2: Evaluate the corresponding approximations from the Laguerre coefficients{
y

#:KL
i:m

}
m:M

= CONV
K(L+1)
k=1

({
y

#
i:m

}
m:M

)

Ẽ1
i:M = MMT1

({
y

#:KL
i:m

}
m:M

)
, Ẽ2

i:M = MMT2
({

y
#:KL
i:m

}
m:M

)

3: while max
i∈J

(
Ẽ1

i:M − E1
i:M , Ẽ2

i:M − E2
i:M

)
> εM do

4: M = M + 1
5: Reevaluate

{
y

#
i:m

}
m:M

6: Update
{
y

#:KL
i:m

}
m:M

and reevaluate Ẽ1
i:M , Ẽ2

i:M

7: end while

STEP 3: Determine N

1: Evaluate the following two variable

E1
i:N = (L + 1)

∫ ∞

0

t ai(t)e
−λit

(λit)
K

K!
dt

E2
i:N = (L + 1)

∫ ∞

0

t2 ai(t)e
−λit

(λit)
K

K!
dt

2: Evaluate the corresponding approximations from the Laguerre coefficients{
a

#:KL
K:ij:n

}
n:N

= CONV
(L+1)
ℓ=1

({
a

#
K:ij:n

}
n:N

)

Ẽ1
i:N = MMT1

({
a

#:KL
K:ij:n

}
n:N

)
, Ẽ2

i:N = MMT2
({

a
#:KL
K:ij:n

}
n:N

)

3: while max
i∈J

(
Ẽ1

i:N − E1
i:N , Ẽ2

i:N − E2
i:N

)
> εN do

4: N = N + 1
5: Reevaluate

{
a

#
K:ij:n

}
n:N

6: Update
{
a

#:KL
K:ij:n

}
n:N

and reevaluate Ẽ1
i:N , Ẽ2

i:N

7: end while

STEP 4: Evaluate
{
b#

+:(m,n)

}
mn:MN

and
{
b
∗#
+:(m,n)

}
mn:MN

1: Evaluate
{
b
#
+:ij:(m,n)

}
mn:MN

and
{
b
∗#
+:i:(m,n)

}
mn:MN

for i ∈ J

{
b
†
+:ij:(m,n)

}
mn:MN

=
K∑

k=0

OUTP
(
PSUM

(
CONVk

q=1

({
y

#
i:m

}
m:M

))
, PSUM

({
a

#
k:ij:n

}
n:N

))

{
b
#
+:ij:(m,n)

}
mn:MN

= BDIFF
({

b
†
ij:(m,n)

}
mn:MN

)

{
b
∗†
+:i:(m,n)

}
mn:MN

=
K∑

k=0

OUTP
(
PSUM

(
CONVk

q=1

({
y

#
i:m

}
m:M

))
, PSUM

({
Ā

∗#
k:i:n

}
n:N

))

{
b
∗#
i:(m,n)

}
mn:MN

= BDIFF
({

b
∗†
i:(m,n)

}
mn:MN

)

2: Construct
{
b#

+:(m,n)

}
mn:MN

and
{
b
∗#
+:(m,n)

}
mn:MN

STEP 5: Evaluate z0(t) and fZ+
(z, t)
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1: Evaluate
{
π

#
0:n

}
n:N

,
{
Π#

0:n

}
n:N

,
{
π

#
+:(m,n)

}
mn:MN

and
{
Π#

+:(m,n)

}
mn:MN

π
#⊤
0:n (1) = p⊤(0) · a#

0:n
, n = 0, 1, · · · , N

{
π

#
0:n(ℓ)

}
n:N

= VMCONV
({

π
#
0:n(ℓ− 1)

}
n:N

,
{
a#

0:n

}
n:N

)

{
π

#⊤
0:n

}
n:N

=
L∑

ℓ=1

{
π

#
0:n(ℓ)

}
n:N

Π#
0:n = p⊤(0) · Ā

#
0:n , n = 0, 1, · · · , N

π
#⊤
+:(m,n)(1) = p⊤(0) · b#

+:(m,n)
, m = 0, 1, · · · ,M, n = 0, 1, · · · , N

{
π

#
+:(m,n)(ℓ)

}
mn:MN

= VMBCONV
({

π
#
+:(m,n)(ℓ− 1)

}
mn:MN

,
{
b#

+:(m,n)

}
mn:MN

)

{
π

#
+:(m,n)

}
mn:MN

=
L∑

ℓ=1

{
π

#
+:(m,n)(ℓ)

}
mn:MN

Π#
+:(m,n) = p⊤(0) · b∗#+:(m,n) , m = 0, 1, · · · ,M, n = 0, 1, · · · , N

2: Evaluate
{
z

#
0:n

}
n:N{

z
#
0:n

}
n:N

=
{
Π#

0:n

}
n:N

+ VCONV
({

π
#
0:n

}
n:N

,
{
Ā

#
0:n

}
n:N

)

3: Evaluate
{
z

#
+:(m,n)

}
mn:MN{

z
#
+:(m,n)

}
mn:MN

=
{
Π#

+:(m,n)

}
mn:MN

+ VBCONV
({

π
#
+:(m,n)

}
mn:MN

,
{
b
∗#
+:(m,n)

}
mn:MN

)

4: Evaluate z0(t)

z0(t) = INNP
(
PSUM

({
z

#
0:n

}
n:N

)
,
{
ℓn(t)

}
n:N

)

5: Evaluate fZ+
(z, t)

fZ+
(z, t) = BINNP

(
BPSUM

({
z

#
+:(m,n)

}
mn:MN

)
,
{
ℓ(m,n)(z, t)

}
mn:MN

)

where ℓ(m,n)(z, t) = ℓm(z)ℓn(t)

This algorithm enables one to evaluate the survival function of Z(t). Let

F̄Z(z, t) =

{
P
[
Z(t) > z

]
for z > 0

P
[
Z(t) > 0

]
+ z0(t) for z = 0

. (B.5)

Let
{
z̄
†
(m,n)

}
mn:MN

be defined as

{
z̄
†
(m,n)

}
mn:MN

= MSUV
({

z
#
+:(m,n)

}
mn:MN

)
,

one then has

F̄Z(z, t) =





BINNP
({

z̄
†
(m,n)

}
mn:MN

,
{
ℓ(m,n)(z, t)

}
mn:MN

)
for z > 0

BINNP
({

z̄
†
(m,n)

}
mn:MN

,
{
ℓ(m,n)(0, t)

}
mn:MN

)
+ z0(t) for z = 0

. (B.6)

Similarly, the expectation E
[
L[Ka,Kd](t)

]
in Equation (2.9) can be obtained by

E
[
L[Ka,Kd](t)

]
= BINNP

(
MSUV

(
BDIFF

({
z̄
†
(m,n)

}
mn:MN

))
,
{
ℓ(m,n)(Ka, t)

}
mn:MN

)

+ BINNP
(
MSUV

(
BDIFF

({
z̄
†
(m,n)

}
mn:MN

))
,
{
ℓ(m,n)(Kd, t)

}
mn:MN

)

+ KaF̄Z(Kd, t) . (B.7)
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Then, one can evaluate the equilibrium unit premium c∗[Ka,Kd] in Equation (2.8) by using

(B.7) repeatedly.
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